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Computational Photography Hendrik Lensch, Summer 2007

HDR, Demosaicing and
Flash/No-flash imaging
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Projects

List available now

Project proposal (2 pages): 1st of June

Project idea presentation: 8th of June

Final Project presentation: 20th of July

Project report

Persons to contact:

me (228), Andrei Lintu (425), Tongbo Chen (221)
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Persons to contact

� me (lensch@mpi-inf.mpg.de, room228)

� Andrei Lintu (lintu@mpi-inf.mpg.de, room 425)

� Tongbo Chen (tongbo@mpi-inf.mpg.de, room 221)

� Boris Ajdin (bajdin@mpi-inf.mpg.de, room 206)

� Matthias Hullin (hullin@mpi-inf.mpg.de, room 213)
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Metering

� determine exposure time and aperture

� referenced to a standard 18% grey reflector

incident light

reflected light

hand-held 
light meter
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In Camera Metering

inherent problem: 

� camera measures reflected light

� depends on object’s reflectance

incident light

reflected light
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In Camera Metering

� still dependent on scene reflectance

� use of reference card

partial metering spot meteringcenter weighted matrix evaluation

[www.cambridgeincolour.com]
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Exposure Bracketing

� capture additional over and underexposed 
images

Computational Photography Hendrik Lensch, Summer 2007

Exposure Bracketing

� capture additional over and underexposed 
images
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Exposure Bracketing

� capture additional over and underexposed 
images

� how much variation? 

� how to combine?
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Dynamic Range in Real World Images

� natural scenes: 18 stops (2^18)

� human:  17stops   
(after adaptation 30stops ~ 1:1,000,000,000)

� camera: 10-16stops

[Stumpfel et al. 00]
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Dynamic Range of Cameras

example: photographic camera with standard CCD sensor

� dynamic range of sensor 1:1000

� exposure variation (handheld camera/non-
static scene): 1/60th s – 1/6000th s exposure time 1:100

� varying aperture f/2.0 – f/22.0 ~1:100

� exposure bias/varying “sensitivity” 1:10

� total (sequential) 1:100,000,000

simultaneous dynamic range still only 1:1000

similar situation for analog cameras
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High Dynamic Range (HDR) Imaging

basic idea of multi-exposure 
techniques:

� combine multiple images with 
different exposure settings

� makes use of available 
sequential dynamic range

other techniques available (e.g. 
HDR video)
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OECF Test Chart

absolute calibration
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High Dynamic Range Imaging

� limited dynamic range of cameras is a problem

� shadows are underexposed

� bright areas are overexposed

� sampling density is not sufficient

� some modern CMOS imagers have a higher and 
often sufficient dynamic range than most CCD 
imagers
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High Dynamic Range (HDR) Imaging

� analog film with several emulsions of different 
sensitivity levels by Wyckoff in the 1960s

� dynamic range of about 108

� commonly used method for digital photography by 
Debevec and Malik (1997)

� selects a small number of pixels from the images 

� performs an optimization of the response curve with a 
smoothness constraint

� newer method by Robertson et al. (1999)

� optimization over all pixels in all images
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High Dynamic Range Imaging

general idea of High Dynamic Range (HDR) imaging:

� combine multiple images with different exposure 
times

� pick for each pixel a well exposed image

� response curve needs to be known

� don’t change aperture due to different depth-of-field
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High Dynamic Range Imaging

Computational Photography Hendrik Lensch, Summer 2007

HDR Imaging [Robertson et al.99]

Principle of this approach:Principle of this approach:

•• calculate a HDR image using the response curvecalculate a HDR image using the response curve

•• find a better response curve using the HDR imagefind a better response curve using the HDR image

(to be iterated until convergence)(to be iterated until convergence)
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HDR Imaging [Robertson et al.99]

input:

� series of i images with exposure times ti

and pixel values yij

task: 

� find irradiance (luminance) xj

� recover response curve 
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HDR Imaging [Robertson et al.99]

input:

� series of i images with exposure times ti and pixel 
values yij

� a weighting function wij = wij(yij) (bell shaped curve)

� a camera response curve 

� initial assumption: linear response 

⇒ calculate HDR values xj from images using
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HDR Imaging [Robertson et al.99]

optimizing the response curve          resp.         :

� minimization of objective function O

using Gauss-Seidel relaxation yields

� normalization of I so that I128=1.0
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HDR Imaging [Robertson et al.99]

both steps

� calculation of a HDR image using I

� optimization of I using the HDR image

are now iterated until convergence

� criterion: decrease of O below some threshold

� usually about 5 iterations 
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HDR Imaging [Robertson et al.99]
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Example: Capturing Environment Maps

1/2000s        1/500s           1/125s           1/30s          1/2000s        1/500s           1/125s           1/30s          1/8s  1/8s  

series of input imagesseries of input images
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series of input imagesseries of input images

Example: Capturing Environment Maps
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choice of weighting function w(yij) for response 
recovery

� for 8 bit images

� possible correction at both ends 
(over/underexposure)

� motivated by general noise model

Weighting Function [Robertson et al.99]
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choice of weighting function w(yij) for HDR 
reconstruction

� introduce certainty function c as derivative of the 
response curve with logarithmic exposure axis

� approximation of response function by cubic 
spline to compute derivative

Weighting function [Robertson et al.03]
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Algorithm of Robertson et al.

� consider response curve gradient

� what would be the best curve based on noise?

)()(
ijyijij Icyww ==

[Robertson et al. 2003]
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discussion

� method very easy

� doesn’t make assumptions about response curve 
shape

� converges fast

� takes all available input data into account

� can be extended to >8 bit color depth

� 16bit should be followed by smoothing

Algorithm of Robertson et al.
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Input Images for Response Recovery

my favorite:

� grey card, out of focus, smooth illumination 
gradient

advantages

� uniform histogram of values

� no color processing or sharpening interfering 
with the result
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Input Images for HDR Generation

how many images are necessary to get good results?

� depends on scene dynamic range and on quality 
requirements

� most often a difference of two stops (factor of 4) 
between exposures is sufficient

� [Grossberg & Nayar 2003]
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HDR-Video

� LDR [Bennett & McMillan 2005]

� HDR image formats [OpenExr, HDR JPEG]

� HDR MPEG Encoding [Mantiuk et al. 2004]

� HDR + motion compensation [Kang et al. 2003]
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White Balance

daylightdaylight

flashflashflourescentflourescent

tungstentungsten

capture the spectral

characteristics of

the light source to

assure correct

color reproduction

Computational Photography Hendrik Lensch, Summer 2007

White Balance

build-in function

derive scale from white point

sun

incandescent

tungsten

infrared
red green blue

ultra violet

wavelength
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White Balance

build-in function

derive scale from white point

infrared
red green blue

ultra violet

wavelength
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White Balance

build-in function

derive scale from white point

infrared
red green blue

ultra violet

wavelength
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(ICC –international color 
consortium)

� color management system

� capture the properties of all 
devices

� camera and lighting

� monitor settings

� output properties

� common interchange space

� sRGB standard as a definition 
of RGB

ICC Profiles

input deviceinput device

(e.g. camera)(e.g. camera)

input profileinput profile

profileprofile

connectionconnection

spacespace

output deviceoutput device

(e.g. printer)(e.g. printer)

output profileoutput profile

displaydisplay

devicedevice

(e.g. (e.g. 

monitor)monitor)

monitormonitor

profileprofile
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� profile connection spaces

� CIELAB (perceptual linear)

� linear CIEXYZ color space

� can be used to create an high 
dynamic range image in the 
profile connection space

� allows for a color calibrated 
workflow

ICC Profiles and HDR Image Generation

input deviceinput device

(e.g. camera)(e.g. camera)

input profileinput profile

profileprofile

connectionconnection

spacespace

output deviceoutput device

(e.g. printer)(e.g. printer)

output profileoutput profile

......
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3-Chip CCD

� a prism splits up the incoming image into RGB 
images

� each color channel is captured by a different 
sensor

� registration during production

� problems with polarized light
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Color Wheel

one color channel is captured at one shot

3 times the acquisition time

static images only
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Foveon Technology

� 3 layers capture RGB at the same location

� takes advantage of silicon’s wavelength 
selectivity

� light decays at different rates 
for different wavelengths

� multilayer CMOS sensor gets
3 different spectral sensitivities 

� don’t get to choose the curves
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Ways to sense color

Color filter array

� paint each sensor with an individual filter

� requires just one chip but loses some spatial 
resolution

� “demosaicing” requires tricky image processing

G R

B G

C M

Y G

primary secondary
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� take four images, moving the sensor by one pixel

� (use fourth image for noise reduction)

� can be used for supersampling
(move by ½, ¼ pixel)

Multi-Shot

Computational Photography Hendrik Lensch, Summer 2007

Demosaicing

Bilinear interpolationmosaic image

[Alleysson & Suesstrunk05]
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Demosaicing

� bilinear interpolation

� sampling theory

� edge-directed/pattern-based interpolation

� correlation-based
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Bilinear Interpolation

perform interpolation for each color channel separately

G R

B G
= + +
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Bilinear Interpolation

G R

B G
= + +

4

34321412
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R
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Bilinear Interpolation

G R

B G
= + +
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Bilinear Interpolation

set all non-measured values to zero then convolve
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Problem: Aliasing

[Alleysson & Suesstrunk05]
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Problem: Aliasing

[Alleysson & Suesstrunk05]
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Luminance and Chrominance

Luminance is sampled at every pixel

Chrominance (opponent colors) only available on a 
sparser grid (zero mean)

one possible set for Bayer patterns:
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Fourier Space

/4
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Excessive Blurring
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Grid Effect
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Watercolors
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False Color
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optimize r1 and r2 to gain best separation

� Low-pass filter luminance

� High-pass filter chrominance (orthogonal filter)

� Demultiplex chrominance

� Interpolate opponent colors

� Add luminance and interpolated colors 

[Alleysson & Suesstrunk05]
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Gradient-based (dcraw)

1. Calculate gradients in 5x5 region

2. Select subset of gradients (below threshold)

3. Average color differences in the determined regions 

[Chuang et al. 99]
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Gradients

Gradient S = +−+− |1323||818| RRGG

+−+− 2/|717|2/|919| BBBB

2/|1222|2/|1424| GGGG −+−
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Regions

selection: gradient < 1.5*Min+0.5*(Max-Min)

e.g. {S,W,NE,SE} 

S: R = (R13+R23)/2, G = G18, B = (B17+B19)/2

NE: R = (R13+R5)/2, G = (G4+G8+G10+G14)/4, B = B9

…
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Average

Rsum = (Rs + Rw + Rne + Rse)/4 

Gsum = (Gs + Gw + Gne + Gse)/4

Bsum = (Bs + Bw + Bne + Bse)/4

average of color differences!

G13 = R13 + (Gsum-Rsum);   B13 = R13 + (Bsum-Rsum)
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Correlation-Based Demosaicing

Subband decomposition of full RGB-image using

results in (LL, LH, HL, HH).

Observation: inter channel correlation of red/green and 
blue/green is larger than 0.9.

(discontinuities present in all channels at once!)

=>  reconstruct (LH,HL,HH) for red and blue according 
to green 

[Gunturk et al 02]
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Alternating Projections

1. Interpolate red, green, and blue

2. Decompose all three channels (LL,HL,LH,HH)

3. Update red and blue high frequencies i=(HL,LH,HH) 
according to green: 

4. Reset observed data

5. Iterate: goto 2 until stopping criterion achieved.

6. Reconstruct image
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Comparison

gradient-selection

correlation-based
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Comparison

gradient-selection

correlation-based
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Demosaicing – Take-home-points

� 2/3 of your image are just made up!

� avg. 5% error, much larger for individual pixels

� color resolution is less than image resolution

� be careful with spiky BRDFs

� combining multiple video frames might help 
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Flash-No-Flash [Eisenmann&Durand04]

[the following slides are from Eisenmann‘s SIGGRAPH talk]

Available light:

+ nice lighting

- noise/blurriness

- color

No-flash
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Flash

Flash:

+ details

+ color

- flat/artificial

- flash shadows

- red eyes

Flash
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Combined

Use no-flash image relight flash image

Flash

No-flash

Result
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Introduction

+ original lighting
+ details/sharpness
+ color

Result

No-flash

Use no-flash image relight flash image
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+

Blending

One approach: Blend the two photos

Introduction

No-flash

Flash



Page 13

Computational Photography Hendrik Lensch, Summer 2007

Introduction

One approach: Blend the two photos

Blending [Eisenmann]
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One approach: Blend the two photos

Introduction

complex blending: 

more details and less noise
Blending [Eisenmann]
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Main Idea
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Structure
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Structure
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Intensity-Color Decomposition

Decomposition
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Decomposition

Color / Intensity:

original

= *

intensity color
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Frequency Decoupling

Decoupling
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Decoupling

Lighting : Large-scale variation

Texture : Small-scale variation

TextureLighting
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Large-scale Layer

Bilateral filter – edge preserving filter
Smith and Brady 1997; Tomasi and Manducci 1998; Durand et al. 2002

Input Output
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Large-scale Layer

Bilateral filter
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Detail Layer

Intensity Large-scale

/ =
Detail

Recombination: Large scale * Detail = Intensity
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Recombination

Large-scale

No-flash

Detail 

Flash

*
Intensity

Result

=

Recombination: Large scale * Detail = Intensity
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Recombination

Intensity

Result

Color

Flash

~* ~
Result

Recombination: Intensity * Color = Original

shadows
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Results

Result

No-flash

Flash Computational Photography Hendrik Lensch, Summer 2007

More Flash-noflash Algorithms

remove features that don’t appear in both 
(as determined from image gradients)

[following slides from Agrawal SIGGRAPH 2005]
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Multi-Flash Images

� extract edge information

[following slides from Raskar 2004]
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Internal and external
Shape boundaries, Occluding contour, Silhouettes

Depth Discontinuities
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Depth 
Edges

Depth Discontinuities
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Finding the Correct Edge

left flash

right flash

left/max

right/max
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% Max composite 
maximg = max( left, right, top, bottom);

% Normalize by computing ratio images
r1 = left./ maximg; r2 = top ./ maximg;
r3 = right ./ maximg; r4 = bottom ./ maximg;

% Compute confidence map
v = fspecial( 'sobel' ); h = v';
d1 = imfilter( r1, v ); d3 = imfilter( r3, v );  % vertical sobel
d2 = imfilter( r2, h ); d4 = imfilter( r4, h ); % horizontal sobel

%Keep only negative transitions 
silhouette1  = d1 .* (d1>0);      
silhouette2 = abs( d2 .* (d2<0) );
silhouette3 = abs( d3 .* (d3<0) );
silhouette4  = d4 .* (d4>0);

%Pick max confidence in each
confidence = max(silhouette1,  silhouette2, silhouette3,  

silhouette4);
imwrite( confidence, 'confidence.bmp');

















−

−

−

101

202

101
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Multi-Flash Images

� extract edge information
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