Geometric Modeling

Summer Semester 2010

Mathematical Tools (1)

Recap: Linear Algebra

Today...

Topics:

Mathematical Background

- Linear algebra
- Analysis & differential geometry
- Numerical techniques

Mathematical Tools

Linear Algebra

Overview

Linear algebra

- Vector spaces
- Linear maps
- Quadrics

Vectors

Vector spaces

- Vectors, Coordinates & Points
- Formal definition of a vector space
- Vector algebra
- Generalizations:
 - Infinite dimensional vector spaces
 - Function spaces
 - Approximation with finite dimensional spaces
- More Tools:
 - Dot product and norms
 - The cross product

Vectors

vectors are arrows in space

classically: 2 or 3 dim. Euclidian space

Vector Operations

"Adding" Vectors:

Concatenation

Vector Operations

Scalar Multiplication:

Scaling vectors (incl. mirroring)

You can combine it...

Linear Combinations:

This is basically all you can do.

$$\mathbf{r} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i$$

Many classes of objects share the same *structure*:

- Geometric Objects
 - 1,2,3,4... dimensional Euclidian vectors
- But also a lot of other mathematical objects
 - Vectors with complex numbers, or finite fields
 - Certain sets of functions
 - Polynomials
 - ...
- Approach the problem from a more abstract level
 - More general: Saves time, reduces number of proofs
 - Can still resort to geometric vectors to get an intuition about what's going on

Definition: Vector Space V over a Field F

- Consists of a set of vectors V
- F is a field (usually: Real numbers, $F = \mathbb{R}$)
- Provides two operations:
 - Adding vectors u = v + w (u, v, w ∈ V)
 - Scaling vectors $\mathbf{w} = \lambda \mathbf{v} \ (\mathbf{u} \in \mathbf{V}, \lambda \in \mathbf{F})$
- The two operations are *closed*, i.e.: operations on any elements of the vector space will yields elements of the vector space itself.
- ...and finally: A number of properties that have to hold:

Definition: Vector Space V over a Field F (cont.)

(a1)
$$\forall u, v, w \in V : (u + v) + w = u + (v + w)$$

(a2)
$$\forall \mathbf{u}, \mathbf{v} \in V : \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(a3)
$$\exists \mathbf{0}_{v} \in V : \forall \mathbf{v} \in V : \mathbf{v} + \mathbf{0}_{v} = \mathbf{v}$$

(a4)
$$\forall \mathbf{v} \in V : \exists \mathbf{w} \in V : \mathbf{v} + \mathbf{w} = \mathbf{0}_{v}$$

(s1)
$$\forall \mathbf{v} \in V, \lambda, \mu \in F : \lambda(\mu \mathbf{v}) = (\lambda \mu)\mathbf{v}$$

(s2) for
$$1_F \in F : \forall \mathbf{v} \in V : 1_F \mathbf{v} = \mathbf{v}$$

(s3)
$$\forall \lambda \in F : \forall \mathbf{v}, \mathbf{w} \in V : \lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$$

(s4)
$$\forall \lambda, \mu \in F, \mathbf{v} \in V : (\lambda + \mu)\mathbf{v} = \lambda \mathbf{v} + \mu \mathbf{v}$$

Vector spaces

- Out of these formal assumptions, a long list of derivative properties (theorems) can be deduced.
- Will hold for any vector space.
- In particular, we will see that the assumptions are sufficient to obtain the columns with coordinates, we started with (in the finite dimensional case).

Some properties you can easily prove:

- The zero vector $\mathbf{0}_{V}$ is unique. For 2D vectors: $\mathbf{0}_{V} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Multiplication with the scalar O_F yields the zero vector.
- The additive inverse -v is unique given v.
- Multiplication by -1 yields the inverse vector.
- And so on...

Span and Basis

Examples of finite-dimensional vector spaces:

- Of course: \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 ...
- Standard basis of \mathbb{R}^3 : $\left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$
- Coordinates: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \stackrel{\triangle}{=} x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} =: x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

Examples of finite-dimensional vector spaces:

- Polynomials of fixed degree
 - For example, all polynomials of 2nd order:

```
general form: ax^2 + bx + c
```

addition:
$$(a_1x^2 + b_1x + c_1) + (a_2x^2 + b_2x + c_2)$$

= $(a_1 + a_2)x^2 + (b_1 + b_2)x + (c_1 + c_2)$

scalar multiplication: $\lambda(ax^2 + bx + c) = (\lambda a)x^2 + (\lambda b)x + (\lambda c)$

- Might be confusing: Evaluation of polynomials at x is non-linear, does not relate to the vector space structure
- Coordinates: [a, b, c]^T
- Basis for these coordinates: {x², x, 1}

Infinite-dimensional vector spaces:

- Polynomials (of any degree)
- Need to represent coefficients of arbitrary degree
- Coordinate vectors can potentially become arbitrarily long
- General form: $poly(x) = \sum_{i=0}^{\infty} a_i x^i$ (only a finite subset of the a_i nonzero)
- Basis: $\{x^i \mid i = 0,1,2,...\}$
- Coordinate vectors: $(a_0, a_1, a_2, a_3, ...)$

Spaces of Sequences

First generalization:

- Make vectors infinitely long
- Spaces of sequences

• Dimension = ∞ , countable

More infinite-dimensional vector spaces:

- Function spaces
 - Space of all functions $f: \mathbb{R} \to \mathbb{R}$
 - Space of all smooth C^k functions $f: \mathbb{R} \to \mathbb{R}$
 - Space of all functions $f: [0..1] \rightarrow \mathbb{R}$
 - Not a vector space: $f: [0..1] \rightarrow [0..1]$

Function Spaces

Vector operations

For $f: \Omega \to \mathbb{R}$, define:

- $(f+g)(x) := f(x) + g(x) \ (\forall x \in \Omega)$
- $(\lambda f)(x) := \lambda (f(x)) \ (\forall x \in \Omega)$

The zero vector is:

• $0_V = (f: f(x) \equiv 0)$

Function Spaces

Intuition:

- Start with a finite dimensional vector
- Increase sampling density towards infinity
- Real numbers: uncountable amount of dimensions

Approximation of Function Spaces

Finite dimensional subspaces:

- Function spaces with infinite dimension are hard to represented on a computer
- For numerical purpose, finite-dimensional subspaces are used to approximate the larger space
- Two basic approaches:

Approximation of Function Spaces

Here is the "recipe":

- We are given an infinite-dimensional function space V.
- We are looking for $f \in V$ with a certain property.
- From a function space V we choose linearly independent functions $f_1,...,f_d \in V$ to form the d-dimensional subspace span $\{f_1,...,f_d\}$.
- Instead of looking for the $f \in V$, we look only among the $\widetilde{f} := \sum_{i=1}^{d} \lambda_i f_i$ for a function that best-matches the desired property (might be just an approximation, though).
- The good thing: \tilde{f} is described by $(\lambda_1,...,\lambda_d)$. Good for the computer...

Approximation of Function Spaces

Two Approaches:

- Construct a basis, that already provides a subspace containing the functions you want
 - Typically, the coefficients will have an intuitive meaning then
 - Bezier Splines, B-Splines, NURBS are all about that
- Choose a basis that can approximate the functions you might want, then pick the closest
 - Standard approach in numerical solutions to partial differential equations and integral equations
 - Basic idea: Define a measure of correctness C(f), then try to maximize $C(\tilde{f})$

Finite-Dimensional Function Spaces

Typical Basis Sets:

- Consider the space of functions $f: [a, b] \to \mathbb{R}$.
- Some *d*-dimensional subspaces:
 - span { ____, ___, ... , ____, (piecewise constant basis)
 - span $\{1, x, x^2, ..., x^{d-1}\}$ (Monomial basis of degree d-1)
 - span { 1, sin x, cos x, sin 2x, cos 2x, ..., sin (d-1)x/2, cos (d-1)x/2 } (Fourier basis of order (d-1)/2, usually a = 0, $b = 2\pi$)
- It depends all on the application, of course...

Examples

2 1,5 1 0,5 -0,5 -1 -1,5 0 π 2π

Monomial basis

Fourier basis

More Tools for Vectors

More operations:

- Dot product / scalar product / inner product (measures distances, angles)
- Cross product (only \mathbb{R}^3)

The Standard Scalar Product

The *standard dot product* for vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ is defined as:

$$\mathbf{v} \cdot \mathbf{w} = \langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^{\mathrm{T}} \mathbf{w} := \sum_{i=1}^{d} v_{i} w_{i}$$

For $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$:

$$\mathbf{v} \cdot \mathbf{w} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} \cdot \begin{pmatrix} w_x \\ w_y \\ w_z \end{pmatrix} = v_x w_x + v_y w_y + v_z w_z$$

Geometric properties:

- $length(\mathbf{v}) := \|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ (Pythagoras)
- $|\mathbf{v} \cdot \mathbf{w}| = ||\mathbf{v}|| \cdot ||\mathbf{w}|| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$ (projection property)

Geometric properties:

- $length(\mathbf{v}) := \|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ (Pythagoras)
- $|\mathbf{v} \cdot \mathbf{w}| = ||\mathbf{v}|| \cdot ||\mathbf{w}|| \cdot \cos \angle (\mathbf{v}, \mathbf{w})$ (projection property)

In particular:

• v orthogonal to $\mathbf{w} \Leftrightarrow \mathbf{v} \cdot \mathbf{w} = 0$

Gram-Schmidt Orthogonalization:

• Repeat for multiple vectors to create orthogonal set of vectors $\{\mathbf{v'}_1, ..., \mathbf{v'}_n\}$ from set $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$

Scalar product properties:

• Symmetric:
$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$

• Bi-linear:
$$\mathbf{u} \cdot (\lambda \mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \lambda \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$$

• Positive: $\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}$

• Positive:
$$\mathbf{v} \cdot \mathbf{v} = 0 \Leftrightarrow \mathbf{v} = 0$$

33 / 78

abstract definition

Dot Product on Function Spaces

We need dot products on function spaces...

• For square-integrable functions f, g: $\Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, the standard scalar product is defined as:

$$f \cdot g \coloneqq \int_{\Omega} f(x)g(x)dx$$

- It measures an abstract normal and angle between function (not in a geometric sense)
- Orthogonal functions: Don't influence each other in linear combinations. Adding one to the other does not change the value in the other ones direction.

Linear Maps

Linear maps

- Linear maps and matrices
- Inverting and linear systems of equations
- Eigenvectors and eigenvalues
- Ill-posed problems

Linear Maps

A function $f: V \rightarrow W$ between vector spaces V, W over a field F is a *linear map*, if and only if:

- $\forall v_1, v_2 \in V$: $f(v_1 + v_2) = f(v_1) + f(v_2)$
- $\forall v \in V, \lambda \in F$: $f(\lambda v) = \lambda f(v)$

Theorem:

A linear map is uniquely determined if we specify a mapping value for each basis vector of V.

Matrix Representation

Any linear map f between finite dimensional spaces can be represented as a matrix:

- We fix a basis (usually the standard basis)
- For each basis vector \mathbf{v}_i of V, we specify the mapped vector \mathbf{w}_i .
- Then, the map f is given by:

$$f(\mathbf{v}) = f\begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = v_1 \mathbf{w}_1 + \dots + v_n \mathbf{w}_n$$

Matrix Representation

This can be written as matrix-vector product:

$$f(v) = \begin{pmatrix} | & | \\ \mathbf{w}_1 & \cdots & \mathbf{w}_n \\ | & | \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

The columns are the images of the basis vectors (for which the coordinates of \mathbf{v} are given)

Matrix Multiplication

Composition of linear maps corresponds to matrix products:

- $f(g) = f \circ g = \mathbf{M}_f \cdot \mathbf{M}_g$
- Matrix product calculation:

The (x,y)-th entry is the dot product of row x of \mathbf{M}_f and column y of \mathbf{M}_g

Example

Example: rotation matrix

$$\mathbf{M}_{rot} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Example: identity matrix

$$\mathbf{I} := \begin{pmatrix} 1 & 0 & & 0 \\ 0 & 1 & & 0 \\ & & \ddots & \\ 0 & 0 & & 1 \end{pmatrix}$$

Orthogonal Matrices

Orthogonal Matrix

- A matrix is called *orthogonal* if all of its columns (rows) are *orthonormal*, *i.e.* $\mathbf{c}_i \cdot \mathbf{c}_i = 1$, $\mathbf{c}_i \cdot \mathbf{c}_j = 0$ for $i \neq j$
- The inverse of an orthogonal matrix is its transpose:

$$\mathbf{M}\mathbf{M}^{-1} = \mathbf{M}\mathbf{M}^{\mathrm{T}} = \mathbf{I}$$

Affine Maps

Affine Maps

- Translations are not linear (except for zero translation)
- A combination of a linear map and a translation can be described by:

$$f(\mathbf{x}) = \mathbf{M}\mathbf{x} + \mathbf{t}$$

- This is called an affine map
- Composition of affine maps are affine:

$$f(g(x)) = \mathbf{M}_f (\mathbf{M}_g \mathbf{x} + \mathbf{t}_g) \mathbf{x} + \mathbf{t}_f$$
$$= (\mathbf{M}_f \mathbf{M}_g) \mathbf{x} + (\mathbf{M}_f \mathbf{t}_g + \mathbf{t}_f)$$

For a vector space V, a subspace S ⊆ V and a point p ∈ V, the set {x | x = p + v, v ∈ V} is called an affine subspace of V.
 If p ≠ 0, this is not a vector space.

Linear Systems of Equations

Problem: Invert an affine map

- Given: Mx = b
- We know M, b
- Looking for x

Solution

- The set of solution is always an affine subspace of \mathbb{R}^n (i.e., a point, a line, a plane...), or the empty set.
- There are innumerous algorithms for solving linear systems, here is a brief summary...

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

- Gaussian elimination: $O(n^3)$ operations for $n \times n$ matrices
- We can do better, in particular for special cases:
 - Band matrices:
 constant bandwidth

- Sparse matrices: constant number of non-zero entries per row
 - Store only non-zero entries
 - Instead of (3.5, 0, 0, 0, 7, 0, 0), store [(1:3.5), (5:7)]

Solvers for Linear Systems

Algorithms for solving linear systems of equations:

- Band matrices, constant bandwidth: modified elimination algorithm with O(n) operations.
- Iterative Gauss-Seidel solver: converges for diagonally dominant matrices. Typically: O(n) iterations, each costs O(n) for a sparse matrix.
- Conjugate Gradient solver: works for symmetric, positive definite matrices in O(n) iterations, but typically we get a good solution already after $O(\sqrt{n})$ iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, 1994.

Determinants

Determinants

- Assign a scalar det(M) to square matrices M
- The scalar measures the volume of the *parallelepiped* formed by the column vectors:

$$\mathbf{M} = \begin{pmatrix} \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{pmatrix}$$

Properties

A few properties:

- det(A) det(B) = det(AB)
- $det(\lambda A) = \lambda^n det(A) (n \times n \text{ matrix } A)$
- $det(A^{-1}) = det(A)^{-1}$
- det(A^T) = det(A)
- Can be computed efficiently using Gaussian elimination

Eigenvectors & Eigenvalues

Definition:

If for a linear map M and a non-zero vector x we have

$$\mathbf{M}\mathbf{x} = \lambda \mathbf{x}$$

we call λ an *eigenvalue* of **M** and **x** the corresponding *eigenvector*.

Example

Intuition:

 In the direction of an eigenvector, the linear map acts like a scaling

- Example: two eigenvalues (0.5 and 2)
- Two eigenvectors
- Standard basis contains no eigenvectors

Eigenvectors & Eigenvalues

Diagonalization:

In case an $n \times n$ matrix **M** has n linear independent eigenvectors, we can *diagonalize* **M** by transforming to this coordinate system: $\mathbf{M} = \mathbf{TDT}^{-1}$.

Spectral Theorem

Spectral Theorem:

If **M** is a symmetric $n \times n$ matrix of real numbers (i.e. $\mathbf{M} = \mathbf{M}^{\mathsf{T}}$), there exists an *orthogonal* set of n eigenvectors.

This means, every (real) symmetric matrix can be diagonalized:

 $M = TDT^T$ with an orthogonal matrix T.

Computation

Simple algorithm

- "Power iteration" for symmetric matrices
- Computes largest eigenvalue even for large matrices
- Algorithm:
 - Start with a random vector (maybe multiple tries)
 - Repeatedly multiply with matrix
 - Normalize vector after each step
 - Repeat until ration before / after normalization converges (this is the eigenvalue)
- Important intuition: Largest eigenvalue is the "dominant" component of the linear map.

Powers of Matrices

What happens:

A symmetric matrix can be written as:

$$\mathbf{M} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \mathbf{T} \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \mathbf{T}^{\mathrm{T}}$$

• Taking it to the *k*-th power yields:

$$\mathbf{M}^{k} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}}\mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}}...\mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \mathbf{T}\mathbf{D}^{k}\mathbf{T}^{\mathrm{T}} = \mathbf{T}\begin{pmatrix} \lambda_{1}^{k} & & \\ & \ddots & \\ & & \lambda_{n}^{k} \end{pmatrix}\mathbf{T}^{\mathrm{T}}$$

• Bottom line: Eigenvalue analysis is the key to understanding powers of matrices.

Improvements

Improvements to the power method:

- Find smallest? use inverse matrix.
- Find all (for a symmetric matrix)? run repeatedly, orthogonalize current estimate to already known eigenvectors in each iteration (Gram Schmidt)
- How long does it take? ratio to next smaller eigenvalue, gap increases exponentially.

There are more sophisticated algorithms based on this idea.

Generalization: SVD

Singular value decomposition:

- Let M be an arbitrary real matrix (may be rectangular)
- Then M can be written as:
 - M = U D V^T
 - The matrices U, V are orthogonal
 - D is a diagonal matrix (might contain zeros)
 - The diagonal entries are called singular values.
- U and V are different in general. For diagonalizable matrices, they are the same, and the singular values are the eigenvalues.

Singular Value Decomposition

Singular value decomposition

Singular Value Decomposition

Singular value decomposition

- Can be used to solve linear systems of equations
- For full rank, square M:

$$M = U D V^{T}$$

 $\Rightarrow M^{-1} = (U D V^{T})^{-1} = (V^{T})^{-1} D^{-1} (U^{-1}) = V D^{-1} U^{T}$

- Good numerical properties (numerically stable), but expensive
- The OpenCV library provides a very good implementation of the SVD

Inverse Problems

Settings

- A (physical) process f takes place
- It transforms the original input x into an output b
- Task: recover x from b

Examples:

- 3D structure from photographs
- Tomography: values from line integrals
- 3D geometry from a noisy 3D scan

Linear Inverse Problems

Assumption: *f* is linear and finite dimensional

$$f(x) = b \implies M_f x = b$$

Inversion of *f* is said to be an ill-posed problem, if one of the following three conditions hold:

- There is no solution
- There is more than one solution
- There is exactly one solution, but the SVD contains very small singular values.

Ill posed Problems

Ratio: Small singular values amplify errors

Assume our input is inexact (e.g. measurement noise)

 Orthogonal transforms preserve the norm of x, so V and U do not cause problems

Ill posed Problems

Ratio: Small singular values amplify errors

- Reminder: $\mathbf{x} = \mathbf{M}^{-1}\mathbf{b} = (\mathbf{V} \mathbf{D}^{-1} \mathbf{U}^{\mathsf{T}})\mathbf{b}$

• Say D looks like that:
$$\mathbf{D} \coloneqq \begin{pmatrix} 2.5 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0.000000001 \end{pmatrix}$$

- Any input noise in b in the direction of the fourth right singular vector will be amplified by 10⁹.
- If our measurement precision is less than that, the result will be unusable.
- Does not depend on how we invert the matrix.
- Condition number: $\sigma_{\text{max}}/\sigma_{\text{min}}$

Regularization

Regularization

- Aims at avoiding the inversion problems
- Various techniques; in general the goal is to ignore the misleading information
 - Subspace inversion: do not use directions with small singular values (needs an SVD)
 - Additional assumptions: Assume smoothness (or something similar) in case of unclear or missing information so that compound problem (f + assumptions) is well posed

Quadrics

Quadrics

- Multivariate polynomials
- Quadratic optimization
- Quadrics & eigenvalue problems

Multivariate Polynomials

A *multi-variate* polynomial of total degree *d*:

- A function $f: \mathbb{R}^n \to \mathbb{R}$, $\mathbf{x} \to f(\mathbf{x})$
- f is a polynomial in the components of x
- In any direction f(s+tr), we obtain a one-dimensional polynomial of maximum degree d in t.

Examples:

- $f([x,y]^T) := x + xy + y$ is of total degree 2. In diagonal direction, we obtain $f(t[1/\sqrt{2}, 1/\sqrt{2}]^T) = t^2$.
- $f([x,y]^T) := c_{20}x^2 + c_{02}y^2 + c_{11}xy + c_{10}x + c_{01}y + c_{00}$ is a quadratic polynomial in two variables

Quadratic Polynomials

In general, any quadratic polynomial in *n* variables can be written as:

- $\bullet x^TAx + b^Tx + c$
- A is an $n \times n$ matrix, **b** is an n-dim. vector, **c** is a number
- Matrix A can always be chosen to be symmetric
- If it isn't, we can substitute by $0.5 \cdot (A + A^T)$, not changing the polynomial

Example

Example:

$$f\begin{pmatrix} x \\ y \end{pmatrix} = f(\mathbf{x}) = \mathbf{x}^{T} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \mathbf{x}$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} x & y \end{bmatrix} \begin{pmatrix} 1x & 2y \\ 3x & 4y \end{pmatrix}$$

$$= x1x + x2y + y3x + y4y$$

$$= 1x^{2} + (2+3)xy + 4y^{2}$$

$$= 1x^{2} + (2.5+2.5)xy + 4y^{2}$$

$$= \mathbf{x}^{T} \frac{1}{2} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \mathbf{x} = \mathbf{x}^{T} \begin{pmatrix} 1 & 2.5 \\ 2.5 & 4 \end{pmatrix} \mathbf{x}$$

Quadratic Polynomials

Specifying quadratic polynomials:

- $x^{T}Ax + b^{T}x + c$
- b shifts the function in space (if A has full rank):

$$(x - \mu)^{T} \mathbf{A}(x - \mu) + c$$

$$= x^{T} \mathbf{A}x - \mu^{T} \mathbf{A}x - x^{T} \mathbf{A}\mu + \mu \cdot \mu + c$$

$$= x^{T} \mathbf{A}x - (2\mathbf{A}\mu)\mathbf{x} + \mu \cdot \mu + c$$

$$= \mathbf{b}$$

c is an additive constant

Some Properties

Important properties

- Multivariate polynomials form a vector space
- We can add them component-wise:

$$2x^{2} + 3y^{2} + 4xy + 2x + 2y + 4$$

$$+ 3x^{2} + 2y^{2} + 1xy + 5x + 5y + 5$$

$$= 5x^{2} + 5y^{2} + 5xy + 7x + 7y + 9$$

In vector notation:

$$\mathbf{x}^{\mathsf{T}} \mathbf{A}_{1} \mathbf{x} + \mathbf{b}_{1}^{\mathsf{T}} \mathbf{x} + \mathbf{c}_{1}$$

$$+ \lambda (\mathbf{x}^{\mathsf{T}} \mathbf{A}_{2} \mathbf{x} + \mathbf{b}_{2}^{\mathsf{T}} \mathbf{x} + \mathbf{c}_{2})$$

$$= \mathbf{x}^{\mathsf{T}} (\mathbf{A}_{1} + \lambda \mathbf{A}_{2}) \mathbf{x} + (\mathbf{b}_{1} + \lambda \mathbf{b}_{2})^{\mathsf{T}} \mathbf{x} + (\mathbf{c}_{1} + \lambda \mathbf{c}_{2})$$

Quadratic Polynomials

Quadrics

- The zero level set of such a quadratic polynomial is called a "quadric"
- Shape depends on eigenvalues of A
- b shifts the object in space
- c sets the level

Shapes of Quadrics

Shape analysis:

- A is symmetric
- A can be diagonalized with orthogonal eigenvectors

$$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} = x^{\mathrm{T}} \begin{bmatrix} \mathbf{Q}^{\mathrm{T}} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & \lambda_{n} \end{pmatrix} \mathbf{Q} \end{bmatrix} x$$
$$= (\mathbf{Q} x)^{\mathrm{T}} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & \lambda_{n} \end{pmatrix} (\mathbf{Q} x)$$

- Q contains the principal axis of the quadric
- The eigenvalues determine the quadratic growth (up, down, speed of growth)

Shapes of Quadratic Polynomials

$$\lambda_1 = 1$$
, $\lambda_2 = 1$

$$\lambda_1 = 1$$
, $\lambda_2 = -1$

$$\lambda_1 = 1, \lambda_2 = 0$$

The Iso-Lines: Quadrics

elliptic

hyperbolic

degenerate case

$$\lambda_1 = 0, \ \lambda_2 \neq 0$$

Quadratic Optimization

Quadratic Optimization

- Assume we want to minimize a quadratic objective function $\mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + \mathbf{c}$
- A has only positive eigenvalues.
- Means: It's a paraboloid with a unique minimum
- The vertex (critical point) of the paraboloid can be determined by simply solving a linear system
- More on this later (need some more analysis first)

Rayleigh Quotient

Relation to eigenvalues:

 The minimum and maximum eigenvalues of a symmetric matrix A can be expressed as constraint quadratic optimization problem:

$$\lambda_{\min} = \min \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} = \min_{\|\mathbf{x}\| = 1} \left(\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \right) \qquad \lambda_{\max} = \max \frac{\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}} = \max_{\|\mathbf{x}\| = 1} \left(\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \right)$$

 The other way round – eigenvalues solve a certain type of constrained, (non-convex) optimization problem.

Coordinate Transformations

One more interesting property:

- Given a positive definite symmetric ("SPD") matrix M (all eigenvalues positive)
- Such a matrix can always be written as square of another matrix:

$$\mathbf{M} = \mathbf{T}\mathbf{D}\mathbf{T}^{\mathrm{T}} = \left(T\sqrt{D}\right)\left(\sqrt{D}^{T}T^{T}\right) = \left(T\sqrt{D}\right)\left(T\sqrt{D}\right)^{T} = \left(T\sqrt{D}\right)^{2}$$

$$\sqrt{D} = \begin{pmatrix} \sqrt{\lambda_{1}} & & \\ & \ddots & \\ & \sqrt{\lambda_{n}} & \end{pmatrix}$$

SPD Quadrics

Interpretation:

- Start with a unit positive quadric $\mathbf{x}^T\mathbf{x}$.
- Scale the main axis (diagonal of D)
- Rotate to a different coordinate system (columns of T)
- Recovering main axis from M: Compute eigensystem ("principal component analysis")

Software

GeoX

GeoX comes with several linear algebra libraries:

- 2D, 3D, 4D vectors and matrices: LinearAlgebra.h
- Large (dense) vectors and matrices:
 DynamicLinearAlgebra.h
- Gaussian elimination: invertMatrix()
- Sparse matrices: SparseLinearAlgebra.h
- Iterative solvers (Gauss-Seidel, conjugate gradients, power iteration): IterativeSolvers.h