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Computational Illumination
Active Light - Devices and Techniques

Ivo Ihrke

Computational Photography Hendrik Lensch, Summer 2007

Outline

� Controlled Illumination in Remote Sensing

� Range Scanners

� BRDF measurement

� Display Systems

� Projector Systems

� single camera - single projector systems

� single camera – multiple projector systems

� 3D displays

� integral photography 

� rotating diffuser 3D displays

� holographic display systems / spatial light modulators
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Acquisition Devices for Objects and 
Material Properties
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Remote Sensing – Range Scanners

� Laser Range Scanner 

� most commonly used range scanner

� principle of triangulation

� good accuracy for diffuse surfaces

� bad for specular surfaces

� overview in [Blais04]
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Remote Sensing – Range Scanners

� Principle of laser range scanner – single point laser 
scanning

� triangulation:

� intersect two back- projected rays

� 2 scanning directions

epipolar geometry point scanner schematic
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Remote Sensing – Range Scanners

� Laser range scanner – slit scanner

� laser – camera geometry must be known 

� use laser plane instead of ray

� only one scanning direction

� triangulation:

� for each lit pixel, intersect back-

projected ray with laser plane
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Remote Sensing – Range Scanners

� Laser Range Scanners – focal plane selection

� Scheimpflug principle

� tilt-shift lenses

Scheimpflug principle

application in range scanning

� extend depth of field

focal plane
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Tilt-Shift Lens Examples
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Remote Sensing – Range Scanners

� Laser Range Scanning – Cheapo Version [Winkelbach06]

� hand-held line laser

� known background geometry

� need two planes that are not co-linear

� known camera calibration

� compute laser plane from lines

on the background planes

� triangulate by ray-plane intersection
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need                   passes to identify N planes

Remote Sensing – Range Scanners

� Structured Light Scanners

� variation on a theme: triangulation by ray-plane 
intersections

� sequential projection of patterns allows for 
simultaneous identification of several illumination 
plane intersections

pass 1 0 0 0 0 1 1 1 1
pass 2 0 0 1 1 0 0 1 1
pass 3 0 1 0 1 0 1 0 1

example for 8 planes

log
2
(N )
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Remote Sensing – Range Scanners

� Structured Light Scanners with Phase-Shifting [Wolf03]

� combines binary encoding and shifted sine patterns

structured light image z-image 3D-object

binary code 

(coarse depth)

sinusoidal patterns (fine depth)

realized by 

� defocusing

� optical filters

� gray values
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Remote Sensing – Range Scanners

� dynamic structured light scanner [Wolf03]

� 3 binary patterns

� 4 phase shifted sinusoidal patterns

� 200 fps camera

���� ~30   3D scans/second
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Remote Sensing – Range Scanners

� Structured Light Scanner – Cheapo Version 
[Bouguet98]

� uses a web-cam, a desk lamp, a pen ~15 €

� calibrated 

� light source position

� ground plane

� camera parameters

� estimate shadow plane by 

computing line on the ground

plane

� ray-plane triangulation for 3D reconstruction 
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Remote Sensing – Range Scanners

� Stick Scanner in action
setup desktop setup outdoor

� accuracy: 0.1 - 0.3 mm in 

a range of 10 cm
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Remote Sensing – Range Scanners

� time-of-flight scanners [Gvili03]

� NOT triangulation based

� short infrared laser pulse is sent from camera

� reflection is recorded in a very short time frame 
(picoseconds)

� results in depth profile (intensity image)
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Remote Sensing – Range Scanners

� time-of-flight scanner – examples

� accuracy 1-2 cm in a range of 4 – 7 m 

� applications:

� "depth keying" replaces chroma keying

� 3D interaction

� large scale 3D scanning (LIDAR – light detection 
and ranging)
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Remote Sensing – Range Scanners

� depth from projection defocus [Zhang06]

� setup: camera and projector with aligned optical 
axes

Projector

Camera

Half-mirror

Projector

Half-mirror

Camera
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Remote Sensing – Range Scanners

principle of operation

� focus projector behind scene element with the 
largest distance

� project a moving binary stripe pattern (step 
functions) 

� pattern is blurred for objects

not in the focal plane

� blur decreases with distance

from projector
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Remote Sensing – Range Scanners

� record video sequence 

���� allows for (temporal) per-pixel scanning of the 
blurred intensity profile

vertically slanted plane (gray values indicate depth)

radiance profiles at points of different depth

projection pattern
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Remote Sensing – Range Scanners

� defocused patterns correspond to a low pass 
filtered version of the original pattern

� filter is depth dependent !

� analyze frequency spectrum:

scanned profile

frequency spectrum
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Remote Sensing – Range Scanners

� defocused patterns correspond to a low pass 
filtered version of the original pattern

� filter is depth dependent !

� analyze frequency spectrum:

scanned profile

frequency spectrum

different slopes
(mind the different scale 

of the diagrams)
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Remote Sensing – Range Scanners

� use first two coefficients 
of discrete Fourier 
transform to compute 
parameter 
representative of slope

� indicates how heavily 
low-pass filtered the 
signal is in a particular 
pixel ���� depth measure 
(look-up table computed 
by pre-calibration)

θ = A2

A1

calibration depth map

(vertically slanted plane)

variation of theta 

w.r.t. vertical axis

depth-theta look-up table 

for three different 

horizontal positions
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Remote Sensing – Range Scanners

� Depth from Projection Defocus 

� advantages

� per-pixel independent measurements

� accurate at occlusion boundaries

� works well for glossy surface properties 

� Issues:

� need small camera aperture (no defocus from lens)

���� need bright projector

� projectors usually do not have high-frequency light 
sources (image not stable)
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Remote Sensing – Range Scanners
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Remote Sensing – BRDF Measurements

� BRDF acquisition

� 4 degrees of freedom

� 2 for incoming light 
direction

� 2 for viewing direction

Lo =
∫
Ω+
fr(θi, φi, θo, φo)Li(θi, φi)cosθidω

(θi, φi)

(θo, φo)

gonioreflectometer

BRDF examples [Matusik03]
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Remote Sensing – BRDF Measurements

� BRDF measurement with basis function illumination

� principle: project basis illumination and 
simultaneously measure response

camera

projector

beam splitter

material sample

example basis functions

[Koenderink96]
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Remote Sensing – BRDF Measurements

� Measurement Apparatus 
[Ghosh07]

� mirrored dome and 
parabola allow for 
simultaneous projection of 
basis illumination and 
recording of the response

� basis function coefficients 
are directly measured

� type of basis functions: 
spherical harmonics 
[Cabral87, Kautz02]
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Remote Sensing – BRDF Measurements

� approximate BRDF by linear combination of 
(orthonormal) basis functions

� insert into reflectance calculation

���� coefficients are given by
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Remote Sensing – BRDF Measurements

� design of the dome

� fix camera and parabola

� ray-trace to determine dome and hole geometry

design of measurment setup physical realization using

rapid prototyping equipment

(3D printer)
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Display Technologies
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Display Technologies –
Single Camera – Projector Systems

� single camera – projector systems

� applications

� keystone – removal

� projection onto curved or arbitrarily shaped 
surfaces

� human-computer interaction

[Raskar01]
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Display Technologies –
Single Camera – Projector Systems

� automatic key-stone correction [Raskar01]

� calibrate projector – camera pair (similar to stereo 
camera calibration)

� estimate homography between screen and projector 
coordinates

� tilt sensor determines up-direction

� warp image before

projection

projector space screen space
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Display Technologies –
Single Camera – Projector Systems

� projection onto multiple planar surfaces [Raskar03]

� use structured light to determine scene geometry

� compute conformal mapping (i.e. a mapping that keeps 
angular distortions and non-uniform scaling minimal between 
2D image coordinates and 3D world coordinates)

� project pre-warped image

standard projection corrected projection
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Display Technologies –
Single Camera – Projector Systems

� projection onto arbitrary surfaces [Zollmann06]

� rectified from "sweet spot" where the camera is 
located
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Display Technologies –
Single Camera – Projector Systems

� Human-Computer Interaction

� example: ReacTable, tangible synthesizer [Jordà05]

� <movie>
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Display Technologies –
Single Camera – Projector Systems

� markers are placed on semi-transparent screen

� detection by camera

� projector augments interface

example markers
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Display Technologies –
Multi-Projector Systems

� use multiple projectors and one or more cameras

� applications

� large, high resolution displays

� panorama displays

� very bright projections

� shadow removal in

front-projection

systems
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Display Technologies –
Multi-Projector Systems

� high resolution

� project in partially overlapping regions to form a 
larger region of projection

concept

� geometric calibration

� project checkerboards to 
compute projector pixel –
screen correspondences

� determine largest rectangle 
fitting into the projected area

� split and pre-warp images 
before projection
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Display Technologies –
Multi-Projector Systems

� blending in overlapping regions necessary

� compute geometric overlap in 

screen space

� blend linearly between projectors

� more accurately determine 

spatially varying brightness 

response of the projectors

not blended blended

geometric overlap

blending weights (alpha channel) Computational Photography Hendrik Lensch, Summer 2007

Display Technologies –
Multi-Projector Systems

� examples for planar and curved screens
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Display Technologies –
Multi-Projector Systems

� shadow removal

� projectors form completely overlapping image

� multiple projectors at reduced intensity

� use intensity headroom for compensating shadows

� use camera to compare predicted view to the one actually 
projected

� use negative feedback loop to adjust alpha mattes of the 
single projectors
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Display Technologies –
Multi-Projector Systems
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Display Technologies – 3D Displays

� Overview:

� polarization based displays

� static 3D view – no parallax

� high resolution

� integral photography

� horizontal and vertical parallax

� low resolution

� 3D-TV [Matusik04]

� based on lenticular lenses

� horizontal parallax only

� Autostereoscopic Light Field Display [Jones07]

� 360 degree display system 

� opaque surfaces

� horizontal parallax (vertical with head tracking)

� holographic displays

� combination of holographic and auto-stereoscopic displays
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Display Technologies – 3D Displays

� polarization based projection displays

� require

� 2 projectors with polarization filters 

� glasses with polarization filters

� special, polarization-

preserving screen

� no parallax

� with head tracking parallax 

is possible

� but only for one user
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Display Technologies – 3D Displays

� integral photography, e. g. [Okano98]

� micro lens-array in front of screen 

� screen at focal distance of micro lenses 

� parallel rays for each pixel

� every eye sees a different pixel
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Display Technologies – 3D Displays

integral photograph close-up one particular view

� need high resolution images

� taken with micro lens array

� arrays of graded index (GRIN) lenses

� screen is auto-stereoscopic 

���� no glasses, multiple users
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Display Technologies – 3D Displays

� 3D-TV system [Matusik04]

� uses lenticular lenses in a multi-projector system

� same principle as in integral photography, but only 
in one dimension (cylindrical lenses)
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Display Technologies – 3D Displays

� for 3D video, need a high resolution screen

� multiple projectors increase resolution

� two possibilities 

� rear-projection system

� front-projection system
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Rear Projection DesignRear Projection Design

Lens

Lens = Pixel

Semi-transparent Material
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Rear Projection DesignRear Projection Design

Lens

Lens = Pixel

Semi-transparent Material
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Rear Projection DesignRear Projection Design

Lens = Pixel

Emitted Light

Semi-transparent Material

Lens
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Realized Rear Projection Display

Semi-transparent
material

Projection-Side
Lenticular Sheet

Viewer-Side
Lenticular Sheet

Projectors

Viewer
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Front Projection DesignFront Projection Design

Reflective Material

Lens
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Front Projection DesignFront Projection Design

Reflective Material

Lens
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Front Projection DesignFront Projection Design

Reflective Material

Lens

Emitted Light
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Realized Front Projection Display

Reflective
Material

Lenticular Sheet

Projectors

Viewer
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Display Technologies – 3D Displays

� rotating diffusers [Ketchpel64]

� cathode ray illuminates quickly rotating phosphor 
screen

� voxels can be 

adressed individually

� volumetric display

is transparent

(no opaque surfaces)
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Display Technologies – 3D Displays

� modern version - Autostereoscopic Light Field 
Display [Jones07]

� enables 

� opaque surfaces 

� horizontal parallax built-in

� vertical parallax with head-tracking

� multiple users possible

� auto-stereoscopic

� display of dynamic light fields in 3D
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Display Technologies – 3D Displays

principle of operation 

� rotating front surface mirror with

anisotropic diffusion filter on top

� diffuses light in vertical direction 

perfectly

� in horizontal direction only in a very

limited angle
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Display Technologies – 3D Displays

� can be regarded as 
a rotating projector

� ~17  3D frames per 
second

� 288 angular bins

� need ~5000 frames 
per second 
rendering for the 
projector
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Display Technologies – 3D Displays

� render only binary images (dithered)

� specially encoded DVI signal (every bit is a pixel 
instead of RGB value ���� 24 pixels per normal color 
pixel)

� 200 Hz refresh rate (GeForce 8800) = 4800 fps

� special decoder chip necessary
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Display Technologies – 3D Displays

� holographic displays

� wave optics background

wave fronts always normal to rays

have phase and amplitude

diffraction

generates

spherical waves

behind narrow slit

Huygens principle:

any wavefront can be  described as 

a superposition of spherical waves 

centered on a previous wavefront

Computational Photography Hendrik Lensch, Summer 2007

Display Technologies – 3D Displays

� principle of holographic imaging

� interference between reference wave D and object wave from C

is recorded on film

� reconstruction by diffraction at the film plane

� reconstructs object wave – all parallax and view dependent 
effects are preserved
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Display Technologies – 3D Displays

� interference pattern of a point light source with a 
reference wave

� in film: bright areas are transparent, dark areas 
block light

� very fine holes cause diffraction

� when illuminated with the reference wave, the 
object wave is reconstructed
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Display Technologies – 3D Displays

� digital replacement for film is Spatial Light 
Modulator (SLM)

� high resolution LCD

� can be used to display

dynamic diffraction 

gratings

holographic display

SLM
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Display Technologies – 3D Displays

� Rendering for holographic displays 
[Ahrenberg06]

� GPU-based superposition of spherical 
waves in the virtual film plane

� object consists of points

� no occlusion

� <movies>
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Display Technologies – 3D Displays

� combined holograms and auto-stereoscopic 
displays
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Remote Sensing – Image-Based Object 
Representations

� environment matting [Zongker99]

� capture pixel – exitant ray mapping 

� use with environment look-up to place objects into 
new environments

� 2D structured light scanning from several directions

(not 3D!)
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Remote Sensing – Image-Based Object 
Representations

� Movies
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Remote Sensing – Image-Based Object 
Representations

� Opacity Hulls [Matusik02a,Matusik02b]

� Geometry Assisted Environment Matting

� acquire coarse geometry (visual hull) + view 
dependent alpha and environment mattes

M
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lo
r 

M
o
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it
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r

Light Array

Cameras

Rotating Platform

setup principle setup realization
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Remote Sensing – Image-Based Object 
Representations

� geometry acquisition: visual hull

� conservative approximation of true surface shape 
(real object is contained in visual hull)

� back-project object silhouettes and intersect in 
space (CSG)
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Remote Sensing – Image-Based Object 
Representations

� per surface point on coarse geometry, assign a 
hemisphere of opacity values, radiance values and 
exitant ray directions (environment matte)

� "surface light field"

A

B C

A B C

(θ,φ)

θ

φ
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Remote Sensing – Image-Based Object 
Representations

� Movies
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Image-Based Relighting

� use images taken under different lighting conditions

iBrowse

ambient light light from top

light from left light from right

� recombine (add) 
RGB - modulated 
versions of the 
images

� superposition 
principle


