Advanced Image and Video
Processing Algorithms

Computational Photography Hendrik Lensch, Summer 2007

Projects

List available now
Project proposal (2 pages): 15t of June

m LaTeX Template will be made available
Project idea presentation: 8t of June
Final Project presentation: 20* of July
Project report

Computational Photography Hendrik Lensch, Summer 2007

Advanced Processing Algorithms

m Graph Cuts
m Space-time manifolds
= Image-Based Priors

Computational Photography Hendrik Lensch, Summer 2007

Image Segmentation

Binjajnjo)n

input image labeling

= How to find an optimal labeling?
= How to provide connected regions?

Computational Photography Hendrik Lensch, Summer 2007

Image Segmentation

ERCOCOC0EE

BEECOOC0O0OMN o

EEEEEEN LIE OO0
input image labeling

= based on similarity measure w;
= problem on graph
= look at two labels first

Computational Photography Hendrik Lensch, Summer 2007

A Specialized Graph

= n-links
m favor similar labels for neighboring pixels

@—@+>0+— @+ 0 pixels

similarity between pixels

Computational Photography Hendrik Lensch, Summer 2007

Page 1

A Specialized Graph

m t-links: data term

label “red”

7

Q@—>@«—>0«—>0—0

NP

label “blue”

Computational Photography Hendrik Lensch, Summer 2007

A Specialized Graph

m t-links: data term

label “red”

N

Q@—>@«—>0«—>0—>0

SN

label “blue

Computational Photography Hendrik Lensch, Summer 2007

A Directed Graph

= minimize Potts energy £(I) =Y II,- LI+ Y K4 T, #1,)
peP

(p@)eN

source

(7))

Q@—>@«—>0«—>0—0

SR

target

Computational Photography Hendrik Lensch, Summer 2007

Graph Cut

m given graph G ={V,E} with capacities c(v1,v2)

m s-t cut separates source and target
source

—

Q@ Q@0+ —>0«—>0<—0

target

Computational Photography Hendrik Lensch, Summer 2007

Minimum Cut

m determine cut with minimum energy

= equivalent to determining maximum flow
source

target

Computational Photography Hendrik Lensch, Summer 2007

Graph Cut in 2D

source

(a) A graph G (b) A cut on G

Computational Photography Hendrik Lensch, Summer 2007

Page 2

s-t Graph

= A source node and a sink node
= Directed edge <i,j> from node i to node j
m Each arc <i,j> has nonnegative capacity c(i,j)

m cap(i,j) = 0 for non-existing arcs
2 “*\x 3
cap(i. j) S I ;* !
@ 0 < P
i J —
6 3
\‘T /
G=<V,E>

Computational Photography Hendrik Lensch, Summer 2007

Flow in s-t Graph

Flow is a real value function f that assign a real value
f(i,j) to each arc such that

m capacity constraint: f (i, j)<c(i, j)
= mass balance constraint
0 ieV—{s,t}
DfE =Y flki)y=11f] i=s

<i,j>€E <k,i>eE .
b : —1f1 i=t

Computational Photography Hendrik Lensch, Summer 2007

Flow in s-t Graph

B The maximum flow is the flow that has maximum
value among all possible flow functions

SO eap.j) 8
e @ S
i J

An example of flow

Computational Photography Hendrik Lensch, Summer 2007

s-t Cut

m A cut is a partion of node set V which has two
subsets Sand T

m Acutisas-tcutiff se S,reT

not a s-t cut

Computational Photography Hendrik Lensch, Summer 2007

Capacity of s-t Cut (cost)

cap([S,Th= " Y cap(, j)

<i,j>€E,i€S,jeT

cap([S.I)=2+3=5

Minimum cut is the s-t cut whose capacity is minimum
among all possible s-t cuts

Computational Photography Hendrik Lensch, Summer 2007

Residual Graph

The residual Graph Gf :
m cf(u,v) = c(u,v) - f(u,v)
m update flow along the inversed arc

Current Flow Residual Graph
Q- =
1/3 S
.}/yv l>\\ / 5 \1\\2\§ ,
ﬁ 1 =
s \Z\ //' s.\\ I///\//A.
639173 6 T 2

Computational Photography Hendrik Lensch, Summer 2007

Page 3

Residual Graph

The residual Graph G,:
m cfiu,v) = ¢(u,v) - f(u,v)
m update flow along the inversed arc

Current Flow Residual Graph

@ =
1/3 2
2/ \\ ; T=.
1/ ~ 2 l\\ t
S.<z\ e =) ¢ \ L e
0639173 N

Computational Photography Hendrik Lensch, Summer 2007

Max-Flow / Min Cut

m |f there are no augmenting path -> max flow

m S is the set of all vertices that are reachable from
s in residual graph

Maximum Flow

Residual Graph

Computational Photography Hendrik Lensch, Summer 2007

Ford-Fulkerson Algorithm

compute Residual Graph
repeat

m find a direct path in Gf from source to sink in a
depth-first search

m augment the flow of this path by an amount
corresponding to the minimum residual capacity
of the edges along this path

m update residual graph
until no augmenting paths exists

Computational Photography Hendrik Lensch, Summer 2007

Ford-Fulkerson Algorithm |

Augmenting Path

Residual Graph

T~ 3
1 7 \\\ f
~ 1 =]
?\ 4/;/?/

Computational Photography Hendrik Lensch, Summer 2007

Ford-Fulkerson Algorithm I

Augmenting Path Residual Graph

/.
/’ Lk \‘

Current Flow

& o 13
1/
N

%\\:o/lﬁ

t

—

=)

Computational Photography Hendrik Lensch, Summer 2007

Ford-Fulkerson Algorithm llI

Residual Graph

/.

Augmenting Path

(AR 2
/ \ l
o 1\

N - //). - 5.\ 1/ /‘
I 2
Current Flow

o O 23
s e
o—~s9—1/3

Computational Photography Hendrik Lensch, Summer 2007

Page 4

Ford-Fulkerson Algorithm IV

Augmenting Path Residual Graph

/l‘\\f

Current Flow

Computational Photography Hendrik Lensch, Summer 2007

Ford-Fulkerson Algorithm IV

Further Demonstration

Computational Photography

Hendrik Lensch, Summer 2007

Extension to multiple labels

start with random labeling
iterative execution of the min-cut for each label &

= try to increase the number of & labels such that
E(f)<E(f)

= (- expansion

m stop when no further update

[Boykov 01/02]

Computational Photography Hendrik Lensch, Summer 2007

Applications

m denoising

= image-segmentation

m stereo

m texture synthesis

Computational Photography

Hendrik Lensch, Summer 2007

Denoising

(a) Diamond restoration (b) Original Bell Quad (c¢)“Restored” Bell Quad

[Boykov 1999]

Computational Photography Hendrik Lensch, Summer 2007

Stereo Reconstruction

Tree image

Rock image

Normalized correlation

Normalized correlation

Computational Photography

Annealing (Es) Our method (Ey)

[Boykov 1999]

Hendrik Lensch, Summer 2007

Page 5

Patch-based Texture Synthesis

input texture

that is transferred to
output texture)

Computational Photography

offset (re}ative placement of input texture)

seam (area of input

patches

output texture

[Kwatra 03]

Hendrik Lensch, Summer 2007

Patch-based Texture Synthesis

= minimize the energy across seems

Overlap
e

Pacch ™) Ppach
A B

[Kwatra 03]

Computational Photography

Hendrik Lensch, Summer 2007

Patch-based Texture Synthesis

t_/New Patch B

Computational Photography

= insertion into existing region

New
Patch
B

[Kwatra 03]

Hendrik Lensch, Summer 2007

Texture Synthesis Results

Computational Photography Hendrik Lensch, Summer 2007

Texture Synthesis Results

Computational Photography

Hendrik Lensch, Summer 2007

Video Textures

Computed
Input Video
Window in/_> Similar Frames
which seam
computed

Input Video

) i

. Output Video

Shown in 3D

Computational Photography Hendrik Lensch, Summer 2007

Page 6

Video Texture Results

reconstruction

W

Computational Photography Hendrik Lensch, Summer 2007

Space-time Manifolds

[Wexler 05]

Computational Photography Hendrik Lensch, Summer 2007

Space-time Manifolds

= how to extract this panorama?

[Wexler 05]

Computational Photography Hendrik Lensch, Summer 2007

Space-time Manifolds

m determine optimal path through the space-time
volume

Space-Time volume

Non-Linear Scene Manifold

[Wexler 05]

Computational Photography Hendrik Lensch, Summer 2007

Algorithm

m transition from one column to the next within a
frame is always possible

= transition from one frame to the next only
allowed if some similar transition is found within
one of the input frames:

D(u‘;},uy") = mﬂin I»‘{Ug\}/n UV — u;f,z,';;H

m simplified cost:
. . . Wiapd — qpiapitt
D5 ¢)) < Cbhv)) = min{ ey Lftif I }

- gy = vy g

min {Hl!; - u}‘] s 1% — L’;;’] H}

Computational Photography Hendrik Lensch, Summer 2007

Algorithm

= find shortest path between selected start and
end column

Frame | Frame 2 W w e

Computational Photography Hendrik Lensch, Summer 2007

Page 7

Space-time Manifolds Results Space-time Manifolds Results

Computational Photography Hendrik Lensch, Summer 2007 Computational Photography Hendrik Lensch, Summer 2007
Hole Filling in Videos Space-time Video Completion
EX o ¢
Frame § s
Bl ¢ v
Frame 22 a
Tnput) Sequence
YREN
YRAN
Bl o ¢
Frame 43
Bl o ¢
Frame 57 q
(a) Input sequence | (b) Exrasing the occluding person | (c) Spatio-temporal completion
Computational Photography Hendrik Lensch, Summer 2007 Computational Photography Hendrik Lensch, Summer 2007
Local Space-time Consistency Algorithm
1: Input: video S, hole H C S, database D.
n fill up each voxel such that its space-time 2: Compute space-time pyramids Sy, Hy, Dy L= 1..L.
neighborhood matches a neighborhood in the 3t—0 Ste§
InPUt Vldeo 4: for pyramid level [, from top to bottom do
= make sure that this is true for all neighborhoods S repeat
containing the voxel & forallpeido ,
7 Let {W,}, be all windows s.t. p € W}
8: Find {V'} g D; maximizing Eq. (2) ,/% dea
9: Let ¢ € V' be the appropriate colors. % S
10: Set wj, = o, - sim(W, V).
1 §'1(p) ML(ch,w}) using Eq. (4)
12: end for
13: et sim(W,, V) = e~ 51"
@ ®) © 14: until convergence
15: Propagate solution to the next level i
A .- Z;el\r‘"p('
: end for S,
. . 17: Output: S*)
Computational Photography Hendrik Lensch, Summer 2007 Hendrik Lensch, Summer 2007

Page 8

Hierarchical Approach

100x300x240

50x150x120

&

g

25X75%60'

12x32x30

bl

6x16x15

Computational Photography

Hendrik Lensch, Summer 2007

Results

Computational Photography Hendrik Lensch, Summer 2007

Results

Computational Photography

Hendrik Lensch, Summer 2007

Page 9

