Exercise 8: Don't get lost...

We always consider connected, simple, weighted graphs G = (V, E, W), where $W : E \to \{1, \ldots, n^{\mathcal{O}(1)}\}$, and restrict message size to $\mathcal{O}(\log n)$ bits.

Task 1: ... taking shortcuts!

We sample each node into $S \subseteq V$ with probability $c \log n/n^{1-\alpha}$, for a sufficiently large constant c and some constant $0 < \alpha < 1$. Define the *skeleton graph* (S, E_S, W_S) by having an edge $\{s, t\}$ if s and t are within $n^{1-\alpha}$ hops of each other, and set $W_S(\{s, t\})$ to the minimum weight of an s-t path of at most this number of hops.

It is ok to be brief in this exercise, in particular for arguments that carry over oneto-one from the lecture!

- a) Show that $|S| \in \Theta(n^{\alpha} \log n)$ w.h.p.!
- b) Denote by $d_S(s,t)$ the distance of s and t in the skeleton graph. Show that $d_S(s,t) = d(s,t)$ w.h.p.! (Hint: Select for each pair $s, t \in S$ a shortest path from s to t in G. Then prove that a path of the same weight exists in the skeleton graph w.h.p. and use the union bound.)
- c) Determine the skeleton graph edges and a $(1 + \varepsilon)$ -approximation to their weights, so that each node in S knows its incident edges and their approximate weights. Use $\mathcal{O}((n^{1-\alpha} + |S|) \log n)$ rounds! (Hint: "Find" the edges using the rounding technique from the lecture and the algorithm for the unweighted case. Add a hop counter to each distance that "remembers" the number of traversed edges in the graph, so that paths of more than n^{α} hops can simply be discarded.)
- d) Make the skeleton graph and its approximate weights known to all nodes in $\mathcal{O}(|S|^2 + D)$ rounds.
- e) In G, let each node learn its closest $n^{1-\alpha}$ nodes with respect to the distances \tilde{d} (as defined in Theorem 8.20, but for distance parameter $n^{1-\alpha}$), using $\mathcal{O}(n^{1-\alpha}\log n)$ rounds. Show that w.h.p., for each node this list contains a node from S. Define s_v as the closest such node to v with respect to \tilde{d} (breaking ties by identifiers).
- f) Argue that in this time bound, routing tables and small labels for routing between v and s_v and vice versa (for all v) can be constructed.
- g) Show that if $d(v, s_v) \leq d(v, w)$, then $d(v, s_v) + d(s_v, s_w) + d(s_w, w) \in (7 + \mathcal{O}(\varepsilon))d(v, w)$. (Hint: Use the technique from the lecture, but make sure to switch to arguing about real distances before applying the triangle inequality!)
- h) Conclude that, w.h.p., now all necessary information to route/estimate distances with approximation factor $7 + \mathcal{O}(\varepsilon)$ has been collected. (Hint: Observe that if $\tilde{d}(v, w) < \tilde{d}(v, s_v)$, then you can route on a shortest path. Otherwise use the route from g)!)
- i) Sum up the running time bounds and choose an α that minimizes the running time (up to logarithmic factors). What running time do you get?

Task 2: ... in the Steiner Forest!

In this exercise, we're going to solve the Steiner Tree problem, as defined in an earlier exercise. Denote by T the set of nodes that need to be connected.

- a) For each node v, denote by t_v the closest node in T. Show that partial shortestpath trees rooted at $t \in T$ spanning the nodes v with $t_v = t$ can be computed in $\max_{v \in V} \{h(v, t_v)\} + \mathcal{O}(D)$ rounds, where denotes the minimum hop length of a shortest path from v to t_v . (Hint: Essentially, this is single-source Bellman-Ford with a virtual source connected to all nodes in T.)
- b) Consider the potential terminal graph edges "witnessed" by neighbors v and w with $t_v \neq t_w$, i.e., v and w know that $d(t_v, t_w) \leq d(v, t_v) + W(v, w) + d(w, t_w)$. Show that if there are no such v and w with $d(t_v, t_w) = d(v, t_v) + W(v, w) + d(w, t_w)$, then the terminal graph edge $\{t_v, t_w\}$ is not in the MST of the terminal graph! (Hint: Observe that then any shortest s-t path must contain a node u with $t_u \notin \{s, t\}$. Conclude that $\{s, t\}$ is the heaviest edge in the cycle (s, t_u, t, s) .)
- c) Show that the MST of the terminal graph can be determined and made globally known in $\mathcal{O}(|T| + D)$ additional rounds. (Hint: Use the distributed variant of Kruskal's algorithm from the lecture.)
- d) Show how to construct a Steiner Tree of G of at most the same weight as the MST of the terminal graph in additional $\max_{v \in V} \{h(v, t_v)\}$ rounds. (Hint: Modify the previous step so that the "detecting" pair v, w with $d(t_v, t_w) = d(v, t_v) + W(v, w) + d(w, t_w)$ is remembered. Then mark the respective edges $\{v, w\}$ and the leaf-root-paths from v to t_v and w to t_w for inclusion in the Steiner Tree.)
- e) Conclude that the result is a 2-approximate Steiner Tree. What is the running time of the algorithm? (Hint: Recall Task 2 from Exercise 6.)

Task 3*: ... looking for Thorup and Zwick!

- a) Learn about the routing scheme by Thorup and Zwick!
- b) Can you see how to use this to speed up the construction from Task 1? Increasing the approximation factor a bit is ok. (Hint: Operate on a skeleton of \sqrt{n} nodes and handle all communication via a BFS tree of G. Close-by nodes are handled as before.)
- c) Talk about it in the exercise session!