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Reflectance Fields and 
Transport Matrices
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Digitizing Real World Objects

images – no interaction
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Digitizing Real World Objects

3D geometry – no color
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Digitizing Real World Objects

3D geometry plus texture – no relighting
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Single Material - BRDF
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Spatially Varying Material - SVBRDF
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Digitizing Real-World Objects

taking a picture

scene

2D
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Light Field

[Gortler96], [Levoy96]

captures the distribution of all outgoing light rays

4D

Computational Photography Hendrik Lensch, Summer 2007

Relighting
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[Debevec2000]

captures the scene for every light direction

4D Reflectance Field

2D

2D
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[Masselus2003]

rendering with 4D incident light fields

6D Reflectance Field

2D

4D
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allows for projected light patterns, e.g. shadows

6D Reflectance Field
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8D Reflectance Field

arbitrary viewing and lighting     

4D

4D
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8D Reflectance Field

8D necessary to synthesize interreflections
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8D Reflectance Field

8D necessary to synthesize interreflections

Computational Photography Hendrik Lensch, Summer 2007

8D function

Definition – Reflectance Field
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ratio of reflected radiance to incident flux

Definition – Reflectance Field
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Reflectance Field

Radiant light field from A under every possible incident 
field of illumination.

8 dimensional reflectance field function:

R = R(Ri ; Rr) = R(ui, vi, θθθθi, φφφφi ; ur, vr, θθθθr, φφφφr)

R(ui, vi, θθθθi, φφφφi) ���� incident light field arriving at A

R(ur, vr, θθθθr, φφφφr) ���� radiant light field leaving A



Page 4

Computational Photography Hendrik Lensch, Summer 2007

The Rendering Equation

[Kajiya et al. 1986] 

How can we measure a reflectance field? 

Record the impulse response, i.e. illuminate using a 
single ray at a time. 
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Example Acquisition
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Example Acquisition

Computational Photography Hendrik Lensch, Summer 2007

PROBLEM

data in… an 8D function

� using only 100 samples in each dimension

→ 1016 samples (12bytes/sample) = 109,139 TB

� largest scanned 3D geometry: 108 points

no solution for the full problem (yet)
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Approaches

data is coherent in large parts 

correlation

explore lower actual dimensionality of the data

restrict reflectance model

restrict viewing or illumination capabilities

adaptive parallel acquisition
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Gloss Model
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BRDF – 6D

(bidirectional reflectance distribution function)

ratio of reflected radiance to incident irradiance
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BRDF Models

� tabulated

� analytic

� factorized

� spherical harmonics

� data-driven
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4D-BRDF Measurement

Gonioreflectometer

light source

sample

photo sensor
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Image-Based BRDF Measurement

[Ward92], [Marschner99], [Lu&Koenderink99]

capture lots of 
BRDF samples
at one shot by a 
sensor array/camera

homogeneous
materials only!

How to get spatially 
varying materials ? 

camera

curved curved sample
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Clustering of Materials
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Spatially Varying Materials
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Projection – good Title

goal: assign separate BRDF to each 
surface point

� too few reflectance samples for reliable fit

� represent the BRDF of each point by a weighted 
sum of basis BRDFs:

� this is a linear problem

mmr ftftftxf +++= K
r

2211
)(
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SBRDF - Results
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SBRDF - Results

33 images, 2 hours  → 120MB model
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[Debevec2000]

captures the scene for every light direction

4D Reflectance Field

2D

2D
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4D Reflectance Field

allows for distant lights only 
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Light Stage

[Debevec2000]

single view point

assumes distant light sources

cannot relight with cast 
shadows



Page 7

Computational Photography Hendrik Lensch, Summer 2007

Performance Relighting

[Peers – SIGGRAPH 07]

video

Computational Photography Hendrik Lensch, Summer 2007

Environment Matting

Extension of Alpha Matting capable of capturing 
transparent and specular objects for one view. 

Allows for reproduction with arbitrary backdrops.

A high-resolution 4D reflectance field.

[Zongker et al. 1999] 
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Traditional Alpha Matte

Composite color        

Foreground color

Background color 

Pixel coverage

Acquired by blue/green screening
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Environment Matte Acquisition
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Environment Matting Acquisition
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Environment Matting Definition

Add reflected and refracted rays 
(sum over backdrops)

Reflectance

Texture

Axis-aligned area

Averaging operator
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Environment Matte Extensions

Gaussian Filter kernel [Chuang et al. 2000]

Real-time acquisition [Chuang et al. 2000]

Wavelets in acquisition [Peers et al. 2003]

Multiple View Points (Opacity hulls)
[Matusik 2002]
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Opacity Hulls  [Matusik 2002]

combines Debevec’s reflectance fields with 
environment mattes (~ 60,000 images).
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Opacity Hulls  [Matusik 2003]

combines Debevec’s reflectance fields with 
environment mattes.
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Bidirectional Texture Functions (BTFs)

Reflectance field of a planar texture

Replicated over a synthetic surface

Captures shadowing and masking effects due to macro 
structure.

(Tabulated Spatially Varying BRDF)

No geometry at silhouettes

[Dana et al. 1999]
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BTF Acquisition

[Sattler et al. 2003]
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BTF Acquisition

Material sample
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BTF - Rendering

virtual prototyping [Gero Müller2005]
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What about this? 

… requires per-ray measurements
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[Masselus2003]

rendering with 4D incident light fields

6D Reflectance Field

2D

4D
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[Masselus2003]

6D reflectance field 

spatially varying illumination

low resolution 16x16

~20 hours/acquisition 

Relighting with 4D Incident Light Fields
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Subsurface Scattering

light penetrates the surface

light scatters inside the object
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bidirectional scattering-surface reflectance distribution 
function [Nicodemus77]

= Reflectance Field

BSSRDF – 8D
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BSSRDF – 8D

Modeling Translucent Objects
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neglect directional dependence [Jensen 2001]

� frequent scattering events in optically dense media 
lead to diffuse scattering inside the media

Diffuse Approximation
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Diffuse Approximation

diffuse reflectance function

� only 4 dimensions

� possible to acquire
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Diffuse Reflectance Function Rd

discretize the surface 

� enumerate all points on the surface

� vectors of irradiance     and radiosity

represent      as matrix 

� light transport
or each pair of points

� linear transport
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ijF

Key Idea

directly record Fij for real objects

� illuminate individual surface points of an object

� record impulse response function

� results in a point-to-point throughput factor 
matrix
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directly record Rd for real objects

� illuminate individual surface points of an object

� record impulse response function

� results in a point-to-point throughput factor 
matrix

Key Idea
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Key Idea
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directly record Rd for real objects

� illuminate individual surface points of an object

� record impulse response function

� results in a point-to-point throughput factor 
matrix

jE
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Example Acquisition
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Results

renderingrenderingphotographphotograph
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Results

1,000,000 images, 22hours → 800MB model

[SIGGRAPH 2004]
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Fixed View + Arbitrary Lighting

2D

4D2D
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Approach

goals: 

� no constraint on the type of scene

� high resolution

1,200,000 pictures for each projector

explore sparseness through adaptive multiplexed 
acquistion

exploit Helmholtz reciprocity



Page 12

Computational Photography Hendrik Lensch, Summer 2007

scene

Pixel-to-Pixel Transport

projector

p

q n

m

camera

4D

T
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scene

Mathematical Notation

projector

p

q n

m

camera

P

pq x 1

C

mn x 1

T

mn x pq

4D
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T

mn x pq

P

pq x 1

Mathematical Notation

matrix properties

� little interreflection ↔ T rather sparse

� many interreflections ↔T rather dense

C

mn x 1
=
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Adaptive Parallel Acquisition

assumption: sparse matrix

radiometrically independent blocks can be sensed in 
parallel

B1

B2
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Adaptive Multiplexed Acquisition

parallel investigation if regions do not overlap in 
camera image
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Adaptive Acquisition

parallel investigation if regions do not overlap in 
camera image
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Relighting with 2D Patterns

[SIGGRAPH 2005]
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primal

Helmholtz Reciprocity

dual

scene

eye

light

eye I

ααααI

ααααI

I

light
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primal

scene

Dual Photography for Relighting

projector

p

q n

m

camera

4D

T
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dual

scene

Dual Photography for Relighting

p

q n

m

dual projectordual camera

4D

TT
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Using the Transposed T Matrix

standard photograph
from camera

dual photograph
from projector
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Sample Results

primal dual
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Capturing 6D Reflectance Fields

active devices

Computational Photography Hendrik Lensch, Summer 2007

Dual Capture Process

parallelization using passive devices
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Light Source Interpolation  [VMV2005]
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Relighting with 4D Incident Light Fields

Computational Photography Hendrik Lensch, Summer 2007

arbitrary view point + arbitrary illumination

8D Reflectance Fields

4D

4D
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[Hackbusch2000]

efficient representation of dense but
data-sparse matrices

� subdivision hierarchy

� local low-rank approximation

� efficient evaluation

H -Matrices

rank = 1 ? 

R1

R1
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Direct vs. Indirect Reflexions

Computational Photography Hendrik Lensch, Summer 2007

Direct vs. Indirect Reflexions

Computational Photography Hendrik Lensch, Summer 2007

Direct vs. Indirect Reflexions
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2D Slices through a Reflectance Field
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Symmetric Acquisition

symmetric 8th order tensor

rank-1 approximation from two images only

parallel acquisition of dense matrices
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Symmetric Exploration

B1

B2B3T

B3 B1

B2B3T

B3

B3 – row sums

B2 – rows+columns

B3 – column sums

B1 – rows+columns
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Symmetric Exploration

B1

B2B3T

B3 B1

B2B3T

B3

B3 – row sums

B2 – rows+columns

B3 – column sums

B1 – rows+columns

B3 ≈ ●rank-1 approximation?
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Hierarchical Rank-1Decomposition

B1 and B2 are investigated in parallel.

parallel acquisition even for dense matrices

B1

B2R1

R1

B3T

B3 B1

B2

= + = …

already

determined

radiometrically

independent
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Dual vs. Symmetric

Dual
Photography

Symmetric

Photography
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An 8D Reflectance Field

3.300 images, 6 hours → model – 1.4 GB
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An 8D-Reflectance Field
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Virtual Photography

novel illumination original acquisiton pattern

[Garg, Talvala, Levoy, Lensch – EGSR 2006]
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Card Experiment

book

camera

card

projector

primal
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Card Experiment

book

camera

card

projector

primal

virtual camera

virtual projector
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dual

Card Experiment

primal
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