Inverse Problems	
Ivo Ihrke	
Computational Photography	
ivo Inrre, Summer 2007	

Outline

- Theory

- example 1D deconvolution
- Fourier method
- Algebraic method
- discretization
- matrix properties
- regularization
- solution methods
- Computed Tomography (CT)
- Radon transform
- Filtered Back-Projection
- natural phenomena
- glass objects

Computational Photography
Ivo Ihrke, Summer 2007

Inverse Problem - Definition

- forward problem
- given a mathematical model M and its parameters m, compute (predict) observations o

$$
o=M(m)
$$

- inverse problem
- given observations o and a mathematical model M, compute the model's parameters
$m=M^{-1}(o)$

Inverse Problems - Examples

- forward problem - volume rendering
- given voxel data and image formation model, compute a view of the object
- m are the volume coefficents, c is the ray that determines the pixel's value o (observation)

$o=\int_{c} m(c(s)) d s$

Inverse Problems - Examples

- forward problem - convolution
- example blur filter
- given an image m and a filter kernel k, compute the blurred image
$o=m \otimes k$

Inverse Problems - Examples

- inverse problem - deconvolution
- example blur filter
- given a blurred image \mathbf{o} and a filter kernel \mathbf{k}, compute the sharp image
- need to invert
$o=m \otimes k+n$
- n is again noise

Computational Photography

Inverse Problems - Theory

- deconvolution in Fourier space
- convolution theorem (F is the Fourier transform):
$o=m \otimes k \Leftrightarrow F(o)=F(m) \cdot F(k)$
deconvolution: $\quad F(m)=\frac{F(o)}{F(k)}$
- problems
- division by zero
- Gibbs phenomenon (ringing artifacts)

Computational Photography

A One-Dimensional Example - Deconvolution

 Spectralreconstruction is noisy even if data is perfect !

A One-Dimensional Example - Deconvolution Spectral
spectral view of signal, filter and inverse filter

A One-Dimensional Example - Deconvolution Spectral

- solution: restrict frequency response of high pass filter (clamping)
$G= \begin{cases}\frac{1}{F(k)} & , \text { if } \frac{1}{|F(k)|}<\gamma \\ \gamma \frac{F(k)}{|F(k)|} & , \text { else }\end{cases}$
$M=O \cdot G$

A One-Dimensional Example - Deconvolution Spectral

reconstruction with clamped inverse filter

A One-Dimensional Example- Deconvolution Algebraic

- alternative: algebraic reconstruction
- convolution
$o(x)=\int_{-\infty}^{\infty} m(t) k(x-t) d t$
■ discretization: linear combination of basis functions
$m(t)=\sum_{i}^{N} m_{i} \phi_{i}(t)$

A One-Dimensional Example - Deconvolution

 Algebraic- discretization:
- observations are

$$
o=m \otimes k
$$ linear combinations of convolved basis functions

- linear system with unknowns m_{i}
- often overdetermined, i.e. more observations 0 than degrees of freedom (basis functions)
$\approx \int_{-\infty}^{\infty} \sum_{i}^{N} m_{i} \phi_{i}(t) k(x-t) d t$
$=\sum_{i}^{N} m_{i} \int_{-\infty}^{\infty} \phi_{i}(t) k(x-t) d t$
$=\sum_{i}^{N} m_{i}\left(\phi_{i} \otimes k\right)$
$\mathbf{o}=\mathbf{M m}$ linear system
Ivo Ihrke, Summer 2007

A One-Dimensional Example - Deconvolution

 Algebraic- discretization:
- observations are linear combinations of convolved basis functions
- linear system with unknowns m_{i}

$$
o=m \otimes k
$$

$$
=\int_{-\infty}^{\infty} m(t) k(x-t) d t
$$

$$
\approx \int_{-\infty}^{\infty} \sum_{i}^{N} m_{i} \phi_{i}(t) k(x-t) d t
$$

- often overdetermined, i.e. more observations o than degrees of freedom (basis functions)
$=\sum_{i}^{N} m_{i} \int_{-\infty}^{\infty} \phi_{i}(t) k(x-t) d t$

$\mathbf{o}=\mathbf{M m}$ linear system
Computational Photography
Ivo Ihrke, Summer 2007

A One-Dimensional Example - Deconvolution Algebraic

■ normal equations - in case you forgot

$$
\begin{aligned}
& \min _{\mathbf{X}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\min _{\mathbf{X}}(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=\min _{\mathbf{X}} f(\mathbf{x}) \\
& \nabla f=2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{T} \mathbf{b}=0 \\
& \rightarrow \begin{array}{l}
\text { solve } \mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b} \text { to obtain solution in a least } \\
\quad \text { squares sense } \\
\rightarrow \\
\text { apply to deconvolution } \\
\quad \text { problem } \\
\text { solution is completely broken! } \\
\text { computational Photography }
\end{array}
\end{aligned}
$$

A One-Dimensional Example - Deconvolution Algebraic

■ Why?

- analyze distribution of eigenvalues
- remember
$\operatorname{det}(\mathbf{A})=\Pi_{i=0}^{N} \lambda_{i}, \quad \operatorname{det}(\mathbf{A})=0 \Rightarrow$ matrix \mathbf{A} is under-determined
- actually we will check the singular values
(square root of eigenvalues of $\mathbf{A}^{T} \mathbf{A}$)

A One-Dimensional Example - Deconvolution Algebraic

- matrix $\mathbf{M}^{T} \mathbf{M}$ has a very wide range of singular values!
- more than half of the singular values are smaller than machine epsilon $\approx 10^{-16}$ for double precision

A One-Dimensional Example - Deconvolution Algebraic

- Why is this bad?
- Singular Value Decomposition: U, V are orthonormal, \mathbf{D} is diagonal

$$
\mathbf{M}=\mathbf{U D V}^{T}
$$

■ Inverse of M :

$$
\mathbf{M}^{-1}=\left(\mathbf{U D V}^{T}\right)^{-1}
$$

$$
=\mathbf{V}^{-T} \mathbf{D}^{-1} \mathbf{U}^{-1}
$$

$$
=\mathbf{V D}^{-1} \mathbf{U}^{T}
$$

- singular values are diagonal elements of D
- inversion:

$$
\mathbf{D}^{-1}=\operatorname{diag}\left(\frac{1}{\mathbf{D}_{i i}}\right)
$$

Computational Photography
Ivo Ihrke, Summer 2007

A One-Dimensional Example - Deconvolution

 Algebraic■ computing model parameters from observations:
$\mathbf{m}=\mathbf{M}^{-1} \mathbf{o}=\mathbf{V D}^{-1} \mathbf{U}^{T} \mathbf{o}$

- again: amplification of noise
- potential division by zero
Log-Plot! $\mathbf{D}^{-1}=\operatorname{diag}\left(\frac{1}{\mathbf{D}_{i i}}\right)$

A One-Dimensional Example - Deconvolution Algebraic
 - inverse problems are often ill-conditioned
 (have a numerical null-space)
 - inversion causes amplification of noise

Condition Number

■ measure of ill-conditionedness: condition number

- measure of stability for numerical inversion
- ratio between largest and smallest singular value
$\kappa(\mathbf{A})=\frac{\sigma_{0}}{\sigma_{N}}, \quad \sigma_{0}>\ldots>\sigma_{N}$ are the singular values of \mathbf{A}
- smaller condition number \rightarrow less problems when inverting linear system
- condition number close to one implies near orthogonal matrix

Truncated Singular Value Decompostion

solution to stability problems: avoid dividing by values close to zero

■ Truncated Singular Value Decomposition (TSVD)

$$
\begin{aligned}
\mathbf{d}^{+} & =\left\{\begin{array}{lll}
\frac{1}{\mathbf{D}_{i i}} & , \mathbf{D}_{i i}>\epsilon & \mathbf{M}^{+}=\mathbf{V D}^{+} \mathbf{U}^{T} \\
0 & , \text { else }
\end{array}\right. \\
\mathbf{D}^{+} & =\operatorname{diag}\left(\mathbf{d}^{+}\right)
\end{aligned}
$$

■ ϵ is called the regularization parameter

Regularization

- countering the effect of ill-conditioned problems is called regularization
- an ill-conditioned problem behaves like a singular (under-constrained) system
- family of solutions exist
\rightarrow impose additional knowledge to pick a favorable solution
- TSVD results in minimum norm solution

Minimum Norm Solution

■ K is the null-space of A
$\mathbf{A} \mathbf{X}_{K}=0$
$\Rightarrow \mathbf{A X}=\mathbf{A}\left(\mathbf{X}_{K^{\perp}}+\mathbf{X}_{K}\right)$
$=\mathbf{A X}_{K^{\perp}}+\mathbf{A} \mathbf{X}_{K}$
$=\mathbf{A X}_{K^{\perp}}+0$
$=\mathbf{A X}_{K^{\perp}}$
$=\mathbf{b}$

- $X_{K^{+}}$is the minimum norm solution

Example - 1D Deconvolution

■ back to our example - apply TSVD

- solution is much smoother than Fourier deconvolution
unregularized solution \quad TSVD regularized solution $\epsilon=10^{-6}$

Computational Photography
Ivo Ihrke, Summer 2007

Explicit Regularization

- Answer: modify original problem to include additional optimization goals (e.g. small norm solutions)
$\min _{\mathbf{x}} \quad \alpha\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+(1-\alpha)\|\mathbf{R} \mathbf{x}\|_{2}^{2}=$
$\min _{\mathbf{x}} \quad \alpha(\mathbf{A x}-\mathbf{b})^{T}(\mathbf{A x}-\mathbf{b})+(1-\alpha) \mathbf{x}^{T} \mathbf{R}^{T} \mathbf{R} \mathbf{x}=$ $\min _{\mathbf{X}} \quad \hat{f}(\mathbf{x})$
- minimize modified quadratic form
$\nabla \hat{f}=2 \alpha \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{A}^{T} \mathbf{b}+2(1-\alpha) \mathbf{R}^{T} \mathbf{R} \mathbf{x}=0$
- modified normal equations:

$$
\left(\alpha \mathbf{A}^{T} \mathbf{A}+(1-\alpha) \mathbf{R}^{T} \mathbf{R}\right) \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

Modified Normal Equations

- include data term, smoothness term and blending parameter

Tikhonov Regularization - Example

■ reconstruction for different choices of λ

- small lambda, many oscillations
- large lambda, smooth solution (in the limit constant)

L-Curve criterion [Hansen98]
need automatic way of determining λ
want solution with small oscillations
also want good data fit
log-log plot of norm of residual (data fitting error)
vs. norm of the solution (measure of oscillations in
solution)

L-Curve criterion [Hansen98]

■ need automatic way of determining λ
■ want solution with small oscillations

- also want good data fit
- log-log plot of norm of residual (data fitting error) vs. norm of the solution (measure of oscillations in solution)

Tikhonov Regularization

- setting $\mathbf{R}=1$ and $\lambda=\frac{1-\alpha}{\alpha}$ we have a quadratic optimization problem with data fitting and minimum norm terms

$$
\begin{array}{cc}
& \text { data fitting } \\
\min _{\mathbf{x}} \quad(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})+\underset{\uparrow}{\lambda} \mathbf{x}^{T} \mathbf{x} \\
& \text { regularization parameter }
\end{array}
$$

- large λ will result in smooth solution, small λ fits the data well
- find good trade-off

L-Curve Criterion

- video shows reconstructions for different λ
- start with $\lambda=10^{-12}$

L-Curve

regularized solution

Computational Photography
Ivo Ihrke, Summer 2007

L-Curve Criterion

- compute L-Curve by solving inverse problem with choices of λ over a large range, e.g. $\left(10^{-12}-10^{4}\right)$

■ point of highest curvature on resulting curve corresponds to optimal regularization parameter

- curvature computation

$$
\kappa=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{\frac{3}{2}}}
$$

- find maximum κ and use corresponding λ to compute optimal solution

Solving Large Linear Systems

- we can now regularize large ill-conditioned linear systems

■ How to solve them ?

- Gaussian elimination $O\left(N^{3}\right)$
- SVD $O\left(N^{3}\right)$

■ direct solution methods are too time-consuming

- Solution: approximate iterative solution

Iterative Solution Methods for Large Linear Systems

■ stationary iterative methods [Barret94]

- Jacobi
- Gauss-Seidel
- Successive Over-Relaxation (SOR)
- use fixed-point iteration

$$
\mathbf{x}_{k+1}=\mathbf{G} \mathbf{x}_{k}+\mathbf{c}
$$

- matrix G and vector c are constant throughout iteration
- generally slow convergence
- don't use for practical applications

Computational Photography
Ivo Ihrke, Summer 2007

Iterative Solution Methods for Large Linear Systems

- non-stationary iterative methods [Barret94]
- conjugate gradients (CG)
- symmetric, positive definite linear systems (SPD)
- conjugate gradients for the normal equations short CGLS or CGNR
- avoid explicit computation of $\mathbf{A}^{T} \mathbf{A}$
- CG - type methods are good because
- fast convergence (depends on condition number)
- regularization built in !
- number of iterations = regularization parameter
- behave similar to truncated SVD

Computational Photography
Ivo Ihrke, Summer 2007

Iterative Solution Methods for Large Linear Systems

- iterative solution methods require only matrixvector multiplications
- most efficient if matrix \mathbf{A} is sparse
- sparse matrix means lots of zero entries

■ back to our hypothetical 65536x65536 matrix
■ memory consumption for full matrix:
$2^{16} \cdot 2^{16} \cdot 8$ bytes $=32 \mathrm{~GB}$

- sparse matrices store only non-zero matrix entries

■ Question: How do we get sparse matrices ?

Iterative Solution Methods for Large Linear Systems

■ answer: use a discretization with basis functions that have local support, i.e. which are themselves zero over a wide range

- for deconvolution the filter kernel should also be locally supported

discretized model: $\quad o=\sum_{i}^{N} m_{i}\left(\phi_{i} \otimes k\right)$
Computational Photography
Ivo Ihrke, Summer 2007

Iterative Solution Methods for Large Linear Systems

- answer: use a discretization with basis functions that have local support, i.e. which are themselves zero over a wide range
- for deconvolution the filter kernel should also be locally supported

 discretized model: $o=\sum_{i}^{N} m_{2}\left(\phi_{i} \otimes k\right) \begin{aligned} & \text { will be zero } \\ & \begin{array}{l}\text { over a wide } \\ \text { range of values }\end{array}\end{aligned}$ Computational Photography

Iterative Solution Methods for Large Linear Systems
sparse matrix structure for 1D deconvolution problem

Inverse Problems - Wrap Up

- inverse problems are often ill-posed
- if solution is unstable - check condition number
- if problem is small $<4000^{2}$ use TSVD and Matlab
- otherwise use CG if problem is symmetric (positive definite), otherwise CGLS
- if convergence is slow try Tikhonov regularization it's simple
- improves condition number and thus convergence
- if problem gets large $>15000^{2}$ make sure you have a sparse linear system!
- if system is sparse, avoid computing $\mathbf{A}^{T} \mathbf{A}$ explicitly - it is usually dense
Computational Photography
Ivo Ihrke, Summer 2007

Computed Tomography

- tomography is the problem of computing a function from its projections
- a projection is a set of line integrals over function m along some ray c
$o=\int_{c} m(c(s)) d s$
- invert this equation (noise is present)

$o=\int_{c} m(c(s)) d s+n$
- if infinitely many projections are available this is possible (Radon transform) [Radon1917]
Computational Photography
Ivo Ihrke, Summer 2007

Computed Tomography - Frequency Space Approach

- Fourier Slice Theorem
- the Fourier transform of an orthogonal projection is a slice of the Fourier transform of the function!

Frequency Space Approach - Example
without noise!
original (Shepp-Logan head phantom)
reconstruction from 18 directions

reconstruction from 36 directions

reconstruction from 90 directions

Filtered Back-Projection

■ most commonly used CT algorithm

- principle:
- we have seen the line in frequency space before!
- light field lecture

- inverse Fourier transform of a line in frequency domain yields a projection smeared out in space in the spatial domain
Computational Photography
Ivo Ihrke, Summer 2007

Filtered Back-Projection

- Fourier transform is linear \rightarrow we can sum the inverse transforms of the lines in frequency space instead of performing the inverse transform of the sum of the lines

Filtered Back-Projection

- Why filtering ?
- discrete nature of measurements gives unequal weights to samples
- compensate
would like to have wedge shape for one discrete measurement

(a)

Computational Photography
have a bar shape (discrete measurement)

(b)
compensate to have equal volume under filter

high pass filter (e)

Ivo Ihrke, Summer 2007

Filtered Back-Projection

- high pass filter 1D projections in spatial domain
- back-project
- blurring is removed
- FBP can be implemented on the GPU
- projective texture mapping

Frequency Space based Methods -

 Disadvantages- need orthogonal projections
- need precise acquisition setup - optical axes of all projections must intersect in one point
- sensitive to noise because of high pass filtering

Algebraic Reconstruction Techniques

\square object described by Φ, a density field of e.g. emissive soot particles
■ pixel intensities are line integrals along line of sight

$$
I_{p}=\int_{c} \phi d s
$$

■ Task: Given intensities, compute Φ

[^0]Ivo Ihrke, Summer 2007

ART

- Algebraic Reconstruction Technique (ART)

Discretize unknown Φ using a linear combination of basis functions Φ_{i}

$$
I_{p}=\int_{c}\left(\sum_{i} a_{i} \phi_{i}\right) d s
$$

\rightarrow linear system $p=\mathrm{Sa}$

$$
I_{p}=\sum_{i} a_{i}\left(\int_{c_{p}} \phi_{i} d s\right)
$$

■ we have seen this before!

ART - Matrix Structure

$I_{p}=\sum_{i} a_{i}\left(\int_{\mathcal{C}_{p}} \phi_{i} d s\right) \quad \begin{gathered}\text { Basis functions } \\ i\end{gathered}$

invert LS in a least squares sense:
-

$$
a=\left(S^{\top} S\right)^{-1} S^{\top} p
$$

Large number of projections is needed

- In case of dynamic phenomena \rightarrow many cameras
- expensive
- inconvenient placement

■ straight forward application of ART with few cameras not satisfactory

Flame Reconstructions

3D Reconstruction of Planetary Nebulae
[Magnor04]
only one view available
■ exploit axial symmetry
■ essentially a 2D problem

3D Scanning of Glass Objects [Trifonov06]

■ uses visible light

- tomography needs straight ray pathes
- compensate for refraction
- put glass object into water
- add salt (increases refractive index)
- once refractive index is the same as that of the glass, ray pathes are straight
- can apply tomographic reconstruction

3D Scanning of Glass Objects [Trifonov06]

- tomographic reconstruction results in volume densities
- use marching cubes to extract object surfaces

Computational Photography

[^0]: Computational Photography

