Various Perspectives (Mosaics and Panoramas)
Computational Ponograpphy

Projects

List available now

Email to me: group, topic, why it is interesting ■ until Thursday next week ($24^{\text {th }}$ of May)
Project proposal (2 pages): $1^{\text {st }}$ of June
Project idea presentation: $8^{\text {th }}$ of June
Final Project presentation: $\mathbf{2 0}^{\text {th }}$ of July
Project report

Computational Photography

Mosaics and Panoramas

- basic idea
- registration

Why Mosaic?

Are you getting the whole picture?

- resample
- blend
- Compact Camera FOV $=50 \times 35^{\circ}$

Single vs. Multiple Viewpoint

Single-viewpoint

- Necessary for creating pure perspective images.
- Many vision algorithms assume pinhole cameras.
- Images that aren't perspective images look distorted.
Multi-viewpoint
- Cross-slit panoramas, etc.
- necessary for scenes which cannot be captured from a single viewpoint

Omnidirectional (Catadioptric) Cameras

O-360

Computational Photography

EyeSee360

[Kuthirummal 2006]
Computational Photography Hendrik Lensch, Summer 2007

Multi-camera, Single-viewpoint?

Immersive Media "Dodeca2000"
Computational Photography

PointGrey Ladybug

Hendrik Lensch, Summer 2007

Image Mosaicing

- Register multiple images
- Blend

Single Center of Projection

Image Reprojection

- The images are reprojected onto a common plane

Take a sequence of images from the same position

- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat
...why don't we need the 3D geometry?
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

A pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

How to relate two images from the same camera center?

Images contain the same information along the same ray.

Use 2D image wrap instead of ray tracing.

Computational Photography
Hendrik Lensch, Summer 2007

Taxonomy of Projective Transformations

$\left(\begin{array}{l}x_{1}^{1} \\ x_{2} \\ x_{3} \\ x_{3}\end{array}\right)=\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & \begin{array}{l}n_{23} \\ h_{31} \\ h_{32}\end{array} \\ h_{32} & h_{33}\end{array}\right]\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.

Computational Photography Hendrik Lensch, Summer 2007

Taxonomy of Projective Transformations

Distortions under Central Projection

- Similarity: circle remains circle, square remains square
\Rightarrow line orientation is preserved
- Affine: circle becomes ellipse, square becomes rhombus
\Rightarrow parallel lines remain parallel
- Projective: imaged object size depends on distance from camera
\Rightarrow parallel lines converge

Homography

A: Projective - mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
- same as: project, rotate, reproject called Homography
$\left[\begin{array}{c}w x^{\prime} \\ w y^{\prime} \\ w,\end{array}\right]=\left[\begin{array}{lll}* & * & * \\ * & * & * \\ * & * & * \\ \mathbf{H} & * & \mathbf{p}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

To apply a homography H

- Compute $\mathbf{p}^{\prime}=\mathrm{Hp}$ (regular matrix multiply)
- Convert \mathbf{p}^{\prime} from homogeneous to image coordinates Hendrik Lensch, Summer 2007

Removing Projective Distortion

Projective transformation in inhomogeneous form
$x^{\prime}=\frac{x_{1}^{\prime}}{x_{3}^{\prime}}=\frac{h_{11} x+h_{12} y+h_{13}}{h_{31} x+h_{32} y+h_{33}}, \quad y^{\prime}=\frac{x_{2}^{\prime}}{x_{3}^{\prime}}=\frac{h_{21} x+h_{22} y+h_{23}}{h_{31} x+h_{32} y+h_{33}}$.
4 general point correspondences ($x, y->x^{\prime}, y^{\prime}$) on the planar facade lead to eight linear equations of the type

$$
x^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{11} x+h_{12} y+h_{13}
$$

$$
y^{\prime}\left(h_{31} x+h_{32} y+h_{33}\right)=h_{21} x+h_{22} y+h_{23} .
$$

Sufficient to solve for \mathbf{H} up to multiplicative factor
Computational Photography
Hendrik Lensch, Summer 2007

The Direct Linear Transform (DLT) Algorithm

Given: 4 2D point correspondences

Objective: estimate the projective transform matrix \mathbf{H}

Computational Photography

The DLT Algorithm II

Estimating matrix \mathbf{H}	from point correspondences	is equivalent to
$\mathrm{x}^{\prime}=\mathrm{Hx}$.	$\mathbf{x}_{\mathrm{i}}=\left(\begin{array}{l}x_{i} \\ y_{i} \\ w_{i}\end{array}\right) \quad \Leftrightarrow \quad \mathbf{x}_{\mathbf{i}}{ }^{\prime}=\left(\begin{array}{l}x_{i}{ }^{\prime} \\ y_{i}{ }^{\prime} \\ w_{i}{ }^{\prime}\end{array}\right.$	
		might have different length but are collinear

$$
\begin{aligned}
& \text { gives } \quad \mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\left(\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 /} \mathbf{x}_{i}
\end{array}\right) . \\
& \text { Re-ording into } \mathbf{h} \text { vector }\left[\begin{array}{ccc}
0^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -i_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
-y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & 0^{\top}
\end{array}\right]\left(\begin{array}{l}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=0 .
\end{aligned}
$$

Computational Photography Hendrik Lensch, Summer 2007

The DLT Algorithm III

Only rows 1 and 2 are linearly independent \Rightarrow omit row 3

$$
\left[\begin{array}{ccc}
0^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & 0^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top}
\end{array}\right]\left(\begin{array}{c}
\mathbf{h}^{1} \\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right)=\mathbf{0} . \quad \mathrm{A}_{i} \mathbf{h}=0
$$

Inhomogeneous solution: set one matrix entry equal to 1 (e.g. h33)

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & -x_{i} w_{i}^{\prime} & -y_{i} w_{i}^{\prime} & -w_{i} w_{i}^{\prime} & x_{i} y_{i}^{\prime} & y_{i} y_{i}^{\prime} \\
x_{i} w_{i}^{\prime} & y_{i} w_{i}^{\prime} & w_{i} w_{i}^{\prime} & 0 & 0 & 0 & -x_{i} x_{i}^{\prime} & -y_{i} x_{i}^{\prime}
\end{array}\right] \tilde{\mathrm{h}}=\binom{-w_{i} i_{i}^{\prime}}{w_{i} x_{i}^{\prime}}
$$

Solve by Gaussian elimination or least-squares techniques
Computational Photography Hendrik Lensch, Summer 2007

Estimating Homographies

Objective

Given $n \geq 4$ 2D to 2D point correspondences $\left\{\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}\right\}$, determine the 2D homography matrix H such that $\mathbf{x}_{i}^{\prime}=\mathrm{Hx}_{i}$.

Algorithm
(i) Normalization of x : Compute a similarity transformation T, consisting of a
translation and scaling, that takes points \mathbf{x}_{i} to a new set of points $\tilde{\mathbf{x}}_{i}$ such that the centroid of the points $\tilde{\mathbf{x}}_{i}$ is the coordinate origin $(0,0)^{\top}$, and their average distance from the origin is $\sqrt{2}$.
(ii) Normalization of x^{\prime} : Compute a similar transformation T^{\prime} for the points in the second image, transforming points \mathbf{x}_{i}^{\prime} to $\tilde{\mathbf{x}}_{i}^{\prime}$.
(iii) DLT: Apply algorithm \quad to the correspondences $\tilde{\mathbf{x}}_{i} \leftrightarrow \tilde{\mathbf{x}}_{i}^{\prime}$ to obtain a homography \tilde{H}.
(iv) Denormalization: Set $H=T^{\prime-1} \widetilde{H} T$

Panoramic Mosaicing

Rotation about camera center: homography

- choose one image as reference
- compute homography to map neighboring image to reference image plane
- projectively warp image, add to reference plane
- repeat for all images
\Rightarrow bow tie shape

Feathering

What is the Optimal Window?

To avoid seams

- window >= size of largest prominent feature

To avoid ghosting

- window $<=2^{*}$ size of smallest prominent feature

Natural to cast this in the Fourier domain

- largest frequency $<=2^{*}$ size of smallest frequency
- do blending in different frequency bands

What does blurring take away?

smoothed (5×5 Gaussian)
Computational Photography

High-Pass Filter

Computational Photography

Image Pyramids

Idea: Represent $\mathrm{N} \times \mathrm{N}$ image as a "pyramid" of

mipmap or precursor of wavelets

Image Sub-sampling

Throw away every other row and column to create a $1 / 2$ size image

Gaussian Pyramid Construction

- Subsample

Until minimum resolution reached

Whole pyramid is only $4 / 3$ the size of the original image!

Computational Photography
Hendrik Lensch, Summer 2007

Gaussian pre-filtering

G 1/8
G $1 / 4$

Gaussian 1/2
Solution: filter the image, then subsample

- Filter size should double for each $1 / 2$ size reduction. Computational Photography

Compare with...

Subsampling with Gaussian pre-filtering

Gaussian 1/2
G 1/4
G 1/8

Solution: filter the image, then subsample

- Filter size should double for each $1 / 2$ size reduction.

Band-pass filtering

Gaussian Pyramid (low-pass images)

Pyramid Blending

Left pyramid
Computational Photography

blend
Right pyramid
Hendrik Lensch, Summer 2007

Simplification: Two-band Blending

Brown \& Lowe, 2003

- Only use two bands: high freq. and low freq.
- Blends low freq. smoothly
- Blend high freq. with no smoothing: use binary mask

2-band Blending

$\underset{\text { Computational Photograpint }}{\text { High }}$ frequency $(\lambda<2 \text { pixels })_{\text {Hendrik Lensch, Summer } 2007}$

Still Some Artifacts Left...

Ghosting-objects move in the scene.
Differing exposures between images.

- Pyramid blending does not solve this.

Gradient Domain Blending (2D)

Trickier in 2D:

- Take partial derivatives dx and dy (the gradient field)
- Fiddle around with them (smooth, blend, feather, etc)
- Reintegrate
- But now integral(dx) might not equal integral(dy)
- Find the most agreeable solution
- Equivalent to solving Poisson equation
- Can use FFT, deconvolution, multigrid solvers, etc.

Computational Photography
Hendrik Lensch, Summer 2007

Homography or not?

Mulitperspective Panoramas

Aspect Ratio Distortion

Images with the original perspective don't suffer from this issue.
How to seamlessly combine multiple perspective images?

Background: Pushbroom Images
Camera path
Computational Photography
Mendrik Lensch, Summer 2007
Merspective

Cross-Slits Images		Cross-Slits Images	
Computational Photography	Cross-slits MultiPerspective Image		Cross-slits MultiPerspective Image

Cross-Slits Images	
	Cross-slits MultiPerspective Image

Automatic Construction

What causes the distortion?

- difference between vertical and horizontal perspectives
- changes aspect ratio

How can it be reduced?

- quantify the distortion
- place picture surface
- select ray angles that minimize overall distortion

Aspect Ratio - Perspective	
picture surface camera path	$h=D_{0}\left(\frac{H}{D_{0}-\Delta d}\right)$
Perspective image	
computaitonal Photography	

Aspect Ratio - Cross-slits

Special Case: $\Delta p=0$

no distortion for original perspective $h=D_{0}\left(\frac{H}{D_{0}-\Delta d}\right)$
camera path computational Photography
$w^{\prime}=w=h$
Hendrik Lensch, Summer 2007

General Linear Cameras

[Yu and McMillan 2004]

(a)

(b) $=$

General Linear Cameras

General Linear Cameras - Classification

- rays descrıbea by: $\quad(P(x, y),(x, y))$
- characteristic matrix: $P_{d}^{\prime}=(1-d) P+d I$

$$
P_{\lambda}^{\prime \prime}=P+\lambda I \text { with } \quad \lambda=\frac{d}{d-1}
$$

Multiperspective - Rendering Framework

[Yu and McMillan 2004b]

- specify perspective per triangle
- blend between neighboring triangles

Multiperspective - Rendering Framework

Panoramas

- A multiresolution spline with application to image mosaics P. J. Burt, E. H. Adelson ACM Transactions on Graphics. 2(4), pp. 217-236, 1983.
- Recognising Panoramas. M. Brown and D. G. Lowe. In Proceedings of the 9th International Conference on Computer Vision (ICCV2003), pages 1218-1225, Nice, France, 2003.
- Seamless Image Stitching in the Gradient Domain. A. Levin, A. Zomet, S. Peleg and Y. Weiss, In Proc. ECCV 2004.
- Interactive Design of Multi-Perspective Images for Visualizing Urban Landscapes. Augusto Roman, Gaurav Garg, Marc Levoy. IEEE Visualization 2004.
- Automatic Multiperspective Images. Augusto Roman, Hendrik Lensch, In Proc. EGSR 2006, pages 161-171.
- Multiview Radial Catadioptric Imaging for Scene Capture. S. Kuthirummal, S. Nayar, ACM TOG (Proc. SIGGRAPH), pages 916-923, 2006.
Computational Photography

General Linear Cameras

■ General Linear Cameras. J. Yu and L. McMillan. In Proc. ECCV 2004, pages 14-27.

- A Framework for Multiperspective Rendering, J. Yu and L. McMillan. In Proc. EGSR 2004, pages 61-68.
■ General Linear Cameras with Finite Aperture. A. Adams and M. Levoy, In Proc. EGSR 2007.

