

Sampling

Original CT signal

DT signal sampled with 50 Hz

Sampling

Original CT signal DT signal sampled with 16 Hz

Signals

Superposition

Sampling

Original CT signal

DT signal sampled with 32 Hz

Sampling

7

9

Original CT signal DT signal sampled with 10 Hz

Fourier Transform

Signal space	$L^{2}(\mathbb{R})$	$L^{2}([0,1])$	$\ell^2(\mathbb{Z})$
Inner product	$\langle f g \rangle = \int\limits_{t \in \mathbb{R}} f(t) \overline{g(t)} dt$	$\langle f g \rangle = \int_{t \in [0,1]} f(t) \overline{g(t)} dt$	$\langle f g \rangle = \sum_{n \in \mathbb{Z}} x(n) \overline{y(n)}$
Norm	$ f _2 = \langle f f \rangle^{\frac{1}{2}}$	$\ f\ _2 = \langle f f\rangle^{\frac{1}{2}}$	$ x _2 = \langle x x \rangle^{\frac{1}{2}}$
Definition	$L^2(\mathbb{R}) :=$ $\{f : \mathbb{R} \to \mathbb{C} \mid f _2 < \infty\}$	$L^{2}([0, 1]) :=$ $\{f : [0, 1] \to \mathbb{C} \mid f _{2} < \infty\}$	$L^2(\mathbb{Z}) :=$ $\{f : \mathbb{Z} \to \mathbb{C} \mid x _2 < \infty\}$
Elementary frequency function	$\mathbb{R} \rightarrow \mathbb{C}$ $t \mapsto e^{2\pi i \omega t}$	$egin{array}{cccc} [0,1] ightarrow \mathbb{C} \ t ightarrow c^{2\pi i k t} \end{array}$	$\mathbb{Z} \to \mathbb{C}$ $n \mapsto e^{2\pi i \omega n}$
Frequency parameter	$\omega \in \mathbb{R}$	$k\in\mathbb{Z}$	$\omega \in [0,1]$
Fourier representation	$f(t) = \int_{\omega \in \mathbb{R}} c_{\omega} e^{2\pi i \omega t} d\omega$	$f(t) = \sum\limits_{k \in \mathbb{Z}} c_k e^{2\pi i k t}$	$x(n) = \int_{\omega \in [0,1]} c_{\omega} e^{2\pi i \omega n} d\omega$
	$\hat{f}:\mathbb{R} ightarrow\mathbb{C}$	$\hat{f}:\mathbb{Z} ightarrow\mathbb{C}$	$\hat{x}:[0,1] ightarrow\mathbb{C}$
Fourier transform	$\widehat{f}(\omega) = \int\limits_{t \in \mathbb{R}} f(t) e^{-2\pi i \omega t} dt$	$\widehat{f}(k) = \int\limits_{t \in [0,1]} f(t) e^{-2\pi i k t} dt$	$\hat{x}(\omega) = \sum\limits_{n \in \mathbb{Z}} x(n) e^{-2\pi i \omega n}$
	$c_{\omega} = \hat{f}(\omega)$	$c_k = \hat{f}(k)$	$c_{\omega} = \hat{x}(\omega)$

8

10

N = 2M

$$\mathrm{DFT}_{N} \cdot \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{N-1} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathrm{id}_{M} \mid \Delta_{M} \\ \mathrm{id}_{M} \mid -\Delta_{M} \end{pmatrix} \begin{pmatrix} \mathrm{DFT}_{M} \mid 0 \\ 0 \mid \mathrm{DFT}_{M} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{2} \\ \vdots \\ v_{N-2} \\ v_{1} \\ v_{3} \\ \vdots \\ v_{N-1} \end{pmatrix}$$
$$\mathrm{id}_{M} = \mathrm{diag} (1, 1, \dots, 1)$$
$$\Delta_{M} = \mathrm{diag} (1, \Omega_{N}, \dots, \Omega_{N}^{M-1})$$