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Imaging Sensors
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Organization

� lectures

� discussion of research papers

� student projects

� (1-2 student(s) per group)

� list of possible ideas

� presentation of ideas

� project proposal (2 pages)

� implementation

� presentation of results

� report (like a conference paper 6-8 pages)
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Image Sensors

CCD

CMOS
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Image Sensors

Photodetection

CCD’s vs CMOS

Sensor performance characteristics

Noise

Color Sensors

Exotic Sensors
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Photogeneration

Silicon 

� “Band gap” of 1.124eV between valence band
and conduction band.

Incident photon > 1.124eV (hc/ λ) may be absorbed, 
causing election to jump to conduction band.

Visible light (λ=400 to 700nm) 

� λ = 400nm (violet) E = 3.1eV 

� λ = 700nm (red) E = 1.77eV

� λ = 1100nm (infrared), E=1.12eV
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Integration

Measuring one electron is really hard!

(Doesn’t have much energy…)

Fortunately, the electrons hang around for a while.

So integrate the charge over a period of time. 

� 10’s to 1000’s of electrons.

Two fundamental structures…
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Photodetectors

(a) photodiode, (b) photogate

All electrons created in depletion region are collected, 
plus some from surrounding region.

image: Theuwissen
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Photodetector Performance Metrics

Pixel size

Fill factor

Full well depth

Spectral quantum efficiency

Sensitivity

(Saving noise & dynamic range for later)
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Pixel Size

Large pixels means more light collected.

Typically 3µm-10 µm

20 µm for astronomy

Pixels getting tiny for cell phones, digital cameras

� 2µm x 2µm is probably the smallest CMOS pixel 
today (Matsushita, ISSCC 2005) 

� Optics will get you eventually.
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Fill Factor

Percent of pixel area that captures photons.

Typically 25% to 100%

Smaller for photogate than photodiode.

Reduced by non-light gathering components in pixel 
(see CMOS sensors…)

Can be increased using microlenses:
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Lenslets

Increase effective fill factor by focusing light

Can double or triple fill factor

image: Kodak application note DS00-001
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Full Well Depth

“Saturation charge” 45 to 100 ke–

� depends on the pixel size

Limits dynamic range (more about this later)

Once you fill up your well, can overflow into your 
neighbors. This is called blooming. 

Blooming almost irrelevant for CMOS
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Blooming

http://www.ccd-sensor.de/assets/images/blooming.jpg
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Extra Overflow Drain
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Absorption Coefficients

image: Theuwissen
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Penetration Depth
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Spectral quantum efficiency

source: Kodak KAI-2000m data sheet
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Filtered Spectral Quantum Efficiency

source: Kodak KAF-5101ce data sheet
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Factors for Quantum Efficiency

Color filters

Absorption coefficients & depletion depth

� Blue light is absorbed quickly, red wavelengths 
penetrate more deeply. 

� Photogate detectors have poor blue response 
because the gate absorbs blue light, too.

Fill factor
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Extended Sensitivity

� blue plus – applies a phosphorescent layer

� back illuminated CCDs – decrease thickness
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Back Illuminated CCDs
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Sensitivity

Sensitivity = quantum efficiency * conversion gain

Conversion gain is basically volts per electron.

� You don’t want to know about this…

� Depends on device process, topology, etc. 

Sensitivity is often expressed as Volts/lux

� 1 Lux = (1/683)W/m2 at  λ = 555nm 

� 1 Lux (or lumens/m2) = 4.09E11 photons/(cm2sec)

� Clear sky ~= 10E4 Lux

� Room light ~= 10 Lux

� Full moon ~= 0.1 Lux
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CCD’s vs CMOS Image Sensors

Differ primarily in readout—how the accumulated 
charge is measured and communicated.

CCD’s transfer the collected charge, through 
capacitors, to one output amplifier

CMOS sensors “read out” the charge or voltage using 
row and column decoders, like a digital memory 
(but with analog data).
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Charge Transfer for CCD’s

image: Theuwissen
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Example:Three Phase CCD’s

image: Theuwissen
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Full Frame CCD

Photogate detector doubles as transfer cap.

Simplest, highest fill factor.

Must transfer quickly (or use mechanical shutter) to 
avoid corruption by light while shifting charge. 
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Frame Transfer

image: Theuwissen

memory area

is shielded
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Smearing

vertical streak

wikipedia
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Smearing

http://www.astrosurf.com/maugis/topo_ccd/smearing.jpg
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Interline CCD

Charge simultaneously shifted to shielded gates. 

Provides electronic shutter—snapshot operation

Uses photodiodes (better detectors)

Most common architecture for CCDs
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Charge Transfer Efficiency

CCD charge transfer efficiency, η, is the fraction of 
charge transferred from one capacitor to the next. 

η must be very close to 1, because charge is 
transferred up to n+m times (or more for 3-phase…)

For a 1024 x 1024 CCD:

0.97970.99999

0.81480.9999

0.12890.999

Fraction at outputη
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Advantages of CCD’s

Advantages:

� Optimized photodetectors (high QE, low dark 
current)

� Very low noise.

� Single amplifyer does not introduce random 
noise or fixed pattern noise.

Disadvantages

� No integrated digital logic

� Not programmable (no window of interest)

� High power (whole array switching all the time)

� Limited frame rate due to charge transfer
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CMOS Sensors (active pixel sensor - APS)

• charge converted to a voltage at the pixel

• pixel amp, column amp, output amp.

bitline

row select
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CMOS Sensors

Image : EE392B, El Gamal
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Example CMOS Pixel

Photo sensitive area is 
reduced by additional 
circuitry.

Source: Stanford EE392B notes
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Rolling Shutter
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Rolling Shutter Distortion
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CMOS Sensors

Advantages

� Integrated digital logic

� Fast

� Mainstream process (cheap)

� Lower power

Disadvantages

� Noise & quality

Most high quality cameras still CCD’s.
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CMOS with Integrated Logic

[micro.manget.fsu.edu]
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CMOS vs CCD, bottom line

CCD’s transfers charge to a single output amplifier. 
Inherently low-noise.

CMOS converts charge to voltage at the pixel.

� Read out like a digital memory - windowing

� Reset noise (can use correlated double sampling 
CDS)

� Fixed pattern noise (device mismatch)
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Sources of noise

Photon shot noise

Dark current shot noise

Fixed pattern noise

Readout noise

…

[Janesick97]
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Noise Sources

[Reibel2003]

readout noise
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Photon shot noise

Variance in number of photons that are counted

� they arrive in a Poisson random process

Standard deviation is square root of signal

� relative noise decreases with signal

Fundamental limit on photodetector precision!

Can be reduced by averaging multiple exposures.
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Fixed pattern noise

Caused by variations in component values

Big problem for CMOS sensors

� An amp at every pixel, and one for every column

� Gain variation (proportional to signal PRNU)

� Bias variation (independent of signal – dark 
current)

� Can be partially canceled by correlated double 
sampling (CDS)

CCD’s transfer all charge to a single output amplifier
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Dark current

Things besides photons can knock electrons loose in 
the silicon. These are collected, too.

Highly temperature dependent

� doubles every 5-8 degrees C

May be reduced by cooling the sensor.

Proportional to exposure time 

Limits exposure durations—eventually, the dark 
current fills your well capacity.
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Dark Current Noise

Dark current has fixed pattern noise.

� Dark current varies because of irregularities in 
the silicon.

Dark current has shot noise, too!

� dominates in dark areas for long exposures

Mean dark current may be subtracted

� but subtracting frames increases shot noise

� subtract the average dark current

Dark current is why astronomers chill their image 
sensors.
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Thermal Noise

Generated by thermally induced motion of electrons in 
resistive regions (resistors, transistor channels in 
strong inversion…)

Whatever. What does it mean?

� Independent of the signal.

� Zero mean, white (flat, wide bandwidth)

� Another problem for CMOS, not CCD imagers

Dominates at low signal levels

� Can limit dynamic range
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Dark Current Noise – Removal 

•• ideal: cooling the chipideal: cooling the chip

•• noise removal techniques to separate noise removal techniques to separate 
image data from noiseimage data from noise

25 s exposure time25 s exposure time
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Noise, noise, noise…

Reset (kTC) noise

� thermal noise when “resetting” the CMOS 
photodetector—a big deal, actually.

� can be corrected with CDS

Amplifier noise 

� thermal

� spatially non-uniform

� 1/f noise

� non-linearities

Quantization noise

� “truncate” analog value to N bits
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Correlated Double Sampling

� reduce noise by comparing against a reference 
charge
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Non-linear Response

[Reibel2003]
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Combined Noise Model  [Reibel2003]

- fixed pattern noise 

- readout noise

- thermal dark current shot noise 

- photon shot noise

- photo response non-uniformity

- non-linear effects 
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Combined Noise Model  [Reibel2003]

- fixed pattern noise (can be calibrated)

- readout noise (CDS)

- thermal dark current shot noise (cooling)

- photon shot noise (multiple exposures)

- photo response non-uniformity (per-pixel gain)

- non-linear effects (can also be calibrated for)
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Noise Distribution

[Reibel2003]



Page 10

Computational Photography Hendrik Lensch, Summer 2007

Sensing color

Eye has 3 types of color receptors (loosely)

Therefore we need 3 different spectral sensitivities
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Ways to sense color

Field-sequential color

� simplest to implement

� only still scenes

Proudkin-Gorskii, 1911

(Library of Congress exhibition)
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Ways to sense color

Field-sequential color

� simplest to implement

� only still scenes

Proudkin-Gorskii, 1911

(Library of Congress exhibition)
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Ways to sense color

Field-sequential color

� simplest to implement

� only still scenes

Proudkin-Gorskii, 1911

(Library of Congress exhibition)
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Ways to sense color

Field-sequential color

� simplest to implement

� only still scenes

Proudkin-Gorskii, 1911

(Library of Congress exhibition)
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Ways to sense color

3-chip camera

� dichroic mirrors divide light into wavelength 
bands

� does not remove light: excellent quality but 
expensive

� interacts with lens design

image: Theuwissen
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Foveon Technology

� 3 layers capture RGB at the same location

� takes advantage of silicon’s wavelength 
selectivity

� light decays at different rates 
for different wavelengths

� multilayer CMOS sensor gets
3 different spectral sensitivities 

� don’t get to choose the curves
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Ways to sense color

Color filter array

� paint each sensor with an individual filter

� requires just one chip but loses some spatial 
resolution

� “demosaicing” requires tricky image processing

G R

B G

C M

Y G

primary secondary
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SONY 4-Color Filter

RGB+E (supposedly halves color errors)

Cyber-Shot DSC-F828
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Demosaicing

Original image Bilinear interpolation
Ron Kimmel, http://www.cs.technion.ac.il/~ron/demosaic.html
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Demosaicing

Ron Kimmel, http://www.cs.technion.ac.il/~ron/demosaic.html

Bilinear interpolation Edge-weighted interpolation
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� take four images, moving the sensor by one pixel

� (use fourth image for noise reduction)

� can be used for supersampling
(move by ½, ¼ pixel)

Multi-Shot
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Exotic Sensors

� Super CCD

� HDRC - logarithmic

� HDR – floating point

� PMD
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Super CCD

� hexagonal grid

� elements with different
sensitivity

� extended DR

� better in low light 

http://www.henner.info/super_ccd.htm
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HDRC

� CMOS – pixel amplifier output is logarirthmic

U - logarithmic
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Other HDR approaches

� Determine for each pixel when enough photons 
haven been collected.

� Logarithmic timings yields floating point 
representation (mantissa + exponent).
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PMD

� measured distance in each pixel

� exploit interference

� emit light (modulated) at each pixel

� compare reflected light to reference light

� computation in a “smart” pixel 
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