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Outline

� Theory

� example 1D deconvolution

� Fourier method

� Algebraic method

� discretization

� matrix properties

� regularization

� solution methods

� Computed Tomography (CT)

� Radon transform

� Filtered Back-Projection

� natural phenomena

� glass objects
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Inverse Problem - Definition

� forward problem

� given a mathematical model M and its 
parameters m, compute (predict) observations o

� inverse problem

� given observations o and a mathematical model 
M, compute the model's parameters

o =M(m)

m =M−1(o)
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Inverse Problems - Examples

� forward problem – volume rendering 

� given voxel data and image formation model, 
compute a view of the object

� m are the volume coefficents, c is 

the ray that determines the pixel's 

value o (observation)

o =
∫
c
m(c(s))ds
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Inverse Problems - Examples

� inverse problem – CT

� given the pixel values o, the ray geometry c and 
the image formation model, compute the volume 
densities m

� invert

� n is a noise component

� we will later see how to do this

3D

o =

∫

c

m(c(s))ds+ n
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Inverse Problems - Examples

� forward problem – convolution

� example blur filter

� given an image m and a filter kernel k, compute 
the blurred image

o = m⊗ k
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Inverse Problems - Examples

� inverse problem – deconvolution

� example blur filter

� given a blurred image o and a filter kernel k, 
compute the sharp image

� need to invert 

� n is again noise

o = m⊗ k + n
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Inverse Problems - Theory

� deconvolution in Fourier space

� convolution theorem ( F is the Fourier transform ):

� deconvolution:

� problems

� division by zero

� Gibbs phenomenon

(ringing artifacts)

o = m⊗ k ⇔ F (o) = F (m) · F (k)

F (m) =
F (o)

F (k)
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A One-Dimensional Example – Deconvolution
Spectral

� most common:                   is a low pass filter

���� , the inverse filter, is a high pass filter

���� amplifies noise and numerical errors

F (k)
1

F (k)
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A One-Dimensional Example – Deconvolution
Spectral

reconstruction is noisy even if data is perfect !
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A One-Dimensional Example – Deconvolution
Spectral

spectral view of signal, filter and inverse filter
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A One-Dimensional Example - Deconvolution
Spectral

� solution: restrict frequency response of high pass 
filter (clamping)

G =

{
1

F (k) , if 1
|F (k)| < γ

γ
F (k)
|F (k)|

, else

M = O ·G
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A One-Dimensional Example - Deconvolution
Spectral

reconstruction with clamped inverse filter
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A One-Dimensional Example- Deconvolution
Algebraic

� alternative: algebraic reconstruction

� convolution

� discretization: linear combination of basis functions

o(x) =

∫ ∞

−∞

m(t)k(x− t)dt

m(t) =

N∑

i

miφi(t)
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A One-Dimensional Example – Deconvolution
Algebraic

� discretization:

� observations are 
linear combinations 
of convolved basis 
functions

� linear system with 
unknowns

� often over-
determined, i.e. 
more observations o 
than degrees of 
freedom ( basis 
functions )

o = m⊗ k

=

∫ ∞

−∞

m(t)k(x− t)dt

≈

∫ ∞

−∞

N∑

i

miφi(t)k(x− t)dt

=

N∑

i

mi

∫ ∞

−∞

φi(t)k(x− t)dt

=

N∑

i

mi(φi ⊗ k)

mi

o =Mm linear system
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A One-Dimensional Example – Deconvolution
Algebraic

� discretization:

� observations are 
linear combinations 
of convolved basis 
functions

� linear system with 
unknowns 

� often over-
determined, i.e. 
more observations o 
than degrees of 
freedom ( basis 
functions )

o = m⊗ k

=

∫ ∞

−∞

m(t)k(x− t)dt

≈

∫ ∞

−∞

N∑

i

miφi(t)k(x− t)dt

=

N∑

i

mi

∫ ∞

−∞

φi(t)k(x− t)dt

=

N∑

i

mi(φi ⊗ k)

mi

o =Mm linear system

unknown
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A One-Dimensional Example – Deconvolution
Algebraic

� normal equations – in case you forgot

� solve                              to obtain solution in a least
squares sense

� apply to deconvolution

problem

min
x
||Ax− b||22 = min

x
(Ax − b)T (Ax− b) = min

x
f(x)

▽f = 2AT
Ax− 2AT

b = 0

A
T
Ax = AT

b

solution is completely broken !
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A One-Dimensional Example – Deconvolution
Algebraic

� Why ?

� analyze distribution of eigenvalues

� remember  

� actually we will check the singular values

(square root of eigenvalues of             ) 

det(A) = ΠN
i=0λi, det(A) = 0⇒ matrix A is under-determined

A
T
A
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� matrix                  has a very wide range of singular values!

� more than half of the singular values are smaller than machine 
epsilon                  for double precision

A One-Dimensional Example – Deconvolution
Algebraic

Log-Plot !

M
T
M

≈ 10−16

102

10−8

10−16
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A One-Dimensional Example – Deconvolution
Algebraic

� Why is this bad ?

� Singular Value Decomposition: U, V are 
orthonormal, D is diagonal

� Inverse of M: 

� singular values are diagonal elements of D

� inversion: 

M = UDVT

M
−1 = (UDVT )−1

= V
−T
D
−1
U
−1

= VD
−1
U
T

D
−1 = diag( 1

Dii

)
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A One-Dimensional Example – Deconvolution
Algebraic

� computing model parameters from observations:

� again: amplification of noise

� potential division by zero

D
−1 = diag( 1

Dii

)

1018

108

100

Log-Plot !

m =M−1
o = VD−1

U
T
o
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102

10−8

10−16
numerical null space

A One-Dimensional Example – Deconvolution
Algebraic

� inverse problems are often ill-conditioned

(have a numerical null-space)

� inversion causes amplification of noise
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Well-Posed and Ill-Posed Problems

� Definition [Hadamard1902]

� a problem is well-posed if 

1. a solution exists

2. the solution is unique

3. the solution continually depends on the data

� a problem is ill-posed if it is not well-posed

� most often condition (3) is violated

� if model has a (numerical) null space, parameter 
choice influences the data in the null-space of the data 
very slightly, if at all

� noise takes over and is amplified when inverting the 
model
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Condition Number

� measure of ill-conditionedness:   condition number

� measure of stability for numerical inversion 

� ratio between largest and smallest singular value

� smaller condition number ���� less problems when 
inverting linear system

� condition number close to one implies near 
orthogonal matrix

κ(A) = σ0

σN
, σ0 > . . . > σN are the singular values of A
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Truncated Singular Value Decompostion

� solution to stability problems: avoid dividing by 
values close to zero

� Truncated Singular Value Decomposition (TSVD)

� is called the regularization parameter

d
+ =

{ 1

Dii

,Dii > ǫ

0 , else

D
+ = diag(d+)

M
+ = VD

+
U
T

ǫ
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Regularization

� countering the effect of ill-conditioned problems is 
called regularization

� an ill-conditioned problem behaves like a singular    
( under-constrained ) system 

� family of solutions exist 

� impose additional knowledge to pick a favorable 
solution

� TSVD results in minimum norm solution
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Minimum Norm Solution

� K is the null-space of A

� is the minimum

norm solution

AXK = 0

⇒ AX = A(XK⊥ +XK)

= AXK⊥ +AXK

= AXK⊥ + 0

= AXK⊥

= b

XK⊥
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Example – 1D Deconvolution

� back to our example – apply TSVD

� solution is much smoother than Fourier 
deconvolution

unregularized solution TSVD regularized solution ǫ = 10−6

Computational Photography Ivo Ihrke, Summer 2007

Large Scale Problems

� consider 2D deconvolution

� 512x512 image, 256x256 basis functions

� least squares problem results in matrix that is

65536x65536 !

� even worse in 3D (millions of unknowns)

� problem: SVD is

� today impossible to compute for systems larger 
than                     ( takes a couple of hours )

� Question: How to compute regularized solutions for 
large scale systems ?

O(N3)

≈ 60002
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Explicit Regularization

� Answer: modify original problem to include 
additional optimization goals (e.g. small norm 
solutions)

� minimize modified quadratic form

� modified normal equations:

minx α||Ax− b||22 + (1− α)||Rx||22 =

minx α(Ax− b)T (Ax− b) + (1− α)xTRT
Rx =

minx f̂(x)

▽f̂ = 2αAT
Ax− 2AT

b+ 2(1− α)RT
Rx = 0

(αAT
A+ (1− α)RT

R)x = AT
b
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Modified Normal Equations

� include data term, smoothness term and blending 
parameter

(αAT
A+ (1− α)RT

R)x = AT
b

data smoothness

blending (regularization) parameter
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λ = 1−α
α

Tikhonov Regularization

� setting                  and                    we have a 
quadratic optimization problem with data fitting and 
minimum norm terms

� large      will result in smooth solution, small          
fits the data well

� find good trade-off

R = 1

minx (Ax− b)T (Ax− b) + λxTx

data fitting minimum norm

regularization parameter

λ λ
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Tikhonov Regularization - Example

� reconstruction for different choices of

� small lambda, many oscillations

� large lambda, smooth solution (in the limit constant)

λ
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Tikhonov Regularization - Example
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L-Curve criterion [Hansen98]

� need automatic way of determining

� want solution with small oscillations

� also want good data fit

� log-log plot of norm of residual (data fitting error) 
vs. norm of the solution (measure of oscillations in 
solution) 

λ
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L-Curve Criterion 

� video shows reconstructions for different

� start with  

L-Curve regularized solution

λ

λ = 10−12
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L-Curve Criterion

� compute L-Curve by solving inverse problem with 
choices of        over a large range, e.g.

� point of highest curvature on resulting curve 
corresponds to optimal regularization parameter

� curvature computation

� find maximum         and use corresponding         to 
compute optimal solution

κ =
x′y′′ − y′x′′

(x′2 + y′2)
3

2

λ (10−12 − 104)

κ λ
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λ = 10−12

λ = 107

λ = 0.0429

L-Curve Criterion – Example 1D Deconvolution

� L-curve with automatically selected optimal point

� optimal regularization parameter is different for 
every problem
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L-Curve Criterion – Example 1D Deconvolution

� regularized solution (red) with optimal λ = 0.0429
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Solving Large Linear Systems

� we can now regularize large ill-conditioned linear 
systems

� How to solve them  ?

� Gaussian elimination 

� SVD

� direct solution methods are too time-consuming

� Solution: approximate iterative solution

O(N3)

O(N3)
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Iterative Solution Methods for Large Linear 
Systems

� stationary iterative methods [Barret94]

� Jacobi

� Gauss-Seidel

� Successive Over-Relaxation (SOR)

� use fixed-point iteration

� matrix G and vector c are constant throughout 
iteration

� generally slow convergence

� don't use for practical applications

xk+1 = Gxk + c
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Iterative Solution Methods for Large Linear 
Systems

� non-stationary iterative methods [Barret94]

� conjugate gradients (CG)

� symmetric, positive definite linear systems ( SPD )

� conjugate gradients for the normal equations

short CGLS or CGNR

� avoid explicit computation of 

� CG – type methods are good because

� fast convergence (depends on condition number)

� regularization built in !

� number of iterations = regularization parameter

� behave similar to truncated SVD

A
T
A
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Iterative Solution Methods for Large Linear 
Systems

� iterative solution methods require only matrix-
vector multiplications

� most efficient if matrix       is sparse

� sparse matrix means lots of zero entries

� back to our hypothetical 65536x65536 matrix

� memory consumption for full matrix: 

� sparse matrices store only non-zero matrix entries

� Question: How do we get sparse matrices ?

A

216 · 216 · 8bytes = 32GB
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Iterative Solution Methods for Large Linear 
Systems

� answer: use a discretization with basis functions 
that have local support, i.e. which are themselves 
zero over a wide range

� for deconvolution the filter kernel should also be 
locally supported

o =

N∑

i

mi(φi ⊗ k)discretized model:
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Iterative Solution Methods for Large Linear 
Systems

� answer: use a discretization with basis functions 
that have local support, i.e. which are themselves 
zero over a wide range

� for deconvolution the filter kernel should also be 
locally supported

o =

N∑

i

mi(φi ⊗ k)discretized model:

will be zero

over a wide 

range of values
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Iterative Solution Methods for Large Linear 
Systems

sparse matrix structure for 1D deconvolution problem
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Inverse Problems – Wrap Up

� inverse problems are often ill-posed

� if solution is unstable – check condition number

� if problem is small                   use TSVD and Matlab

� otherwise use CG if problem is symmetric (positive 
definite), otherwise CGLS

� if convergence is slow try Tikhonov regularization –
it's simple 

� improves condition number and thus 
convergence

� if problem gets large                   make sure you have 
a sparse linear system! 

� if system is sparse, avoid computing             
explicitly – it is usually dense 

< 40002

> 150002

A
T
A
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Computed Tomography (CT)

3D
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Computed Tomography

� tomography is the problem of computing a function 
from its projections

� a projection is a set of line integrals 

over function m along some ray c

� invert this equation (noise is present)

� if infinitely many projections are available this is 
possible (Radon transform) [Radon1917]

o =

∫

c

m(c(s))ds+ n

o =

∫

c

m(c(s))ds
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Computed Tomography – Frequency Space 
Approach

� Fourier Slice Theorem

� the Fourier transform of an orthogonal projection is 
a slice of the Fourier transform of the function !
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Computed Tomography – Frequency Space 
Approach

� for recovery of the 2D function we need several slices

� slices are usually interpolated onto a rectangular grid

� inverse fourier transform 

� gaps for high frequency components

���� artifacts

several projections, spatial domain many more projections, frequency domain
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Frequency Space Approach - Example

original (Shepp-Logan head phantom) reconstruction from 18 directions

reconstruction from 36 directions reconstruction from 90 directions

without noise !
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Filtered Back-Projection

� most commonly used CT algorithm

� principle:

� we have seen the line in frequency space before!

� light field lecture

� inverse Fourier transform of a line in frequency domain 
yields a projection smeared out in space in the spatial 
domain
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Filtered Back-Projection

� Fourier transform is linear ���� we can sum the 
inverse transforms of the lines in frequency space 
instead of performing the inverse transform of the 
sum of the lines 

F (
∑

i

li) =
∑

i

F (li)

backprojection:
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Filtered Back-Projection

� Why filtering ?

� discrete nature of measurements gives unequal 
weights to samples

� compensate

would like to have

wedge shape for one

discrete measurement

have a bar shape

(discrete measurement)

compensate to have

equal volume under filter

frequency domain

high pass filter
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Filtered Back-Projection

� high pass filter 1D projections in spatial domain

� back-project

� blurring is removed

� FBP can be implemented

on the GPU

� projective texture

mapping
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Frequency Space based Methods -
Disadvantages

� need orthogonal projections

� need precise acquisition setup – optical axes of all 
projections must intersect in one point

� sensitive to noise because of high pass filtering
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CT Applications in graphics

� acquisition of difficult to scan objects

� X-Rays are not refracted ���� can scan glass objects 

� some CT scan examples – sorry no glass object in 
the examples
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Tomographic Imaging - Graphics

3D

2D

2D

2D

� reconstruction of flames using a multi-camera setup
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Algebraic Reconstruction Techniques

� object described by Φ, a density field of e.g. 
emissive soot particles 

� pixel intensities are line integrals along 

line of sight 

� Task: Given intensities, compute Φ 

Φ

cp

Ip
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ART

� Algebraic Reconstruction Technique (ART)
Discretize unknown Φ using a linear combination  of 
basis functions Φi

���� linear system   p = Sa

� we have seen this before !

Φi

cp

Ip

p
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ART – Matrix Structure

invert LS in a 

least squares 
sense:

i

p
1 1 1 1 1

1

1

1

2

2

2

2 2 2 2 2

3

3

3

3 3 3 3 3

4

4

4

5

5

5

Basis functions

p
ix

e
ls

p

a = ( S S ) S p
T T-1
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Sparse View ART - Practice

� Large number of projections is needed

� In case of dynamic phenomena

���� many cameras

� expensive

� inconvenient placement

� straight forward application of ART with few cameras 
not satisfactory
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Visual Hull Restricted Tomography

fire

Zero coefficients !

C

C

C

1

2

3
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Visual Hull Restricted Tomography

� Only about 1/10 of the voxels
contribute

� Remove voxels that do not 
contribute from linear system

� Complexity of inversion is 
significantly reduced
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Flame Reconstructions
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Smoke Reconstructions
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3D Reconstruction of Planetary Nebulae 
[Magnor04]

� only one view available

� exploit axial symmetry

� essentially a 2D problem
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3D Scanning of Glass Objects [Trifonov06]

� uses visible light

� tomography needs straight ray pathes

� compensate for refraction

� put glass object into water

� add salt (increases refractive index)

� once refractive index is the same

as that of the glass, ray pathes

are straight

� can apply tomographic

reconstruction
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3D Scanning of Glass Objects [Trifonov06]

� tomographic

reconstruction results

in volume densities

� use marching cubes

to extract object 

surfaces


