Lecture 7

Hardness of MST
Construction

In the previous lecture, we saw that an MST can be computed in O(y/nlog™ n+
D) rounds using messages of size O(logn). Trivially, (D) rounds are required,
but what about this O(y/nlog” n) part? The (D) comes from a locality-based
argument, just like, e.g., the Q(log™ n) lower bound on list coloring we've seen.
But this type of reasoning is not going to work here: all problems can be solved
in O(D) rounds by learning the entire topology and inputs!

Hence, if we want to show any such lower bound, we’ll need to reason about
the amount of information that can be exchanged in a given time. So, we
need a problem that is “large” in terms of communication complezity, and then
somechow make it hard to talk about it efficiently, yet ensure a small graph
diameter (since we want a bound that is not based on having a large diameter).

Reducing 2-player equality to MST construction

Quite a few constraints, but actually not too hard to come by. Take a look at the
graph in Figure 7.1. It consists of 2k € ©(y/n) disjoint paths p;, 7 € {1,...,2k}
of length k, two nodes A and B that are connected to all left or right endpoints
of the paths, respectively, and a balanced binary tree with k + 1 leaves, where
the i leaf is connected to the i*" node of each path. Finally, there’s an edge
from A to the leftmost leaf of the tree and from B to the rightmost leaf of the
tree. This graph has a diameter of O(logn), as this is the depth of the binary
tree. Also, it’s clear that all communication between A and B that does not use
tree edges will take k rounds, and using the tree edges as “shortcuts” will not
yield a very large bandwidth.

So far, we haven’t picked any edge weights. We’ll use these to encode a
difficult problem — in terms of 2-player communication complexity — in a way
that keeps the information on the inputs well-separated. We’re going to use the
equality problem.

Definition 7.1 (Deterministic 2-player equality). The deterministic 2-player
equality problem is defined as follows. Alice and Bob are each given an N-bit
string, x and y, respectively. They exchange bits in order to determine whether

89

90 LECTURE 7. HARDNESS OF MST CONSTRUCTION

]

S— A L ,
O GO, O O O 0,
1

4444444

'

1
1
DyS RS
T

O O O O O O O

Figure 7.1: Graph used in the lower bound construction. Grey edges have
weight 0, red edges weight 1. Only the weight of edges incident to nodes A and

B depends on the input strings z and y of Alice and Bob, respectively. The
binary tree ensures a diameter of O(logn).

x =y or not. In the end, they need to output 1 if and only if v = y. The
communication complexity of the protocol is the worst-case number of bits that
are exchanged (as function of N).

Let’s now fix the weights. We’ll only need two different values, 0 and 1.
Given z,y € {0,1}*, we use the following edge weights:

e All edges between path nodes and the binary tree have weight 1.

e Fori e {1,...,k}, the edge from A to p; has weight z; and the edge from
A t0 pi, has weight T;, where T; := 1 — x;.

e Foric {1,...,k}, the edge from B to p; has weight y; and the edge from
B to pi+; has weight 7;.

o All other edges have weight 0.
This encodes the question whether x = y in terms of the weight of an MST.

Lemma 7.2. The weight of an MST of the graph given in Figure 7.1 is k if
and only if v = y.

Proof. By construction, the binary tree, A, and B are always connected by
edges of weight 0. Likewise, for each i € {1,...,2k}, the nodes of path p;
are connected by edges of weight 0. Hence, we need to determine the minimal
weight of k edges that interconnect the paths p; and the component containing
the binary tree, A, and B.

91

Suppose first that © = y. Then, for each bit z; = y;, either x; = y; = 1 or
7; = y; = 1. Thus, either the cost of all edges from p; to the remaining graph
is 1, while for p;; 1 there are 0-weight edges leaving it, or vice versa. Thus, the
cost of a minimum spanning tree is exactly k.

On the other hand, if o # y, there is at least one index ¢ for which x; # y;.
Thus, both p; and p;1x have an outgoing edge of weight 0, and the weight of an
MST is at most k& — 1. O

This is promising, in the sense that we have translated the equality problem
to something an MST algorithm can solve. However, we cannot simply argue
that if we let A and B play the roles of Alice and Bob in a network, the (to-be-
shown) hardness of equality implies that the problem is difficult in the network,
as the nodes of the network might do all kinds of fancy things. Similar to when
we established that consensus is hard in message passing systems from the same
result for shared memory, we need a clean simulation argument.

Theorem 7.3. Suppose there is a deterministic distributed algorithm that solves
the MST problem on the graph in Figure 7.1 for arbitrary x and y in T €
o(yv/n/ log? n) rounds using messages of size O(logn). Then there is a solution
to deterministic 2-player equality of communication complexity o(N).

Proof. Alice and Bob simulate the MST algorithm on the graph in Figure 7.1
for N = k. Note that Alice knows the entire graph but the weights of the edges
incident to B and Bob knows everything but the weights of the edges incident
to A. In round r € {1,...,T}, Alice simulates the algorithm at the nodes A,
the k£ + 1 — r nodes on each path closest to it, and a subset of the nodes of the
binary tree; the same holds for Bob with respect to B.

Because Alice and Bob know only what’s going on for a subset of the nodes,
they need to talk about what happens at the boundary of the region under
their control. However, since in each round, the subpaths the simulate become
shorter, the path edges are already accounted for: for the new boundary edges
that are in paths, their communication can be computed locally, as the messages
that have been sent over them in previous rounds are known — they were in the
simulated region!

Hence, we only have to deal with edges incident to nodes of the binary tree.
Consider Alice; Bob behaves symmetrically. In round r, Alice simulates the
smallest subtree containing all leaves that connect to path nodes she simulates
as well. Observe that this rids Alice and Bob of talking about edges between the
tree and the rest of the graph as well. The only issue is now that the “simulation
front” does not move as fast within the tree as it does in the remaining graph.
This implies that Alice needs some information only Bob knows: the messages
sent by tree nodes whose neighbors she did not simulate in the previous round.
Since the tree is binary, it has depth [log(k + 1)] € O(logn) and for each node
on the boundary, there is at most one message that needs to be communicated.
Therefore, Alice and Bob can simulate the MST algorithm communicating only
O(log? n) bits per round, provided T < k.

For T' < k, the subgraphs Alice and Bob have knowledge of cover the original
graph. Therefore, for a suitable partition of the edge set F = E4UFEp, Alice
can count and communicate the weight of all MST edges in F4, and Bob can
do so for Ep. This requires at most 2logk € O(logn) communicated bits.
By Lemma 7.2, Alice and Bob now can output whether z = y by outputting

92 LECTURE 7. HARDNESS OF MST CONSTRUCTION

) g ALICE
// R

()
(S N
lllIIlIIIII-IIﬂIlmllI/ €1op

.Illllll-lﬂlllll

/re !/le 1 I/"
<////y/////r/r////l///v//ﬂr//lr/ —

Figure 7.2: The regions of the graph Alice simulates in rounds 2 (solid purple)
and 3 (dotted purple), respectively. Bob needs to tell Alice what message is
sent over the yellow edge by the node outside the region of round 2.

£ BOB

r ‘r/m‘-/m/r///

0
@\/ﬁ”'”:%%-//-'/%/,’; / e
m . I

..' .
0 o 0
i
|

Figure 7.3: The regions of the graph Bob simulates in rounds 2 (solid blue) and
3 (dotted blue), respectively. Alice needs to send Bob up to O(logn) bits the
algorithm sends over the yellow edge.

93

whether the MST has weight k& or not. The total communication cost of the
protocol is O(T'log? n + log? k) C o(N). O

Remarks:

e In the previous lecture, we required non-zero edge weights. This doesn’t
change anything, as picking, e.g., 1 and 2 will change the weight of an
MST by exactly n — 1.

e The simulation approach used for Theorem 7.3 is very flexible. Not only
can it be used for different weights of the edges incident to A and B, but
also for different topologies of a similar flavor. In fact, it is the underlying
technique for almost all the non-locality based lower bounds we know in
the distributed setting without faults!

Deterministic equality is hard

We know now that any fast deterministic MST algorithm using small messages
implies a protocol solving deterministic equality at small communication cost.
Hence, showing that the communication complexity of this problem is large will
yield that MST cannot be solved quickly in all graphs of n nodes, even if D is
small.

Theorem 7.4. The communication complexity of deterministic equality is N+1
(respectively N, if we are satisfied with one player learning the result).

Proof. Clearly, N (N + 1) bits suffice: just let Alice send 2 to Bob and decide
(and tell the result to Alice). Now assume for contradiction that there is a
protocol communicating N — 1 bits in which one player decides correctly. As
there are 2V > 2N—1 possible values of x, there must be two inputs (z,) (i.e,
y = z) and (z/,z’) with 2’ # x so that the sequence of N — 1 exchanged bits
(including who sent them)! must be identical. By definition, in both cases the
output is 1. Now consider the input (z,z’). By induction on the communicated
bits and using indistinguishability, we see that Alice cannot distinguish the
execution from the one for inputs (z,x), while Bob cannot distinguish it from
the one for inputs (2/,2'). This is a contradiction, as then one of them decides
on output 1, but x # 2z’ implies that the output should be 0. To see that one
more bit needs to be communicated if both players need to know the output,
observe that for an N-bit protocol, one player would have to decide knowing
only N — 1 bits, yielding the same contradiction. O

Corollary 7.5. There is no deterministic distributed MST algorithm that uses
messages of size O(logn) and terminates in o(y/n/log?n + D) rounds on all
graphs of n nodes and diameter D.

Proof. Theorem 6.2 shows that running time o(D) is impossible, which shows
the claim if D > /n/log®n. Theorem 7.3 shows that an o(y/n/log? n)-round
algorithm implied a solution to deterministic equality using o(N) bits. By The-
orem 7.4, this is not possible. This covers the case that D < y/n/log® n. O

1This follows by induction: both Alice and Bob must know who sends next, so this must
be a function of the transmitted bits.

94 LECTURE 7. HARDNESS OF MST CONSTRUCTION

Randomized equality is easy

One might expect that the same approach extends to randomized MST algo-
rithms. Unfortunately, the equality problem defies this intuition: It can be
solved extremely efficiently using randomization.

Definition 7.6 (Randomized 2-player equality). We define the randomized
2-player equality problem as follows. Alice and Bob are each given an N-bit
string, x and y, respectively. Moreover, each of them has access to a (sufficiently
long) string of unbiased random bits. They exchange bits in order to determine
whether x = y or not. In the end, they need to determine whether v = y
correctly with error probability at most e (for any x andy!). The communication
complexity of the protocol is the worst-case number of bits that are exchanged
(as function of N). We talk of public randomness if Alice and Bob receive the
same random bit string, otherwise the protocol uses private randomness (and
the strings are independent).

While public randomness appears to be a strong assumption at first glance,
it makes designing an algorithm very simple.

Lemma 7.7. For any k € N, randomized equality can be solved with p = 27F,
k + 1 bits of communication assuming public randomness.

Proof. Consider the probability that for a random vector v of N random bits,
it holds that v -z = v - ymod 2, where a - b := Zf\;l a;b; (the standard scalar
product on {0,1}" as vector space). If x = y, this is always true. Otherwise,

vex—v-ymod2=v-(x—y)mod2 = Z v; mod 2.

As v is a string of independent random bits, this is the probability that the
number of heads for |i € {1,...,N}|z; # y;| > 0 unbiased coin flips is even.
This is clearly exactly 1/2 for a single coin flip, and by induction this holds for
any natural number of coin flips.

In summary, testing whether v -z = v - y mod 2 reveals with probability 1/2
that x # y and will never yield a false negative if x = y. With &N public random
bits, Alice and Bob have k independent random vectors. The probability that
the test fails k times is 27%. It remains to show that only k + 1 bits need to be
exchanged. To this end, Alice sends the v-xmod2 (i.e., 1 bit) for each of the k
random vectors v to Bob. Bob then compares to y - v for each v and sends the
result to Alice (1 bit). O

This is great, but what’s up with this excessive use of public random bits? Of
course, we can generate public random bits by communicating private random
bits, but then the communication complexity of the protocol would become
worse than the trivial solution! It turns out that there’s a much more clever
way of doing this.

Theorem 7.8. Given a protocol for equality that uses public randomness and
has error probability €, we can construct a protocol for randomized equality with
error probability 2 that uses O(log N + log 1/¢) public random bits.

95

Proof. For simplicity, assume that 6N/¢ is integer (otherwise round up). Select
6N /e random strings uniformly and independently at random and fix this choice.

Now consider an input (z,y) to the equality problem. For most of the fixed
random strings, the original protocol will succeed, for some it may fail. Let us
check the probability that it fails for more than a 2e-fraction of these strings.
The number of such “bad” strings is bounded from above by the sum X of 6N /e
independent Bernoulli variables that are 1 with probability e. Thus, E[X] = 6N.
By Chernoff’s bound,

P[X >12N] = P[X > 2E[X]] < e PIXI/3 — 72N < 972N,

By the union bound, the probability that there is any pair (x,y) for which there
are more than 12N “bad” strings among the 6N /e selected ones is at most

S PX>12Nj <Y Y 2N =1

(z,y) z

Thus, with non-zero probability, our choice of 6 N/e random strings is “good”
for all inputs (z,y). In particular, there ezxists a choice for which this holds! Fix
such a choice of 6N/e (now non-random) strings, i.e., for no (x,y) there are more
than 12N strings for which the original algorithm with these strings as “public
random bits” outputs the wrong result. Picking one such string uniformly at
random and executing the protocol will thus fail with probability at most

12N

= 2¢.
6N/e N

We make the list of these strings part of the new algorithm’s code. Alice and
Bob now simply pick one entry from the list uniformly at random (using public
randomness) and execute the original algorithm with this string as random
input. This errs with probability at most 2¢ and requires

e (2)] - 0t

public random bits. O

Corollary 7.9. Randomized equality can be solved with error probability N~
with private randomness and O(log N) bits of communication.

Proof. We apply Theorem 7.8 to the algorithm obtained from Lemma 7.7 for
a choice k € ©(log N). We obtain an algorithm using O(log N) bits of public
randomness and achieving error probability n=®("). To make the randomness
private, we let Alice choose the ©(logn) random bits and communicate them;
this does not affect the asymptotic bit complexity. O

Remarks:

e Apart from showing off with Chernoff’s bound, we got to see the probabilis-
tic method in action here. We used a probabilistic argument to show that
something happens with non-zero probability. Regardless of how small
the probability is, it means that there exists some deterministic choice
achieving the property that held with non-zero probability.

96 LECTURE 7. HARDNESS OF MST CONSTRUCTION

e Communication complexity people suffer from the same illness as distrib-
uted computing folks: they don’t care about local computations.

e Here, this is quite bad. When constructing the algorithm, we cannot be
sure that it actually has the desired guarantee on the error probability
without explicitly checking for all inputs, which requires exponential com-
putations.

e Even if we do this in advance, this causes the additional trouble that we
need to assume a bound on N. If Alice and Bob get larger inputs, they
are screwed!

e On top of this, Alice and Bob require polynomial memory. The sim-
ple algorithm using shared randomness can handle everything using only
O(log N) bits besides the one for the inputs and random bit string.

e In the exercises, you will see a deterministic polynomial time construction.

Handling randomization and approximation

So, equality is not good enough to handle randomization. It also does not cope
very well with approximation algorithms, at least not in the construction we’ve
seen. We need a communication complexity problem that is hard even for ran-
domized algorithms — and ideally, it should yield an all-or-nothing construction
for which the MST has non-zero weight only if the answer to the communication
complexity problem is “yes”.

Definition 7.10 (2-player set disjointness). The deterministic and randomized
versions of the set disjointness problem are defined as for equality, with the
difference that the goal is to decide whether x and y encode disjoint sets, i.e.,
whether 3i € {1,..., N} so that z; = y;.

This problem is hard also for randomized algorithms.

Theorem 7.11 ([KS92, Raz92|). The communication complexity of set dis-
Jointness is Q(n), even for randomized algorithms with error probability 1/3.

How can we encode this in our graph? It’s even easier than before:
e Use the same topology, but with only k paths.

e Pick all edge weights as before, except for the edges from Alice and Bob
to the endpoints of paths.

e Fori e {1,...,k}, the edge from Alice to path p; has weight x;.

e Foric {1,...,k}, the edge from Bob to path p; has weight y;.
Lemma 7.12. The weight of an MST of the modified graph is 0 if and only if
x and y encode disjoint sets.

Proof. As before, the question is how expensive it is to connect the paths to the
rest of the graph. If z and y encode disjoint sets, then for all ¢ € {1,...,k} we
have that x; = 0 or y; = 0, implying that there is an edge leaving the path of
weight 0. If the sets are not disjoint, there is a path p; with x; = y; = 1, which
therefore cannot be connected to the remaining graph by a 0-weight edge. [

97

= i M’”.»
c—11 9
f:;,///:ﬂfﬂllﬂnlm””'
I 4 I

O—0

,.,

Figure 7.4: How to use the same topology as in Figure 7.1 to encode a set
disjointness instance. Now there is a one-to-one correspondence between input
bits and paths p;.

Corollary 7.13. There is no distributed MST approximation algorithm that
uses messages of size O(logn) and terminates in o(\/n/log®n + D) rounds on
all graphs of n nodes and diameter D.

Proof. Theorem ?? shows that running time o(D) is impossible, which shows
the claim if D > /n/ log® n. Analogously to Theorem 7.3, based on Lemma 7.12
we can show that an o(y/n/log® n)-round algorithm implied a solution to set
disjointness using o(NN) bits; this also holds for approximation algorithms, as
the weight of the MST is 0 if = and y represent disjoint sets. By Theorem 7.11,
this is not possible. This covers the case that D < \/n/log?n. O

e Unfortunately, showing that set disjointness is hard is much more involved
than the straightforward argument for deterministic equality.

e In some sense, this bound means that we hit the wall. The hardness comes
from set disjointness, not any fancy aspect of the model.

e On the other hand, one can refine the granularity further by taking into
account other parameters. We will an example for this in a future lecture.

What to take home

e The machinery demonstrated today produces essentially the same lower
bound for plenty of other important graph problems. There will be some
examples in the exercises. In some cases, the techniques shows even
bounds that are (almost) £2(n)!

98 LECTURE 7. HARDNESS OF MST CONSTRUCTION

e As aresult, communication complexity lower bounds are the tool for show-
ing distributed lower bounds arising from congestion. This is very natural,
as distributed graph problems are essentially peculiar n-player communi-
cation complexity problems, with the addition of a notion of time!

e In many cases, deriving lower bounds of this type is quite easy once one
is familiar with the technique. Typically, set disjointness is the source of
hardness, Theorem 7.3 works for any graph where the bandwidth available
for algorithms between the “input-encoding” parts is small if the running
time is small, and all one needs to do is find a suitable graph and encode
the instance. Even better: the graph shown works for lots of problems as
off-the-shelf topology, only the weights need to be adjusted!

e The probabilistic method, which was only supporting actor today, is also
very useful. There are more “constructive” variants, like the celebrated
(constructive versions of the) Lovdsz Local Lemma.

e Another bunch of examples for the utility of simulation results. Both
derivation of lower bounds and algorithms become easier this way, as ob-
stacles are separated and handled in individual steps.

Chapter Notes

The first lower bound on MST construction, by Peleg and Rubinovich [PR00],
applied only to deterministic exact algorithms. This boils down to the fact
that they exploited the hardness of equality, not set disjointness. Elkin [E1k06]
extended the result to randomized approximation algorithms. However, in his
construction the lower bound deteriorated depending on the approximation ratio
of the algorithm; this was resolved by Das Sarma et al. [SHKT12], who list a
large number of related problems for which the technique also yields “the” lower
bound of roughly Q(y/n).

For the basics of communication complexity, see, e.g., [KN97]. The first
strong lower bound on the randomized communication complexity of set dis-
jointness is due to Babai, Frankl, and Simon [BFS86], showing that Q(v/N) bits
are required. They sampled = and y independently from the N-bit strings with
roughly v/N non-zeros. They show that one has to look for more complex distri-
butions; essentially, the birthday paradoxon is the monkey wrench in the works.
The (N) hardness was shown by Kalyanasundaram and Schintger [KS92]; a
simplified proof was given by Razborov [Raz92].

On can dial it up to eleven and show quantum distributed computing com-
plexity lower bounds [EKNP14] or derive bounds on multi-party set disjointness
in the message passing model [BEO13], which in turn permits to show hardness
by reduction from such problems.

Bibliography

[BEOT13] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and
Vinod Vaikuntanathan. A Tight Bound for Set Disjointness in the
Message-Passing Model. In 54th Symposium on Foundations of Com-
puter Science (FOCS), pages 668-677, 2013.

BIBLIOGRAPHY 99

[BFS86]

[EKNP14]

[E1k06]

[KN97]

[KS92]

[PROO]

[Raz92]

[SHK*12]

Laszlo Babai, Peter Frankl, and Janos Simon. Complexity Classes in
Communication Complexity Theory. In 27th Symposium on Foun-
dations of Computer Science (FOCS), pages 337-347, 1986.

Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal
Pandurangan. Can Quantum Communication Speed Up Distributed
Computation? In Proc. 2014 Symposium on Principles of Distrib-
uted Computing (PODC), pages 166—175, 2014.

Michael Elkin. An Unconditional Lower Bound on the Time-
Approximation Trade-off for the Distributed Minimum Spanning
Tree Problem. SIAM Journal on Computing, 36(2):433-456, 2006.

E. Kushilevitz and N. Nisan. Communication complexity. Cambridge
University Press, 1997.

B. Kalyanasundaram and G. Schintger. The Probabilistic Commu-
nication Complexity of Set Intersection. SIAM Journal on Discrete
Mathematics, 5(4):545-557, 1992.

David Peleg and Vitaly Rubinovich. A near-tight lower bound on
the time complexity of distributed minimum-weight spanning tree
construction. STAM Journal on Computing, 30(5):1427-1442, 2000.

A. A. Razborov. On the Distributional Complexity of Disjointness.
Theoretical Computer Science, 106(2):385-390, 1992.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman,
Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger
Wattenhofer. Distributed verification and hardness of distributed ap-
proximation. SIAM Journal on Computing, 41(5):1235-1265, 2012.

