

з

5

Audio Structure Analysis

- Audio features
- Cost measure and cost matrix
 self-similarity matrix
- Path extraction (pairwise similarity of segments)
- Global structure (clustering, grouping)

Audio Structure Analysis

Müller/Kurth (EURASIP 2007) Rhodes/Casey (ISMIR 2007) Peeters (ISMIR 2007)

- Audio \rightsquigarrow $V:=(v^1,v^2,\ldots,v^N)$
- vⁿ = 12-dimensional normalized chroma vector
- Local cost measure $c: \mathbb{R}^{12} \times \mathbb{R}^{12} \to \mathbb{R}$

$$c(v^n, w^m) := 1 - \langle v^n, w^m \rangle$$

- $N \times N$ cost matrix $C(n,m) := c(v^n,w^m)$
 - ~--- quadratic self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis

Self-similarity matrix

Audio Structure Analysis

Audio Structure Analysis

Self-similarity matrix

7

11

100

150

60

40

20

50

B.

 A_2

 A_1

200

Audio Structure Analysis

8

Audio Structure Analysis

Similarity cluster

13

17

Audio Structure Analysis

Matrix Enhancement

Challenge: Presence of musical variations

- Fragmented paths and gaps
- Paths of poor quality
- Regions of constant (low) cost
- Curved paths

Idea: Enhancement of path structure

Matrix Enhancement

Shostakovich Waltz 2, Jazz Suite No. 2 (Chailly)

Matrix Enhancement

Idea: Usage of contextual information (Foote 1999)

$$C_L(n,m) := \frac{1}{L} \sum_{\ell=0}^{L-1} c(v_{n+\ell}, v_{m+\ell})$$

Comparison of entire sequences

- L = length of sequences
- C_L = enhanced cost matrix

→ smoothing effect

14

Transposition Invariance

Goto (ICASSP 2003)

- Cyclically shift chroma vectors in one sequence
- Compare shifted sequence with original sequence Perform for each of the twelve shifts a separate
- structure analysis
- Combine the results

Transposition Invariance

Goto (ICASSP 2003)

- · Cyclically shift chroma vectors in one sequence
- Compare shifted sequence with original sequence Perform for each of the twelve shifts a separate
- structure analysis Combine the results

Müller/Clausen (ISMIR 2007)

- Integrate all cyclic information in one transposition-invariant self-similarity matrix
- Perform one joint structure analysis

50

Transposition Invariance

Example: Zager & Evans "In The Year 2525"

Transposition Invariance

51

53

49

Transposition Invariance

Example: Zager & Evans "In The Year 2525"

Transposition Invariance

 300
 0.9

 40
 0.8

 50
 0.8

 50
 0.6

 260
 0.6

 250
 0.6

 260
 0.6

 260
 0.4

 150
 0.3

 160
 0.3

 100
 0.7

 80
 0.1

71

Transposition-invariant self-similarity matrix

- Timbre, dynamics, tempo
- Musical key ~~> cyclic chroma shifts
- Major/minor
- Differences at note level / improvisations

Conclusions: Audio Structure Analysis

Challenge: Hierarchical structure of music

Rhodes/Casey (ISMIR 2007)

System: SmartMusicKiosk (Goto)

75

System: SyncPlayer/AudioStructure

