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Outline

� plenoptic function

� subsets of the plenoptic function

� light field: 

� concept

� view synthesis

� parametrization

� refresher: 

� signal processing

� sampling

� reconstruction

� aliasing

� light field sampling analysis

� light field acquisition

� applications of light fields  
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Plenoptic Function

� plenoptic (latin plenus: full , optic: vision)

� plenoptic function [Adelson91] describes the 
radiance at

� a position in space (3D)

� in a certain direction (2D)

� at a particular point in time (1D)

� in a particular wavelength (1D)

L = P ( x, y, z, θ, φ, t, λ )

is a 7D function 

� imagine a collection of dynamic environment maps 
covering the whole space
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Grayscale snapshot

is intensity of light 

� Seen from a single view point

� At a single time

� Averaged over the wavelengths of the visible spectrum

(can also do P(x,y), but spherical coordinate are nicer)

P(θ,φθ,φθ,φθ,φ)
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Color snapshot

is intensity of light 

� Seen from a single view point

� At a single time

� As a function of wavelength

P(θ,φ,λθ,φ,λθ,φ,λθ,φ,λ)
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A movie

is intensity of light 

� Seen from a single view point

� Over time

� As a function of wavelength

P(θ,φ,λθ,φ,λθ,φ,λθ,φ,λ,t)
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Holographic movie

is intensity of light 

� Seen from ANY viewpoint

� Over time

� As a function of wavelength

P( θ, φ, λθ, φ, λθ, φ, λθ, φ, λ, t, VX, VY, VZ )
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Plenoptic Function

� describes everything that can possibly be seen 

( and much more )

� e.g. for example wavelength includes all 
electromagnetic radiation (not necessarily 
visible by human observer)

� non-physical effects are covered

� also time-varying and wave length-shifting 
effects like phosphorescence, etc.

� plenoptic function is unknown, what use does it 
have ?

� conceptual tool to group imaging systems 
according to greater flexibility in view 
manipulation
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Plenoptic Function

� imaging concepts using sub-sets of the plenoptic function

� conventional photograph (2D sub-set of θ, φ) 

� panorama [Chen95] (2D – full range of θ, φ)

� video sequence (3D sub-set of x, y, z, θ, φ, t)

� light field [Levoy96, Gortler96]

(4D sub-set of x, y, z, θ, φ )

� dynamic light fields [Wilburn05] 

(5D sub-set of x, y, z, θ, φ, t )

� wavelength is usually discretely sampled in R,G,B

� in real imaging systems resulting radiance is limited in range 

� LDR for conventional cameras

� HDR 
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Plenoptic Function

� Drawbacks:

� many scene parameters molded into time 
parameter

� e.g. 

� dynamic scenes 

� illumination changes 

� light material interaction

� therefore: difficult to edit

� alternatives (not in this lecture): 

� plenoptic illumination function [Wong02]

� reflectance fields [Debevec00]
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Light Fields

� [McMillan95] use sampled 5D function ( x, y, z, θ, φ ) 
on a regular grid

� interpolate to generate

new views

� light fields are only 4D

� free space assumption

� radiance is constant along a ray
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Light Fields

space with occluders – 5D free space, radiance stays 

constant along the ray  – 4D

outside – in viewing inside – out viewing

free space

free space

free space

free space
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Light Fields – Principle of View Synthesis

� re-arrange ray samples to generate new views
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Light Fields - Properties

� Advantages

� rendering complexity is independent of scene 
complexity

� display algorithms are fast

� complex view-dependent effects are simple 

� (no mathematical model required)

� Disadvantages

� high storage requirements

( although high correlation between images                  
yields high compression ratios ~120:1 [Levoy96] )

� difficult to edit ( no model )
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Light Fields - Parametrization

� need a way to parametrize rays in space for simple 
sampling and retrieval

� should be adapted to sensor geometry

� new view synthesis should be fast

� Let's consider some candidate parametrizations
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Light Fields - Parametrizations

� point on plane + direction   L ( u, v, θ, φ ) 

� mixture between cartesian

and trigonometric parameters

� inefficient to evaluate

� non-uniform sampling

� directional interpolation 

difficult 

� alternatively arbitrary surface + direction,

� should be convex to avoid 

duplicates
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Light Fields - Parametrizations

� two points on sphere [Camahort98]

� uniform sampling

� needs a uniform subdivision of sphere

into patches

� needs a way to sample single rays

� difficult for real scenes

� great circle + point on disk [Camahort98]

� uniform sampling

� needs orthographic projections to

disk

� less difficult than 2PS parametrization

L( θ , φ , θ , φ )
1 21 2

L( u, v, θ, φ ) 
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Light Fields - Parametrizations

� two plane parametrization (light slab) [Levoy96]

� fast display algorithms (projective geometry)

� simple interpretation (array of images)

� most commonly used parametrization

� Drawback: only in one major direction

� covering 360º requires at least 6 light slabs [Gortler96]

� switching from one slab to the next introduces artifacts

a.k.a. disparity problem

u

v

s

t

camera plane focal plane

L ( u, v, s, t )
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Light Fields - Parametrizations

� light field generation with two-plane parametrization

� off-axis perspective projections

� normal camera images need (simple) re-sampling
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Light Fields – Parametrizations

� a two-plane parametrized light field is basically a 
collection of images
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Light Fields - Parametrizations

� view generation from two-plane parametrization

� at an observer position 

� project ( u, v ) and ( s, t ) parameter planes into virtual view
( x, y )

� for each pixel in virtual view use projected 

( u, v, s, t )  to look up radiance L ( u, v, s, t )

� two perspective projections and one look-up determine 
virtual view ���� efficient rendering
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Light Fields – Rendering 2D

nearest neighbor uv bilerp uv and st bilerp

involved samples
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Light Field Rendering - Examples

16x16 images

1 slab

32 x 16 images

4 slabs
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Depth Assisted Light Fields [Gortler96]

without depth

knowledge

with depth

knowledge

different pixels have 

to be interpolated !
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Depth Assisted Light Fields

� Regions of uncertainty, 
depending on depth

� closer objects have higher 
disparity

� standard light field look-up 
as described previously 
yields poor results

� need depth assisted

warping

� e.g. projective texture 
mapping [Debevec96]
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Depth Assisted Light Fields -Example

recorded images depth assisted view warping
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Image-based vs. Model-based Rendering

� trade-off between image-based and model-based rendering 
approaches

� Is there a way to find a good trade-off ?

� need some signal processing for analysis

more data

less computation

less data

more computation

Images Only Mathematical 

Descriptions
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Signal Processing Basics – Sampling

continuous function f

sampling function   s

(comb function/

shah function)

sampled function f

spatial domain:

s
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Signal Processing Basics – Sampling

frequency spectrum 

of continuous function: F

frequency spectrum 

of sampling function:    S

frequency spectrum

of sampled function: Fs

� convolution theorem 

���� in frequency domain:

� frequency spectrum of original function 

is copied multiple times !
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Signal Processing Basics – (Pre-)Aliasing

� if continuous function f has to high frequency 
content, aliasing occurs

� undersampling

� overlap of the copies in the fourier spectrum F

frequency domain:

F

S

F

s

s
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Signal Processing Basics - Reconstruction

� reconstruction in frequency domain is simple

� get rid of the copies of the frequency spectrum

� multiplication by box function 

(reconstruction filter)

frequency spectrum 

of sampled function: F

frequency spectrum of

reconstruction filter: R

frequency spectrum of

reconstructed function: F

s

r

reconstruction in frequency domain:
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Signal Processing Basics - Reconstruction

� reconstruction in spatial domain is a convolution 

convolution theorem:

� Fourier transform of box function is sinc function

� sinc function has infinite support

���� need all samples to reconstruct properly

frequency domain spatial domain
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Signal Processing Basics - Reconstruction

� common reconstruction filters and their frequency 
spectrum

nearest neighbor

linear

cubic

better approximation of sinc function in space yields 

smaller support in frequency domain
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Signal Processing Basics – (Post-)Aliasing

� poor choice of reconstruction filter results in aliasing 

� information from copies of the fourier spectrum gets 
included in the reconstruction 

� example: nearest neighbor filter

frequency spectrum

of continuous function: F

frequency spectrum 

of sampling function: S

frequency spectrum 

of sampled function: F

frequency spectrum

of nearest neighbor filter: sinc

frequency spectrum

of reconstructed function: F
s r
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Signal Processing Basics – Sampling Rate

� increasing the sampling rate results in larger 
spacing of the frequency spectrum of the sampled 
function
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Signal Processing Basics - Lessons

� need band-limited function f

� e.g. low-pass filtered (narrows support in 
frequency domain)

� frequency spectrum with local support

� sampling rate must be sufficient (increases overlap-
free area in the frequency domain)

� reconstruction filter should have local support in 
frequency domain to avoid post-aliasing
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Plenoptic Sampling [Chai00]

� apply Fourier Analysis to light field rendering

� simplifying assumptions:

� no occlusion

� lambertian reflectance

� perform analysis in 2D 

� one spatial dimension 

� one directional dimension

� full 4D case analogous
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Plenoptic Sampling – Epipolar Plane Images

� analyze epipolar plane image (EPI) and its frequency 
spectrum

� main result: frequency spectrum of a light field is 
bounded by minimum and maximum scene 
depth

� EPI is a slice of the light field, e.g. (v, t)
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Multi-Dimensional Sampling

� 2D function ���� sampling function is "bed-of-nails" 
instead of comb function

� copies are spread in two dimensions 

"continuous" image

sampled image

frequency spectrum with overlapping

duplicates in two dimensions

Computational Photography Hendrik Lensch, Summer 2007

Plenoptic Sampling – Analysis Goal

� Analyze EPI images in frequency domain

� GOAL: 

� find minimum spacing of the copies of the 
frequency spectra without overlap

���� minimum sampling rate for anti-aliased 
rendering

� analyze influence of known depth
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Plenoptic Sampling - Analysis

� start with simple scene: textured plane parallel to 
camera translation plane

� ignore horizontal and vertical lines (artifacts of non-
periodic nature of the function)

� frequency spectrum for parallel plane (constant 
depth) is a line !
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Plenoptic Sampling - Analysis

� more complex: scene with two planes parallel to 
camera translation direction (two constant depths)

� a second line appears in the fourier spectrum !

� different slope

� What happens with non-parallel planes ?
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Plenoptic Sampling - Analysis

� two parallel and one tilted plane

� frequency spectrum is still contained between the 
two lines corresponding to minimum and maximum 
depth !

� Is this also true for non-planar objects ?
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Plenoptic Sampling - Analysis

� two parallel planes and a surface with complex 
depth variation

� the frequency spectrum is still bounded !

� boundedness ( i.e. local support ) is good, we can 
find a sampling rate that causes no overlap of the 
frequency spectra
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Plenoptic Sampling – Sampling Rate

� determining the sampling rate

� ∆t, ∆v are the sampling rates on the camera and focal planes 
of the light field

� choose such that there is no overlap in the frequency domain 

spatial scene layout

frequency spectrum 

of corresponding EPI

(continuous case)

d
e
p

th

camera position camera coordinate

d
ir

e
c

ti
o

n
a
l 

c
o

o
rd

in
a
te

frequency spectrum 

of sampled EPI

(discrete case)
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Plenoptic Sampling – Reconstruction Filter

� determining a suitable (depth assisted) reconstruction 
filter allows for denser packing in the frequency 
domain 

���� coarser sampling in the spatial domain

� depth assisted reconstruction filter is a tilted box filter

infinite depth, 

proper sampling rate

infinite depth, 

insufficient 

sampling rate

maximum scene 

depth, proper 

sampling rate

optimum scene depth, 

coarsest possible  

sampling rate
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Plenoptic Sampling – Reconstruction Filter

� Is it possible to get away with even coarser sampling ?

� Yes, Fourier Transform is linear

���� can decompose spectrum into a sum of spectra

with different optimal depth reconstruction filters

� multiple depth layers allow for denser packing in frequency 
space ���� coarser sampling in spatial domain 

original scene spectrum decomposed scene spectrum
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Plenoptic Sampling – Images and Geometry

� different combinations of number of images and 
number of available depth layers yield the same 
rendering result

Minimum Sampling 

Curve

Minimum Sampling 

Curve

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32

redundant

aliasing
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Plenoptic Sampling – Images and Geometry

� Example: 3 depth layers, 32x32 images, oversampled

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32
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Plenoptic Sampling – Images and Geometry

� Example: 3 depth layers, 16x16 images, oversampled

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32
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Plenoptic Sampling – Images and Geometry

� Example: 3 depth layers, 8x8 images, optimally sampled

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32
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Plenoptic Sampling – Images and Geometry

� Example: 3 depth layers, 4x4 images, undersampled

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32 Artifacts !
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Plenoptic Sampling – Images and Geometry

� Example: 3 depth layers, 2x2 images, undersampled

Number of Depth Layers

1 2 3 6 12 Accurate 

Depth

Number of Images

2x2

8x8

4x4

16x16

32x32 Artifacts !
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Plenoptic Sampling – Lessons

� Trade-off between 
geometric knowledge 
and image-based 
information

� quantified by 
Minimum Sampling 
Curve 

� for higher output 
resolution, Minimum 
Sampling Curve has to 
be shifted into redundant 
area

� this is also necessary for 
non-lambertian surfaces 
and heavy occlusion 
[Zhang03]

Number of Depth 

Layers

Number of Images

Higher 

Output 

Resolution
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Light Fields – Acquisition & Applications

� spherical gantry [Levoy96]

� 2 degrees of freedom 

for camera

� 2 degrees of freedom 

for lamp

� Application:

� acquisition of 360º light 
fields and reflectance 
fields
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Light Fields – Acquisition & Applications

� Hand-Held Video Camera 
[Koch99]

� structure-from-motion

� 3D reconstruction 
(depth maps)
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Light Fields – Acquisition & Applications

� Multi-Camera Array [Wilburn05]

� 128 cameras (Stanford)

� Application:

� dynamic light field 
acquisition

� synthetic aperture imaging

� spatio-temporal 
interpolation

� HDR light field imaging
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Light Fields – Acquisition & Applications

� Plenoptic Camera [Ng05]

� conventional lens + 
microlens array

� 4000x4000 pixels

� 129x129 microlenses

� =14x14 pixels per 
microlens

� Applications:

� viewpoint shifts

� perspective changes

� digital refocusing

Kodak 16-megapixel sensor

125µ square-sided microlenses
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Light Fields – Acquisition & Applications

� principle of plenoptic camera

conventional camera

plenoptic camera
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Light Fields – Acquisition & Applications

� refocusing example

� only one photograph taken

� refocus is performed computationally by

light field manipulation 
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Light Fields – Acquisition & Applications

� light field microscope 
[Levoy06]

� similar to plenoptic
camera

� occular + microlens
array

� Applications:

� perspective views

� 3D reconstruction

� refocusing
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End
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