Geometric Modeling

Summer Semester 2010

Mathematical Tools (1)

Recap: Linear Algebra

455 UNIVERSITAT
sl DES
=5/ SAARLANDES

max planck institut
iformatik




Today...

______________________________________________________

]

= Linear algebra
= Analysis & differential geometry
= Numerical techniques

Geometric Modeling Summer Semester 2010 — Mathematical Tools 2/78



Mathematical Tools
Linear Algebra



Overview

Linear algebra
e Vector spaces
e Linear maps
e Quadrics
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Vectors

Vector spaces
e Vectors, Coordinates & Points

Formal definition of a vector space

Vector algebra
e Generalizations:

= Infinite dimensional vector spaces
= Function spaces
= Approximation with finite dimensional spaces

e More Tools:
= Dot product and norms
= The cross product
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Vectors

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space

Geometric Modeling Summer Semester 2010 — Mathematical Tools 6/78



Vector Operations

V+W

“Adding” Vectors:
Concatenation
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Vector Operations

Scalar Multiplication:
Scaling vectors (incl. mirroring)

Geometric Modeling Summer Semester 2010 — Mathematical Tools 8/78



You can combine it...

v 2W + V

Linear Combinations:
This is basically all you can do.

r :ZH:/II.VI.
i=1
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Vector Spaces

Many classes of objects share the same structure:
e Geometric Objects

= 1,2,3,4... dimensional Euclidian vectors

e But also a lot of other mathematical objects
= Vectors with complex numbers, or finite fields
= Certain sets of functions
= Polynomials

e Approach the problem from a more abstract level
= More general: Saves time, reduces number of proofs

= Can still resort to geometric vectors to get an intuition about
what’s going on
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Vector Spaces

Definition: Vector Space V over a Field F

e Consists of a set of vectors V
e Fis a field (usually: Real numbers, F = R)
e Provides two operations:

= Adding vectorsu=v+w (u,v, w € V)
= Scaling vectorsw=Av(ueV, A € F)

e The two operations are closed, i.e.: operations on any
elements of the vector space will yields elements of the
vector space itself.

...and finally: A number of properties that have to hold:
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Vector Spaces

Definition: Vector Space V over a Field F (cont.)
(al) vu,v,weV: (u+v)+w=u+(v+w)
(a2) Vu,veV: u+v=v+u
(a3) 30, eV:vveV: v+0, =V

(a4) VveV:IweV: v+w=0,

(s1) VveV,/i,,ueF:/I(,uv):(/l,u)v

(s2) forl, eF:VveV:1 v=v

(s3) VAeF:Vv,weV: Av+w)=Av+iw
(s4) V/I,,ueF,veV:(/1+,u)V=/1v+,uv
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Vector Spaces

Vector spaces

e Out of these formal assumptions, a long list of derivative
properties (theorems) can be deduced.

e Will hold for any vector space.

e In particular, we will see that the assumptions are
sufficient to obtain the columns with coordinates, we
started with (in the finite dimensional case).
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Properties

Some properties you can easily prove:
e The zero vector 0, is unique. For 2D vectors: 0, :[gj

e Multiplication with the scalar O; yields the zero vector.
e The additive inverse -v is unique given v.
e Multiplication by -1 yields the inverse vector.

e And so on...
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Span and Basis

T {u,v} < {uv,wj}
span {v}—line form a basis of R?

/ through the origin |
\4

span {uv,w}=R*> WV __ X |
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Example Spaces

Examples of finite-dimensional vector spaces:
e Of course: R, R?, R3, RA...

1Y(0) (O
e Standard basis of R3: |0, |1(0]|;
0)10) 11

X 1 0 0
e Coordinates: |y |=x|/0|+y|1|+2 0|=xi+yj+zKk
Z 0 0 1
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Example Spaces

Examples of finite-dimensional vector spaces:
e Polynomials of fixed degree

= For example, all polynomials of 2nd order:
general form: ax?+ bx + c
addition: (a,x*+ b x +c;) + (a,x2+ b,x +c,)
= (a;+ a,)x%+ (b + b,)x + (¢, + c,)
scalar multiplication: A(ax?+ bx + c) = (Aa)x2+ (Ab)x + (Ac)
= Might be confusing: Evaluation of polynomials at x is non-linear,
does not relate to the vector space structure
= Coordinates: [a, b, c]T
= Basis for these coordinates: {x?, x, 1}
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Example Spaces

Infinite-dimensional vector spaces:
e Polynomials (of any degree)
 Need to represent coefficients of arbitrary degree
e Coordinate vectors can potentially become arbitrarily long

General form: poly(x) = ZCI,-Xi (only a finite subset of the a; nonzero)
i=0

Basis: {x' [i=0,1,2,..]

Coordinate vectors: (a,,a,,a,,a;,..)
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Spaces of Sequences

First generalization:
e Make vectors infinitely long
e Spaces of sequences

a,
a
2
X
a,
A d
yA
a;

e Dimension = o, countable
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Example Spaces

More infinite-dimensional vector spaces:

e Function spaces
= Space of all functions : R - R
= Space of all smooth Cf functionsf: R - R
= Space of all functions f: [0..1] > R
= Not a vector space: f:[0..1] —> [0..1]

o

0 1 0 1 0 1
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Function Spaces

Vector operations
For f: Q — R, define:

* (f+9)x) :=fx) + g(x) (Vx € Q)
o (Ax) = AUfx)) (Vx € Q)

The zero vector is:
e 0, =(f: flx) =0)
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Function Spaces

Intuition:
e Start with a finite dimensional vector
e Increase sampling density towards infinity
e Real numbers: uncountable amount of dimensions

[f1; 27°°°) 9]T [fll 21"'1f18]T f(X)
O 4=9 1 0 4-9g 10 40 1
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Approximation of Function Spaces

Finite dimensional subspaces:

e Function spaces with infinite dimension are hard to
represented on a computer

e For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

e Two basic approaches:
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Approximation of Function Spaces

Here is the “recipe”:
e We are given an infinite-dimensional function space V.
e We are looking for f € V with a certain property.

e From a function space V we choose linearly independent
functions f,,....f, € V to form the d-dimensional subspace

spani{fy,....f4}-

e Instead of looking for the f € V, we look only among the
f= Z;tf for a function that best-matches the desired
property (might be just an approximation, though).

e The good thing: fis described by (44,-..,4,). Good for the
computer...
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Approximation of Function Spaces

Two Approaches:

e Construct a basis, that already provides a subspace
containing the functions you want
= Typically, the coefficients will have an intuitive meaning then
= Bezier Splines, B-Splines, NURBS are all about that

e Choose a basis that can approximate the functions you
might want, then pick the closest

= Standard approach in numerical solutions to partial differential
equations and integral equations

= Basic idea: D~efine a measure of correctness C(f), then try to
maximize C(f)
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Finite-Dimensional Function Spaces

Typical Basis Sets:
e Consider the space of functions f: [a, b] — R.
e Some d-dimensional subspaces:

= span{;, L, ..., L, —Lj} (piecewise constant basis)

= span{1,x, %% ..., x%t} (Monomial basis of degree d-1)

= span {1, sin x, cos X, sin 2X, cos 2x, ..., sin (d-1)x/2, cos (d-1)x/2 }
(Fourier basis of order (d-1)/2, usuallya =0, b = 27)

e |t depends all on the application, of course...
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Examples

1,5 -

0,5 -
0
-0,5
4
— - 15
15 2 0 T 21
Monomial basis Fourier basis
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More Tools for Vectors

More operations:

e Dot product / scalar product / inner product
(measures distances, angles)

e Cross product (only R3)
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The Standard Scalar Product

The standard dot product for vectors v,w € R is defined as:

V-W= <v,w> =V W= Zv.w.

Forv,w € R3:

X X
V-W=\V |[|W, |=v,w +V W +V,W,
VZ WZ
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Properties

Geometric properties:
* length(v):=|v| =+v-v (Pythagoras)

 [v-w|=|v]-|w]-cos £(v,w) (projection property)
v
v-w]
/ w-wW
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Properties

Geometric properties:
* length(v):=|v| =+v-v (Pythagoras)

 [v-w|=|v][w]-cos £(v,w) (projection property)

In particular:

e vorthogonaltow< v-w=0

Geometric Modeling Summer Semester 2010 — Mathematical Tools 31/78



Properties

Gram-Schmidt Orthogonalization:

v-w

- w
/ W W

v-w
V-——W
W-W

e Repeat for multiple vectors to create orthogonal set of
vectors {V',, ..., V' } from set {v,,...,v }
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Properties

Scalar product properties:
e Symmetric: V-W=W-V

e Bi-linear: u-(/lv+w):u-/1v+u~w . abstract definition

e Positive: vv=0cv=0
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Dot Product on Function Spaces

We need dot products on function spaces...

e For square-integrable functions f, g: Q c R" — R, the
standard scalar product is defined as:

f-g:=| f(x)g(x)dx

e |t measures an abstract normal and angle between
function (not in a geometric sense)

e Orthogonal functions: Don’t influence each other in
linear combinations. Adding one to the other does not
change the value in the other ones direction.
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Linear Maps

Linear maps
e Linear maps and matrices
e Inverting and linear systems of equations
e Eigenvectors and eigenvalues
e |ll-posed problems
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Linear Maps

A function f: V—> W between vector spaces V, W
over a field F is a linear map, if and only if:

o Vv, v,eV:  flvy+v,) = f(vy) + f(v,)
e YveV, AeF: f(Av) = Af(v)

Theorem:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.
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Matrix Representation

Any linear map f between finite dimensional spaces
can be represented as a matrix:

e We fix a basis (usually the standard basis)

e For each basis vector v; of V, we specify the mapped

vector w,.

e Then, the map fis given by:

fv)=f

Vi

=V,W, +..+V W,

Geometric Modeling Summer Semester 2010 — Mathematical Tools
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Matrix Representation

This can be written as matrix-vector product:

| ) (v
fO)=|wy oW, |

| | ) \v

n

The columns are the images of the basis vectors (for which the
coordinates of v are given)
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Matrix Multiplication

Composition of linear maps corresponds to matrix
products:

o f(g)=fog=M M,

e Matrix product calculation:

M, The (x,y)-th entry is the
dot product of row x of M
and column y of M,

M. M

f g

Geometric Modeling Summer Semester 2010 — Mathematical Tools 39/78



Example

Example: rotation matrix

N cosa —Sin«a
\/_ Mrot — .
Sihax CcoSs«a

L
0
Example: identity matrix
N
0 0 1
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Orthogonal Matrices

Orthogonal Matrix

e A matrix is called orthogonal if all of its columns (rows)
are orthonormal, i.e. c,-c;=1, ¢;-c; =0 for i+

e The inverse of an orthogonal matrix is its transpose:
MM ' =MM' =1

MT
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Affine Maps

Affine Maps

e Translations are not linear (except for zero translation)

e A combination of a linear map and a translation can be
described by:

f(x)=Mx+t

This is called an affine map

Composition of affine maps are affine:
f(g(x)):Mf(ng+tg)x+tf
:<MfMg)X+(Mftg +tf>
e For a vector space V, a subspace ScV and a pointp €V, the

set{x | x=p+v,v e V}is called an affine subspace of V.
If p #0, this is not a vector space.
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Linear Systems of Equations

Problem: Invert an affine map
e Given: Mx=b
e We know M, b
e Looking for x

Solution

e The set of solution is always an affine subspace of R"
(i.e., a point, a line, a plane...), or the empty set.

e There are innumerous algorithms for solving linear
systems, here is a brief summary...
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Solvers for Linear Systems

Algorithms for solving linear systems of equations:
e Gaussian elimination: O(n3) operations for nxn matrices
e We can do better, in particular for special cases:

= Band matrices:
constant bandwidth

= Sparse matrices:
constant number of non-zero
entries per row

— Store only non-zero entries

— Instead of (3.5,0,0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]
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Solvers for Linear Systems

Algorithms for solving linear systems of equations:

e Band matrices, constant bandwidth: modified elimination
algorithm with O(n) operations.

e |terative Gauss-Seidel solver: converges for diagonally
dominant matrices. Typically: O(n) iterations, each costs
O(n) for a sparse matrix.

e Conjugate Gradient solver: works for symmetric, positive
definite matrices in O(n) iterations, but typically we get a
good solution already after O(ﬁ) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.
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Determinants

Determinants
e Assign a scalar det(M) to square matrices M
e The scalar measures the volume of the parallelepiped

formed by the column vectors:

| | | det(M)

M=|v, v, v,
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Properties

A few properties:
e det(A)det(B) = det(AB)
e det(AA) = A"det(A) (nxn matrix A)
e det(Al) =det(A)?
o det(AT) = det(A)

e Can be computed efficiently using Gaussian elimination
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Eigenvectors & Eigenvalues

Definition:
If for a linear map M and a non-zero vector x we have
Mx = AX

we call 4 an eigenvalue of M and x the corresponding
eigenvector.
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Example

Intuition:

e In the direction of an eigenvector, the linear map acts like
a scaling

e Example: two eigenvalues (0.5 and 2)
e Two eigenvectors
e Standard basis contains no eigenvectors
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Eigenvectors & Eigenvalues

Diagonalization:

In case an nxn matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT..
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Spectral Theorem

Spectral Theorem:

If M is a symmetric nxn matrix of real numbers
(i.e. M = M), there exists an orthogonal set of n
eigenvectors.

This means, every (real) symmetric matrix can be
diagonalized:

M = TDT" with an orthogonal matrix T.
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Computation

Simple algorithm
e “Power iteration” for symmetric matrices
e Computes largest eigenvalue even for large matrices

e Algorithm:
= Start with a random vector (maybe multiple tries)
= Repeatedly multiply with matrix
= Normalize vector after each step
= Repeat until ration before / after normalization converges
(this is the eigenvalue)
e Important intuition: Largest eigenvalue is the “dominant”
component of the linear map.
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Powers of Matrices

What happens:
e A symmetric matrix can be written as:
ﬁ“l
M=TDT' =T T'

A

n

e Taking it to the k-th power yields:

A"
M =TDT'TDT .. TDT ' =TD*T" =T T
Z k

n

e Bottom line: Eigenvalue analysis is the key to
understanding powers of matrices.
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Improvements

Improvements to the power method:
e Find smallest? — use inverse matrix.

e Find all (for a symmetric matrix)? — run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

e How long does it take? — ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.
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Generalization: SVD

Singular value decomposition:
e Let M be an arbitrary real matrix (may be rectangular)
e Then M can be written as:
=M=UDV'
= The matrices U, V are orthogonal
= D is a diagonal matrix (might contain zeros)
= The diagonal entries are called singular values.

e UandV are different in general. For diagonalizable
matrices, they are the same, and the singular values are
the eigenvalues.
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Singular Value Decomposition

Singular value decomposition

VT
M U D
oo|lo|lo|o|o|oO
_ 0|6z|0|{0]|0]0O
olo|os|o|o0]|oO
0lo|o|am|o]oO
b 7 ¢ J
4
orthogonal orthogonal
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Singular Value Decomposition

Singular value decomposition
e Can be used to solve linear systems of equations
e For full rank, square M.:
M=UDV'
= Mi=(UDV)iI=(V)ID!(Ul)=VvDlUT
e Good numerical properties (numerically stable), but
expensive

e The OpenCV library provides a very good implementation
of the SVD
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Inverse Problems

Settings
e A (physical) process f takes place
e |t transforms the original input x into an output b
e Task: recover x from b

Examples:
e 3D structure from photographs
e Tomography: values from line integrals
e 3D geometry from a noisy 3D scan
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Linear Inverse Problems

Assumption: f is linear and finite dimensional
fix)=b = Mx=b

Inversion of fis said to be an ill-posed problem, if one
of the following three conditions hold:

e There is no solution

e There is more than one solution

e There is exactly one solution, but the SVD contains very
small singular values.
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Ill posed Problems

Ratio: Small singular values amplify errors

e Assume our input is inexact (e.g. measurement noise)
e Reminder: M=V D1U'

™~
does noﬂ'urt \ does not hurt

(orthogonal) (orthogonal)
this one is decisive

e Orthogonal transforms preserve the norm of x, soVand U
do not cause problems
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Ill posed Problems

Ratio: Small singular values amplify errors
e Reminder:x=M1b=(VD1U")b

e Say D looks like that: 25 0 0 0
D—| 0 11 0 0
] 0 0 09 0

0O 0 O 0.000000001

e Any input noise in b in the direction of the fourth right
singular vector will be amplified by 10°.

e If our measurement precision is less than that, the result
will be unusable.

e Does not depend on how we invert the matrix.
e Condition number: o__ /o ..
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Regularization

Regularization
e Aims at avoiding the inversion problems

e Various techniques; in general the goal is to ignore the
misleading information

= Subspace inversion: do not use directions with small singular
values (needs an SVD)

= Additional assumptions: Assume smoothness (or something
similar) in case of unclear or missing information so that
compound problem (f + assumptions) is well posed
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Quadrics

Quadrics
e Multivariate polynomials
e Quadratic optimization
e Quadrics & eigenvalue problems
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Multivariate Polynomials

A multi-variate polynomial of total degree d:
e Afunctionf:R"—> R, x— f(x)
e fis a polynomial in the components of x

e In any direction f(s+tr), we obtain a one-dimensional
polynomial of maximum degree d in t.

Examples:

o f([x,y]") := x + xy + v is of total degree 2. In diagonal
direction, we obtain f(t[l/ﬁ, 1/ﬁ]T) = t2.
guadratic polynomial in two variables
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Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

e X'AX + b'X +cC
e Ais an nxn matrix, b is an n-dim. vector, c is a number

e Matrix A can always be chosen to be symmetric

e If it isn’t, we can substitute by 0.5 - (A + AT), not changing
the polynomial
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Example

Example:

X (1 2
AG)r0-(a 3
1 2)x 1x 2y
why el L)

=x1x+x2y+ y3x+ ydy
=1x*+(2+3)xy +4y°
=1x°" +(2.5+2.5)xy +4y°

)
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Quadratic Polynomials

Specifying quadratic polynomials:
e X'TAX + b'™x +cC
e b shifts the function in space (if A has full rank):
(x—u) Alx—p)+c
=X Ax— 1 AX—X Au+u-u+c

(Asym.)

= XTAX—(ZA,u)x+,u-,u+C
=b

e Cis an additive constant
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Some Properties

Important properties
e Multivariate polynomials form a vector space
e We can add them component-wise:
2x% + 3y? +4xy + 2x+ 2y + 4
+ 3x2+ 2y? +1xy + 5x + 5y + 5

= 5x2+ 5y?2 +5xy + 7x + 7y + 9
e |n vector notation:
X'A;x + b,'x +¢,
+ AxTAx + b,'x +c,)
=x"(A;+AA,)x + (b;+1b,)™x + (c,+1c,)
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Quadratic Polynomials

Quadrics

e The zero level set of such a quadratic polynomial is called
a “quadric”

e Shape depends on eigenvalues of A
e b shifts the object in space
e c sets the level
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Shapes of Quadrics

Shape analysis:
e Ais symmetric
e A can be diagonalized with orthogonal eigenvectors

A
XTAX=XT|:QT( . jQ}x

=(Qx)T[ll : ](QX)

e Q contains the principal axis of the quadric

e The eigenvalues determine the quadratic growth
(up, down, speed of growth)

Geometric Modeling Summer Semester 2010 — Mathematical Tools 70 /78



Shapes of Quadratic Polynomials
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The Iso-Lines: Quadrics

elliptic hyperbolic degenerate case

TL

A,>0,4,>0 A4,<0,4,>0 A,=0,4,#0
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Quadratic Optimization

Quadratic Optimization

e Assume we want to minimize a quadratic objective
function x'Ax + b™x +c

e A has only positive eigenvalues.
e Means: It’s a paraboloid with a unigue minimum

e The vertex (critical point) of the paraboloid can be
determined by simply solving a linear system

e More on this later (need some more analysis first)
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Rayleigh Quotient

Relation to eigenvalues:

e The minimum and maximum eigenvalues of a symmetric
matrix A can be expressed as constraint quadratic
optimization problem:

T
X Ax .
= min (XTAX> A =max

A . =min
" x'x |¥= X'x |¥=

m

e The other way round — eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.
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Coordinate Transformations

One more interesting property:

e Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

e Such a matrix can always be written as square of another
matrix:

M=TDT" = T\/_I\/_ TT) TJ_XTJ_) (TJB)Z
\/Z .

VD = 3
VA
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SPD Quadrics

main axis

I‘,//‘

v

X 'Mx

. A 4
 \ Ul
g /
T \ \\‘\ ”‘ %’I’//// R /"\ R
’ \\\ ‘ I/ \/ \-/

\\\“s‘ ;II;//,

2
Identity I M=TDT" = (TJB )

Interpretation:

 Start with a unit positive quadric x"x.

Scale the main axis (diagonal of D)

Rotate to a different coordinate system (columns of T)

Recovering main axis from M: Compute eigensystem
(“principal component analysis”)
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Software



MFE Informatik Open Source
Geometric Modeling Toolkit

GeoX comes with several linear algebra libraries:
e 2D, 3D, 4D vectors and matrices: LinearAlgebra.h

e Large (dense) vectors and matrices:
DynamiclinearAlgebra.h

e Gaussian elimination: invertMatrix()
e Sparse matrices: SparselinearAlgebra.h

e |terative solvers (Gauss-Seidel, conjugate gradients,
power iteration): /terativeSolvers.h
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