

3

5

Short Time Fourier Transform

Idea:

- To recover time information, only a **small section** of the signal is used for the spectral analysis
- This section is determined by a window function $g: \mathbb{R} \to \mathbb{R}$ ($g \in L^2(\mathbb{R})$, ||g|| = 1)

Definition:

STFT w.r.t. g of a signal $f : \mathbb{R} \to \mathbb{R}$

$$\tilde{f}(\omega,t) := \int_{\mathbb{R}} f(u)\bar{g}(u-t)e^{-2\pi i\omega u}du = \langle f|g_{\omega,t}\rangle$$

with $g_{\omega,t}(u) := e^{2\pi i \omega u} g(u-t), \quad u \in \mathbb{R}$

Short Time Fourier Transform

Interpretation:

- $g_{\omega,t}$ represents a "musical note" of frequency ω which oscillates within the translated window given by $u \to g(u-t)$
- Inner product (*f*|g_{ω,t}) measures the correlation between the signal *f* and the musical note g_{ω,t}

Short Time Fourier Transform

Short Time Fourier Transform

Triangle window

Short Time Fourier Transform

Hann window

Short Time Fourier Transform

Chirp signal and STFT with hann window of length 0.05

Short Time Fourier Transform

Chirp signal and STFT with **box window** of length 0.05

Time-Frequency Localization

 Size of window constitutes a compromise between time resolution and frequency resolution:

Large window :	poor time resolution
	good frequency resolution
Small window :	good time resolution
	poor frequency resolution

 Heisenberg Uncertainty Principle: there is no window function that localizes in time and frequency with arbitrary position.

Signal and STFT with hann window of length 0.02

Short Time Fourier Transform

Signal and STFT with hann window of length 0.1

Heisenberg Uncertainty Principle

Window function $g \in L^2(\mathbb{R})$ with ||g|| = 1

Center Width

$$t_{0} = t_{0}(g) := \int_{-\infty}^{\infty} t|g(t)|^{2} dt \qquad T(g) := \left(\int_{-\infty}^{\infty} (t - t_{0})^{2}|g(t)|^{2} dt\right)^{\frac{1}{2}}$$

$$\omega_{0} = \omega_{0}(g) := \int_{-\infty}^{\infty} \omega|\hat{g}(\omega)|^{2} d\omega \qquad \Omega(g) := \left(\int_{-\infty}^{\infty} (\omega - \omega_{0})^{2}|\hat{g}(\omega)|^{2} d\omega\right)^{\frac{1}{2}}$$

$$T(g) \cdot \Omega(g) \ge \frac{1}{4\pi}$$

MATLAB

- MATLAB function SPECTROGRAM
- N = window length (in samples)
- M = overlap (usually N/2)
- Compute DFT_N for every windowed section
- Keep lower N/2 Fourier coefficients
- \rightarrow Sequence of spectral vectors (for each window a vector of dimension N/2)

15

17

13

Information Cells

$$g_{\omega,t}(u) := e^{2\pi i\omega u} g(u-t)$$

"musical note"

Example

Let x be a DT-Signal x(n) = f(Tn)Sampling rate: 1/T = 22050 HzWindow length: N = 4096Overlap: N/2 = 2048Hopsize: window length - overlap Let $v_0 := (x(0), x(1), \dots, x(4095))$ $v_1 := (x(2048), \dots, x(6143))$ $v_2 := (x(4096), \dots, x(8191))$ \vdots v_m corresponds to window $[m \cdot 2048 : m \cdot 2048 + 4095]$

Example

Time resolution:

 $\frac{\text{hopsize}}{\text{sampling rate}} = \frac{4096 - 2048}{22050} = 0.093 = 93 \ ms$

Frequency resolution:

$$v = v_0 , \ \hat{v} := \text{DFT}_N(v)$$
$$\hat{v}(k) \approx \frac{1}{T} \cdot \hat{f}\left(\frac{k}{N} \cdot \frac{1}{T}\right)$$
$$\omega = \frac{k}{N} \cdot \frac{1}{T} = k \cdot \frac{22050}{4096} = k \cdot 5.38 \text{ Hz}$$

Model assumption: Equal – tempered scale

- MIDI pitches: $p \in [1:128]$
- Piano notes: p = 21 (A0) to p = 108 (C8)
- Concert pitch: p = 69 (A4) = 440 Hz
- Center frequency: $f_{\text{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440$
- → Logarithmic frequency distribution Octave: doubling of frequency

18

14

Pitch Features

Idea: Binning of Fourier coefficients

Divide up the fequency axis into logarithmically spaced "pitch regions" and combine spectral coefficients of each region to a single pitch coefficient.

Pitch Features

20

Pitch Features

Note	MIDI pitch	Center [Hz] frequency	Left [Hz] boundary	Right [Hz] boundary	Width [Hz]
A3	57	220.0	213.7	226.4	12.7
A#3	58	233.1	226.4	239.9	13.5
B3	59	246.9	239.9	254.2	14.3
C4	60	261.6	254.2	269.3	15.1
C#4	61	277.2	269.3	285.3	16.0
D4	62	293.7	285.3	302.3	17.0
D#4	63	311.1	302.3	320.2	18.0
E4	64	329.6	320.2	339.3	19.0
F4	65	349.2	339.3	359.5	20.2
F#4	66	370.0	359.5	380.8	21.4
G4	67	392.0	380.8	403.5	22.6
G#4	68	415.3	403.5	427.5	24.0
A4	69	440.0	427.5	452.9	25.4

21

19

Pitch Features

Example: A4, p = 69

- Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$
- $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$ Lower bound:
- $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$ Upper bound:
- STFT with N = 4096, 1/T = 22050

f(k = 79) = 425.3 Hzf(k = 80) = 430.7 Hzf(k = 81) = 436.0 Hzf(k = 82) = 441.4 Hzf(k = 83) = 446.8 Hzf(k = 84) = 452.2 Hzf(k = 85) = 457.6 Hz

Pitch Features

Details:

Let

 Let
 v̂ be a spectral vector obtained from a
 spectrogram w.r.t. a sampling rate 1/T and a window length *N*. The spectral coefficient $\hat{v}(k)$ corresponds to the frequency $f_{\text{coeff}}(k) := \frac{k}{N} \cdot \frac{1}{T}$

 $S(p) := \{k : f_{\text{MIDI}}(p - 0.5) \le f_{\text{coeff}}(k) < f_{\text{MIDI}}(p + 0.5)\}$ be the set of coefficients assigned to a pitch $p \in [1: 128]$ Then the pitch coefficient P(p) is defined as

$$P(p) := \sum_{k \in S(p)} |\hat{v}(k)|^2$$
²²

Pitch Features

Example: A4, p = 69• Center frequency: $f(p = 69) = 2^{\frac{0}{12}} \cdot 440 = 440 \ Hz$

- $f(p = 68.5) = 2^{\frac{-0.5}{12}} \cdot 440 = 427.5 \ Hz$ Lower bound:
- $f(p = 69.5) = 2^{\frac{0.5}{12}} \cdot 440 = 452.9 \ Hz$
- Upper bound:
- STFT with N = 4096, 1/T = 22050

$$\begin{array}{c} f(k=79) &= & 425.3 \ Hz \\ \hline f(k=80) &= & 430.7 \ Hz \\ f(k=81) &= & 436.0 \ Hz \\ f(k=82) &= & 441.4 \ Hz \\ f(k=83) &= & 446.8 \ Hz \\ \hline f(k=83) &= & 446.8 \ Hz \\ \hline f(k=85) &= & 457.6 \ Hz \\ \hline \vdots \\ \end{array} \right\} \begin{array}{c} S(p=69) \\ P(p=69) &= \sum_{k=80}^{84} |\hat{v}(k)|^2 \\ \vdots \\ \end{array}$$

Pitch Features

Note:

- $P \in \mathbb{R}^{128}$
- For some pitches, *S*(*p*) may be empty. This particularly holds for low notes corresponding to narrow frequency bands.
- → Linear frequency sampling is problematic!

Solution:

Multi-resolution spectrograms or multirate filterbanks

Audio Representation

Example: Op. 100, No. 2 by Friedrich Burgmüller

Short Time Fourier Transform

Short Time Fourier Transform

Pitch Features

25

Pitch Features

Chroma Features

- Human perception of pitch is periodic in the sense that two pitches are perceived as similar in "color" if they differ by an octave.
- Seperate pitch into two components: tone height (octave number) and chroma.
- Chroma : 12 traditional pitch classes of the equaltempered scale. For example
 - $\textbf{Chroma C} \, \, \widehat{=} \, \left\{ \ldots \, , \, \, \operatorname{CO} \, , \, \, \operatorname{C1} \, , \, \, \operatorname{C2} \, , \, \, \operatorname{C3} \, , \, \, \ldots \right\}$
- Computation: pitch features → chroma features Add up all pitches belonging to the same class
- Result: 12-dimensional chroma vector.

Chroma Features

- Sequence of chroma vectors correlates to the harmonic progression
- Normalization $v \to \frac{v}{\|v\|}$ makes features invariant to changes in dynamics
- Further quantization and smoothing: CENS features
- Taking logarithm before adding up pitch coefficients accounts for logarithmic sensation of intensity

33

31

Chroma Features

Chroma Features

Chromatic circle

Shepard's helix of pitch perception

http://en.wikipedia.org/wiki/Pitch_class_space

Bartsch/Wakefield, IEEE Trans. Multimedia, 2005

32

34

Chroma Features

Chroma Features

	WAV	Chroma (10 Hz)	CENS (1 Hz)
???			
???			
???			

Feature resolution: 1 Hz

Chroma Features

	WAV	Chroma (10 Hz)	CENS (1 Hz)
Beethoven's Fifth (Bernstein)			
???			
???			

Chroma Features WAV Chroma CENS (1 Hz) (10 Hz) Beethoven's Fifth (Bernstein) Beethoven's Fifth (Piano/Sherbakov) ??? 43

Chroma Features

	WAV	Chroma (10 Hz)	CENS (1 Hz)	
Beethoven's Fifth (Bernstein)				
Beethoven's Fifth (Piano/Sherbakov)				
Brahms Hungarian Dance No. 5				
				44

Chroma Features

Example: Zager & Evans "In The Year 2525"

How to deal with transpositions?

Chroma Features

Example: Zager & Evans "In The Year 2525"

46

Chroma Features

Example: Zager & Evans "In The Year 2525"

 \mathbf{P}