Lecture

Information Retrieval for Music and Motion

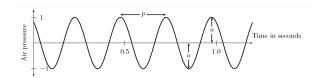
Meinard Müller

Summer Term 2008

Signals and Fourier Transform

Signals

Sinusoidal



Signals

Sinusoidal $f(t) = A \sin(2\pi(\omega t - \varphi))$ for $t \in [0, 2]$

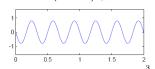
$$A = 1$$
, $\omega = 1$, $\varphi = 0$

$$A = 1.4, \, \omega = 1, \, \varphi = 0.25$$



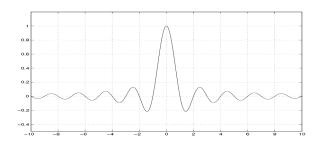
$$A = 1$$
, $\omega = 3$, $\varphi = 0$

$$A$$
 = 0.8, ω = 3, φ = 0.5



Signals

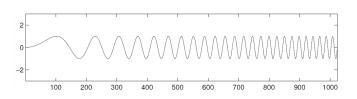
Sinc-function
$$\operatorname{sinc}(t) := \left\{ \begin{array}{ll} \frac{\sin \pi t}{\pi t} & \text{if } t \neq 0 \\ 1 & \text{if } t = 0 \end{array} \right.$$



4

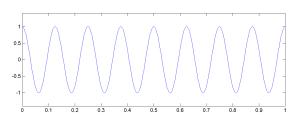
Signals

Chirp signal



Sampling

Original CT signal

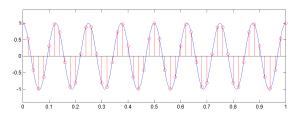


6

Sampling

Original CT signal

DT signal sampled with 50 Hz

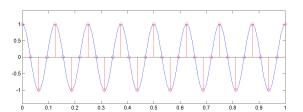


7

Sampling

Original CT signal

DT signal sampled with 32 Hz

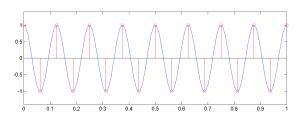


2

Sampling

Original CT signal

DT signal sampled with 16 Hz

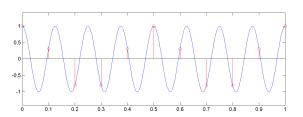


9

Sampling

Original CT signal

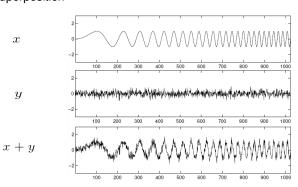
DT signal sampled with 10 Hz



10

Signals

Superposition

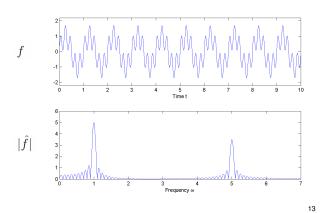


Fourier Transform

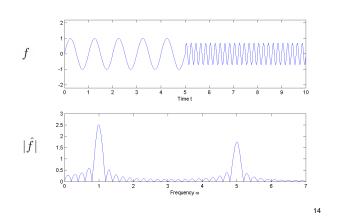
Signal space	$L^2(\mathbb{R})$	$L^{2}([0,1])$	$\ell^2(\mathbb{Z})$
orginal opace	<i>D</i> (11)	2 ([0,1])	· (B)
Inner product	$\langle f g\rangle = \int_{t\in\mathbb{R}} f(t)\overline{g(t)}dt$	$\langle f g\rangle = \int_{t\in[0,1]} f(t)\overline{g(t)}dt$	$\langle f g\rangle = \sum_{n\in\mathbb{Z}} x(n)\overline{y(n)}$
Norm	$ f _2 = \langle f f\rangle^{\frac{1}{2}}$	$ f _2 = \langle f f\rangle^{\frac{1}{2}}$	$ x _2 = \langle x x\rangle^{\frac{1}{2}}$
Definition	$L^2(\mathbb{R}) :=$	$L^{2}([0, 1]) :=$	$L^2(\mathbb{Z}) :=$
	$\{f: \mathbb{R} \to \mathbb{C} \mid f _2 < \infty\}$	$\{f:[0,1]\to\mathbb{C}\mid \ f\ _2<\infty\}$	$\{f: \mathbb{Z} \to \mathbb{C} \mid x _2 < \infty\}$
Elementary frequency	$\mathbb{R} \to \mathbb{C}$	$[0,1] \rightarrow \mathbb{C}$	$\mathbb{Z} \to \mathbb{C}$
function	$t \mapsto e^{2\pi i \omega t}$	$t \mapsto e^{2\pi i k t}$	$n \mapsto e^{2\pi i \omega n}$
Frequency parameter	$\omega \in \mathbb{R}$	$k\in\mathbb{Z}$	$\omega \in [0,1]$
Fourier representation	$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} e^{2\pi i \omega t} d\omega$	$f(t) = \sum\limits_{k \in \mathbb{Z}} c_k e^{2\pi i k t}$	$x(n) = \int_{\omega \in [0,1]} c_{\omega} e^{2\pi i \omega n} d\omega$
	$\hat{f}: \mathbb{R} o \mathbb{C}$	$\hat{f}: \mathbb{Z} ightarrow \mathbb{C}$	$\hat{x}:[0,1] o \mathbb{C}$
Fourier transform	$\hat{f}(\omega) = \int_{t \in \mathbb{R}} f(t)e^{-2\pi i \omega t} dt$	$\hat{f}(k) = \int\limits_{t \in [0,1]} f(t) e^{-2\pi i k t} dt$	$\hat{x}(\omega) = \sum_{n \in \mathbb{Z}} x(n)e^{-2\pi i \omega n}$
	$c_{\omega} = \hat{f}(\omega)$	$c_k = \hat{f}(k)$	$c_{\omega} = \hat{x}(\omega)$

12

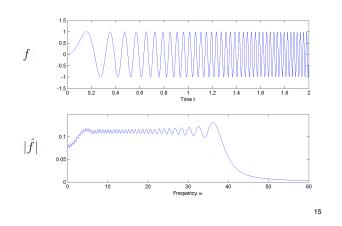
Fourier Transform



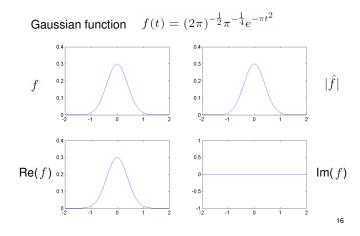
Fourier Transform



Fourier Transform

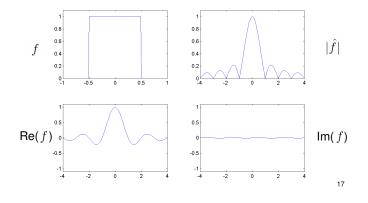


Fourier Transform



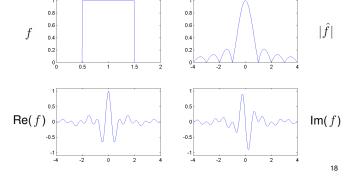
Fourier Transform

Box function



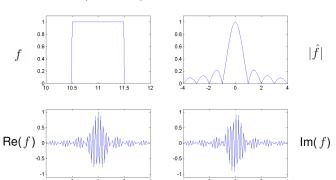
Fourier Transform

Box function (translated)



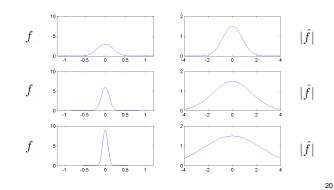
Fourier Transform

Box function (translated)



Fourier Transform

Dirac sequence



Discrete Fourier Transform (DFT)

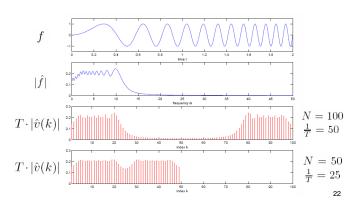
$$\Omega_N := e^{-2\pi i/N}$$

$$DFT_{N} := \frac{1}{\sqrt{N}} \left(\Omega_{N}^{kj}\right)_{0 \le k, j < N}$$

$$= \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & \Omega_{N} & \cdots & \Omega_{N}^{(N-2)} & \Omega_{N}^{(N-1)} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \Omega_{N}^{(N-2)} & \cdots & \Omega_{N}^{(N-2)(N-2)} & \Omega_{N}^{(N-2)(N-1)} \\ 1 & \Omega_{N}^{(N-1)} & \cdots & \Omega_{N}^{(N-1)(N-2)} & \Omega_{N}^{(N-1)(N-1)} \end{pmatrix}$$

Discrete Fourier Transform (DFT)

$$v(k) = f(Tk), \quad k \in [0:N-1], \ \hat{v} = DFT_N(v)$$



Fast Fourier Transform (FFT)

$$N = 2M$$

$$\mathrm{DFT}_{N} \cdot \left(\begin{array}{c} v_{0} \\ v_{1} \\ \vdots \\ v_{N-1} \end{array} \right) = \frac{1}{\sqrt{2}} \left(\begin{array}{c|c} \mathrm{id}_{M} & \Delta_{M} \\ \mathrm{id}_{M} & -\Delta_{M} \end{array} \right) \left(\begin{array}{c|c} \mathrm{DFT}_{M} & 0 \\ 0 & \mathrm{DFT}_{M} \end{array} \right) \left(\begin{array}{c|c} v_{0} \\ v_{2} \\ \vdots \\ v_{N-2} \\ v_{1} \\ v_{3} \\ \vdots \\ v_{N-1} \end{array} \right)$$

$$\mathrm{id}_M = \mathrm{diag}\left(1, 1, \dots, 1\right)$$

$$\Delta_M = \operatorname{diag}(1, \Omega_N, \dots, \Omega_N^{M-1})$$

21