
Exercise 10: Exercising in style

Task 1: Very exclusive!

a) Give a solution to mutual exclusion using a fetch-and-add register.

b) Give a solution to mutual exclusion using a compare-and-swap register.

c) Give a solution to mutual exclusion using a load-link/store-conditional register.

d) Your solutions should all be obstruction-free. Can you prevent lockouts, too? (Hint:
There are plenty of different solutions. A generic one that uses only RW registers is
to have a “want” flag for each node that it sets to 1 if it wants to enter the critical
section, and then let whoever wins mutual exclusion close the bidding phase (no
more new wants). Subsequently, switch to a mode that lets the nodes with raised
flag each enter the critical section once and then return to the basic mutual exclusion
algorithm.)

Task 2: Bonsai Splitter Tree

In this exercise, we construct a highly space-efficient randomized variant of the splitter
tree from the lecture.

a) Show that there is a (randomized) splitter such that each node that does not stop
turns left or right with probality 1/2 each, independently of other nodes entering the
splitter!

b) Show that for a tree of Θ(n) leaves (constants are your choice), w.h.p., a constant
fraction of all nodes obtains STOP at some splitter. (Hint: Chernoff time!)

c) Now iterate: Let all nodes that did not STOP enter a second splitter tree, rinse, and
repeat. Show that this way, you can achieve

• O(log k) expected step complexity for the first STORE of each node

• O(log2 n) step complexity w.h.p. for the first STORE of each node

• O(n) total space (this should suffice w.h.p.)

• O(k) expected step complexity for COLLECT

(Hint: For space bound, just let the size of each new tree be by a constant factor
smaller than the previous. For everything else, apply the results from the lecture and
use probabilistic bounds where needed (for our randomized splitters all nodes might
turn, e.g., left!).)

d)* Can you make the step complexity of the first STORE O(min{k, log n log∗ n})
w.h.p.? (Hint: Let a node that fails to STOP try several times concurrently in
the next tree.)

Task 3*: Stage names

a) Find out what the renaming problem is!

b) Can it be helpful with STORE & COLLECT?

c) Do you think renaming is useful for mutual exclusion, too?



d) What happens if we consider mutual exclusion with crash failures? Do things go
south, or is there a way out?

e) Present these newest trends in the TA session!


