
Exercise 4: Extreme Democracy

Task 1: Everyone Gets exactly one Vote. . .

The goal of this exercise is to prove correct the asynchronous safe broadcast algorithm
by Bracha. It tolerates f < n/3 Byzantine faults, so we will assume that this condition
holds.

Algorithm 1 Code of the safe broadcast algorithm at node v. The input message M
is given to the designated source node. Any applied thresholds require messages from
different nodes; duplicate messages from the same sender are dropped.

1: if v is the source then
2: send init(M) to all nodes
3: end if
4: Stage 1: wait until received

• one init(M ′) message from the source,
• n− f echo(M ′) messages, or
• n− 2f ready(M ′) messages

for some M ′

5: send echo(M ′) to all nodes
6: Stage 2: wait until received

• n− f echo(M ′) messages or
• n− 2f ready(M ′) messages

for some M ′ (including those from Stage 1)
7: send ready(M ′) to all nodes (also self)
8: Stage 3: wait until received

• n− f ready(M ′) messages
for some M ′ (including those from earlier stages)

9: output M ′

a) Show that if the source is correct, eventually all correct nodes output M ! (Hint:
Argue that faulty nodes cannot make correct nodes send any “non-M” message.
Conclude that all nodes pass all stages for M .)

b) Show that if a correct node broadcasts a ready(M ′) message, no correct node broad-
casts a ready(M ′′) message for M ′′ 6= M ′! (Hint: Use that correct nodes broadcast
only one echo(·) message, but the first nodes broadcasting ready(·) messages must
do so because of receiving many echoes!)

c) Show that if a correct node outputs a message M ′, eventually all correct nodes output
M ′! (Hint: Use b) to show that no correct node can pass Stage 2 for M ′′ 6= M ′.
Then argue that eventually nodes get “pulled” through the first two stages because
they receive sufficiently many ready(M) messages.)

d) Conclude that the algorithm correctly implements safe broadcast!

Task 2: . . . and then a Random Decision is Taken!

Consider the following shared coin.

a) Show that if f < n/3, this algorithm implements a weak shared coin with defiance
2−n.



Algorithm 2 Simple weak shared coin (code at node v).

1: flip an unbiased coin
2: send the result to everyone (also self)
3: wait until received bits from n− f different senders
4: output the majority value (0 in case of a draw)

b) Show that if f ∈ O(
√
n), this algorithm implements a weak shared coin with constant

defiance.

c) Show that if f = α
√
n for α ∈ [1,

√
n/3], then this algorithm implements a weak

shared coin with defiance 2−O(α2). (Hint: Check out the section on tail bounds of
the binomial distribution on Wikipedia.)

d) Use this to show that for every f < n/4, there is an asynchronous consensus algorithm

tolerating up to f faults that terminates in expected time 2O(df2/ne).

e) Can this approach be used to create an algorithm that tolerates any number of
f < n/4 faults, but terminates faster if the actual number of faults is small? (An
educated guess suffices, you don’t need to prove your answer correct here.)

Task 3*: Lecturing the Lecturer

a) Find out why Byzantine failures are called Byzantine!

b) Conclude that the lecturer is biased towards always pointing at the same person.
Which celebrities of distributed computing could/should be featured instead?1

c) Tell the tale of how Byzantine faults have been named and the heroes have that
fought them throughout the decades in the exercise session!

1And anyway, shouldn’t he stop asking vague questions and demanding to prove incorrect claims?!?
(Hint: The answer to the latter part is definintely yes. Sorry again!)


