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Today...

Topics:
e Mathematical Background

= Linear algebra

—————————————————————————————————————————————

= Numerical techniques
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Overview

Analysis
e Multi-dimensional differentiation
e Multi-dimensional integration

Differential Geometry
e Length, area, volume
e Curvature of curves and surfaces
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Recap: Analysis
Multi-Dimensional Differentiation



Derivative of a Function

Reminder: The derivative of a function is defined as

ft+h)— f(t)
h

d .
-/ (E)=]im

If this limit exists, the function is called differentiable
(on the set, on which the limit converges).
Other notation:

d , :

—f()= f'(t) = f(t)

dt —_— —
in case the in case the
reference is variable

clearfrom is the time
the context
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Repeated Differentiation

Multiple Differentiation:
e The differentiation operation can be applied repeatedly:

%f(t):f”(t):f(t):lhi_{rolf(t+h)_2££t)+f(t_h)

i _ 00
dtkf(t) f(t)

e A function that can be k-times differentiated resulting in a
smooth function belongs to the set C.
Abuse of notation: C® means just smoothness. C' means
“not even smooth”.
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Taylor Approximation

Smooth functions can be approximated locally:
o f(x)= f(x,)

+dif(x0)(x—x0)

X

1 d* 2
+§d 2f(xo)(x—xo) + ...

1 d-
k'd"

f(x,)x—x, ) +0(x*™)

e Guaranteed to converge globally for holomorphic functions
e Usually a good local approximation for smooth functions
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Partial Derivative

If a function depends on more than one variable:

e The notation changes: (but the rest remains the same)
_—use curly-d

0
f(Xl)-.-;Xk_l ’Xk’Xk-i-l ,...,Xn)::
OX .
lim f(Xl )-.-)Xk—l )Xk +h,Xk+1 ,.--;Xn)_f(xl ,---,Xk_l ,Xk ’Xk-i-l ,...,Xn)
h—0 h

e Derivative in one direction x, only, other variables remain
constant.

e This is called a partial derivative. Other notation:

@if(X)=@kf(X)=ka (x)
X
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R —> R" (“curves”
e Functions f: R” — R™ (general case)
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R —> R" (“curves”
e Functions f: R” — R™ (general case)
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Gradient

Gradient:

e Given a function f: R” —> R (“heightfield”)
e The vector of all partial derivatives of f is called the

gradient:

Vf(x)=

9
OX 4
0
)¢

n

f(x)=

19
a—xl.f(x)

.
af(x)
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Gradient

Gradient:
! Vi F(%0)+ VF(%,)- (X~ ;)
f(x) 1 % f(x) 1 Q
Xq Xy v‘
2 2

e The gradient is a vector that points in the direction of
steepest ascent.

e Local linear approximation (first order Taylor approx.):

f(X)= f(X,)+Vf(x,) (x—%,)
e These are all heightfields (f: R" —> R)
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Higher Order Derivatives

Higher order Derivatives:

e Can do all combinations: ¢ ¢ g f
ox; Ox, OX,

Ik

e Order does not matter for f € C¥
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Hessian Matrix

Higher order Derivatives:

e Important special case: Second order derivative

0 O

Ox, OX,
0 0O

0’ 0 0
fk(lz EXKZ fb(l
0 0 0°

8x1 5X2 8)(12
0 0 0 0
Ox, 0x, OX, OX,

OX, OX,
éé
ox °

n

f(X)=H(x)

e “Hessian” matrix (symmetric for f € C?)
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Taylor Approximation

f(x) 1

2nd order approximation
(schematic)

Second order Taylor approximation:
 Fit a paraboloid to a general function

f(x)zf(xo)+Vf(xo)-(x—xo)%(x—xof-Hf(xo)-(x—xo)
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R —> R” (“curves”
e Functions f: R” — R™ (general case)
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Derivatives of Curves

Derivatives of vector valued functions:
e Given a function f: R > R" (“curve”

e We can compute derivatives for every output dimension:

f1(t)
f®)=| :
/()
L0
d dt "
d—f(t) = ;
t d
Efn(t)

= f'(t) = f(¢)
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Geometric Meaning

fit)

Tangent Vector: Fto)

e f’is a vector in tangent direction

e If f describes the motion of a physical particle,fis its
velocity vector.

e Higher order derivatives: Again vector functions
e The second derivativefis the acceleration vector.
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Special Cases

Derivatives for:
e Functions f: R" —> R (“heightfield”)
e Functions f: R —> R" (“curves”
e Functions f: R” — R™ (general case)
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You can combine it...

General case:
e Given a function f: R" — R™ (“space warp”)

fi(x4,m0X,)
F(x) = F((xy,0X,))= :

[ (Xq,0X,)
e Maps points in space to other points in space

e Now we can compute derivatives of all output
components of f in all input directions.

e This is called the Jacobian matrix, usually still denoted
by V, like the gradient
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Jacobian Matrix

Jacobian Matrix:
VIx)=],(x)=Vf(xy,..X,)
V(X X,) 0, H(x) - 0, fi(X)

V(X)) |0, fuX) 8, f(X)

Use in a first-order Taylor approximation:

f(x)zf(xo)uf(xo)T(x—xo)

matrix / vector
product
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Recap: Analysis
Properties of Multi-Dimensional Derivatives



Coordinate Systems

Problem:
 What happens, if the coordinate system changes?
e Partial derivatives go into different directions then.
e Do we get the same result?
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Total Derivative

First order Taylor approx.:
! yior approX F%0)+ V(%) (x~%,)

o JX)HVIXo)- (X=X )+ R, (X) ¢
o If this converges to the function *ﬁ“
with first order, i.e. 1

RXO (X) —0
X—X,|

lim

X—)XO

the function is called totally differentiable.

e This means, the function can be locally well-approximated
with a linear function.

e Every C! function f: R” — R is totally differentiable
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Partial Derivatives

Consequences:

e Alinear function is fully determined by the image of a
basis (a linear independent set)

e This means: The directions of partial derivatives do not
matter — this is just a basis transform.

e We can use any linear independent set of directions T and
transform to standard basis by multiplying with T-1.
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Directional Derivative

The directional derivative is defined as:
e Given a function f: R” — R™, and a directionv € R", v 0.

e Then the directional derivative of f in direction v is given
by:

Vo f(x) =2 J

- x) ——f(X+tV)

e In case of total differentiability, the directional derivative
can be computed using the Jacobian matrix:

V, f(x)= Vf(X)ﬁ
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Rules of Thumb

Rules of Thumb

e “V” means differentiation (everything by everything)
= Might be a scalar (1D—1D),
= avector (kD—1D, 1D—kD), or
= a matrix (hD—>mD).

e “Jacobian” means “V”
e Higher order derivatives:
= Can combine directions Ox oy oz...

= Order (usually) does not matter (continuity of deriv. sufficient)
= Hessian matrix: 2nd order derivative (kD—1D)
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Rules of Thumb

More Rules of Thumb

e Coordinate system (usually) does not matter

e The derivative is just local linear approximation
= We can compute this in different (linear independent) directions
= Do a basis transform to change coordinates

= To evaluate in a single direction: Multiply Jacobian matrix
(first order derivative) with unit direction vector.
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Recap: Analysis
Multi-Dimensional Integration



Integral

Integral of a function
e Givena functionf:R > R

b
e The integral '[f(t)dt measures the signed area under the

curve.
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Integral

Numerical Approximation
e Sum up a series of approximate shapes

S\

y A »

e (Riemannian) Definition: limit for baseline — zero
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Multi-Dimensional Integral

Integration in higher dimensions
e Same idea.
e Consider functions f: R" > R
e Tessellate domain and sum up volume of cuboids
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Integral Transformations

Integration by substitution:

g7 (b)
j flx)dx = | f(g(t))g'(t)dt

g (a)

Need to compensate for speed of
movement that shrinks the measured

darea.
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Multi-Dimensional Substitution

Transformation of Integrals: 0,8(x)

j fydx = [ flg(y))|det(Vg(y))|dy ~ *2 1

()

e g € C}, invertible

e Jacobian approximates local

behavior of g() (linear consistency
sufficient)

e Determinant computes local area/volume change

* In particular: |det(Vg(y))|=1 means g() is area/volume
conserving.
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Differential Geometry
of Curves & Surfaces (Overview)



Part I: Curves



Parametric Curves

Parametric Curves:
e A differentiable function

f:(a, b) > R"

describes a parametric curve
C=f((a, b)), Cc R".
e The parametrization is called regular if f’(t) # O for all t.

e If ||f'(t)||=1forallt, fis called a unit-speed
parametrization of the curve C.
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Length of a Curve

The length of a curve:

e The length of a regular curve Cis defined as:
b
length( €)= [|£'(t)]de

e This definition is independent of the parametrization
(integral transformation theorem).

e Alternatively, the length of the curve can be defined as
length(C) = | b —a| for a unit-speed parametrization
C = f((a, b)); this obviously yields the same result.
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Reparametrization

Enforcing unit-speed parametrization:
e Assume:||f’(t)||# O for all t.

* We have: |
length( C) =j||f'(t)||dt (invertible, because f’(t) > 0)

 Concatenating folength(C) yields a unit-speed
parametrization of the curve

length(t)

length1(t)
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Tangents

Unit Tangents:
e The unit tangent vector at x € (a, b) is given by:
'(t

tangent( t) = H;Et;H

e For curves Cc R?, the unit normal vector of the curve is
defined as:
normal(t)= 0 1) S ()
Lol
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Curvature

Curvature:
e First derivatives show curve direction / speed of
movement.
e Curvature is encoded in 2nd order information.
e Why not just use f”’?
e Two problems:

= Depends on parametrization (different velocity yields different

results)
= Have to distinguish between acceleration in tangential and non-
tangential directions.
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Curvature & 2nd Derivatives

C=f((a, b)) normal(t)

(t)  tangent(t)

Definition of curvature

 We want only the non-tangential component of f”.

e Braking / accelerating does not matter for curvature
of the traced out curve C.

 Need to normalize speed.
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Curvature

Curvature of a Curve C € R2:

i 0 -1) .
<f (t),(l Ojf (t)>
Gl

e Normalization factor:
= Divide by ||f’|| to obtain unit tangent vector

K2(t)=

= Divide again twice to normalize f”
— Taylor expansion / chain rule:

fAat)= f(to)+/7~f'(to)(t—to)+%/12f"(t)(t—to)2 +0(¢")

— Second derivative scales quadratically with speed
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Unit-speed parametrization

Unit-speed parametrization:
e Assume a unit-speed parametrization, i.e. Hf'Hsl.
e Then, k2 simplifies to:

Kk2(t)=|f"(t)|
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Radius of Curvature

Easy to see:

e Curvature of a circle is constant, k2= + 1/r (r = radius).
(see problem sets)

e Accordingly: Define radius of curvature as 1/x2.

e Osculating circle:

* Radius: 1 /K2
- Center:f(t)-kinormal(t)
K2
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Theorems

Definition:
e Rigid motion: x —> Ax+b with orthogonal A

= Orientation preserving (no mirroring) if det(A) = +1
= Mirroring leads to det(A) = -1

Theorems for plane curves:

e Curvature is invariant under rigid motion
= Absolute value is invariant

= Signed value is invariant for orientation preserving rigid motion

e Two unit speed parameterized curves with identical
sighed curvature function differ only in a orientation
preserving rigid motion.

Geometric Modeling Summer Semester 2010 — Mathematical Tools 46 / 76



Space Curves

General case: Curvature of a Curve Cc R”

e W.l.o.g.: Assume we are given a unit-speed
parametrization f of C

e The curvature of C at parameter value t is defined as:

k() =|f"(t)

e For a general, regular curve C < R3 (any regular
parametrization):

K(t) = |f(£)x f';(t)”
@)
« General curvature is unsigned e (e
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Torsion

Characteristics of Space Curves in R3:

e Curvature not sufficient

e Curve may “bend” in space

e Curvature is a 2nd order property
e 2nd order curves are always flat

= Quadratic curves are specified by 3 points in space,
which always lie in a plane

= Cannot capture out-of-plane bends

Missing property: Torsion
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Torsion

Definition:

o Let f be a regular parametrization of a curve Cc R?3 with
non-zero curvature

e The torsion of f at t is defined as

T(t) = fOxf(0)- f() _ det(f'(), f"(t), £ ()
@< e |F©x e
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lllustration

()= det (f'(t),f”(t),f'z"(t))
f(t) JAGEYHG|
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Theorem

Fundamental Theorem of Space Curves

e Two unit speed parameterized curves C < R? with
identical, positive curvature and identical torsion are
identical up to a rigid motion.
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Part Il: Surfaces



Parametric Patches

Parametric Surface Patches:
A smoothly differentiable function

fi RPoQ—>R"
describes a parametric surface patch

P=f(Q), PcR".
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Parametric Patches

Parametric Surface Patches:

d
* The vectors tangent , (r)=— f(x, +tr)=V,f(x,) are tangent
vectors of the surface. In particular, there are canonical
tangents 0, f(u,v), 0, f(u,v) in principal parameter
directions.

e Regular parametrization: 0,f, 0,f linearly independent.

e For a regularly parametrized patch in R3, the unit normal

vector is given by:
normal(u,v) = 0, f(uv)x0, f(uv)
auf(U;V)X@Vf(u,v)H
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lllustration

UA O C R PCRS ‘normal(u, V)
o,f(u,v)
/ F(u, v)
(u, )
0,f(u,v)
b
u
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Tangents

Computing Tangents:

e General tangents can be computed from principal

tangents:

tangent , (r)=Vf (XO )r =

0.f(%¢) 0,f(%X)
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Surface Area

Surface Area:
e Computation is simple

e For apatch f: R22> Q — R", integrate over a constant
function (one everywhere) over the surface area:

e Then just apply integral transformation theorem:

0,f(x)x0, f(x)|dx, x= (u)

area( P)= E[ V
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Fundamental Forms

Fundamental Forms:
e Describe the local parametrized surface

e Measure...
= ...distortion of length (first fundamental form)

= ...surface curvature (second fundamental form)

e Parametrization independent surface curvature
measures will be derived from this

Geometric Modeling Summer Semester 2010 — Mathematical Tools 58 /76



First Fundamental Form

First Fundamental Form
e Also known as metric tensor.
e Given a regular parametric patch f: R?> Q — R3.
e fwill distort angles and distances

 We will look at a local first order Taylor approximation to
measure the effect:

)~ (%) + V(%) =%, ) 0uf )
 Length changes become visible ‘_/_\ Z

X
in the scalar product... Ouf (o
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First Fundamental Form

First Fundamental Form

e First order Taylor approximation: Ouf (o)
FX)~ £(X)+ V(X & - X, ) ‘/\ Z
X, f(x,) 0, f (%)

e Scalar product of vectors a, b € R?:
(f(xq+2) = f(x), f(x, +b) = f(x,)) = (Vf(x,)a,Vf(x,)b)
=a"(V/(x,)" V/(x,))b

first ﬁmda;rflental form

, fla+x,)
N

Xo u f(xo)
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First Fundamental Form

First Fundamental Form

e The first fundamental form can be written as a
2 X 2 matrix:

o.fo.f 0,f0.f E F
VvV TV _| u u u v - T -
e The matrix is symmetric and positive definite

(for a regular parametrization)

e Defines a generalized scalar product that measures
lengths and angles on the surface.
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Second Fundamental Form

Problems:
e The first fundamental form measures length changes only
e A cylinder looks like a flat sheet in this view
 We need a tool to measure curvature of a surface as well

e Again, we will need second order information
(any first order approximation is inherently flat)
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Second Fundamental Form

Definition:
e Given a regular parametric patch f: R?> Q2 — R3.

e The second fundamental form (also known as shape
operator, or curvature tensor) is the matrix:

auuf(XO)'n auvf(xoyn)

S(XO):Eauvf(XO)'n avvf(XO)°n

e Notation:

auuf(XO)'n auvf(Xo)°n
Ouf(X,)m O f(x,)m )

I(x,y)= XT£
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Second Fundamental Form

Basic Idea:
e Compute second derivative vectors

e Project in normal direction (remove tangential
acceleration)
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Alternative Computation

Alternative Formulation (Gauss):
e Local height field parameterization f(x,y) = z

e Orthonormal x,y coordinates tangential to surface,
z in normal direction, origin at zero

e 2nd ordelr Taylor representation:
f®= o XX+ SOx+Hf(0)
0
= ex2 +2fxy+ gy2
e Second fundamental form: Matrix of second derivatives

Ouf Ouf __[8 f)
0,f 0,f) \f g
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Basic Idea

In other words:

e The first fundamental form is the
linear part (squared) of local
Taylor approximation.

e The second fundamental form is
the quadratic part of a local
qguadratic approximation of the

heightfield

e The matrix is symmetric. So next
thing to try is eigenanalysis, of
course...
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Principal Curvature

Eigenanalysis:
e The eigenvalues of the shape operator for an orthonormal
tangent basis are called principal curvatures k4, K,.

e The corresponding eigenvectors (which are orthogonal)
are called principal directions of curvature.

e Again, we get different cases...:

e
il
S\

4
e ’W/

\

K
Wt
(i
i
/]

Wi v
W /4‘//
l"'ll #/

K, >0 K,>0,k;,<0 K,=0,%x;,>0 K,=0,x,=0
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Normal Curvature

Definition:

e The normal curvature k(r) in direction r for a unit length
direction vector r at parameter position x, is given by:

k, (r)=IL_(r,r)=r S(x,)r

Relation to Curvature of Plane Curves: normaf

e Intersect the surface locally with plane
spanned by normal and r through point x,,.

e The curvature of the curve at x, is equal
to the normal curvature up to its sign.
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Principal Curvatures

Relation to principal curvature:

e The maximum principal cuvature k, is the maximum of
the normal curvature

e The minimum principal cuvature k, is the minimum of the
normal curvature
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Gaussian & Mean Curvature

More Definitions:

e The Gaussian curvature K is the product of the principal
curvatures: K = KK,

e The mean curvature H is the average: H=0.5-(k, + K,)

Theorems:
* K(x,)= det(S(Xo )): Z'%_—]};Z
eG-2fF +gE
2(EG-F?)

* H(x,)= %tr(S(xo)):
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Global Properties

Definition:

e Anisometry is a mapping between surfaces that preserves
distances on the surface (geodesics)

e A developable surface is a surface with Gaussian curvature
zero everywhere (i.e. no curvature in at least one
direction)

= Examples: Cylinder, Cone, Plane

e A developable surface can be locally mapped to a plane
isometrically (flattening out, unroll).
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Theorema Egregium

Theorema egregium (Gauss):

 Any isometric mapping preservers Gaussian curvature, i.e.
Gaussian curvature is invariant under isometric maps
(“intrinsic surface property”)

e Consequence: The earth (= sphere) cannot be mapped to
a plane in an exactly length preserving way.
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Gauss Bonnet Theorem

Gauss Bonnet Theorem:

For a compact, orientable surface without boundary in R3, the
area integral of the Gauss curvature is related to the genus g
of the surface:

jK(x)dx = 47t(1 —g)

g=0 g=1
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Fundamental Theorem of Surfaces

Theorem:

e Given two parametric patches in R3 defined on the same
domain Q.

e Assume that the first and second fundamental form are
identical.

e Then there exists a rigid motion that maps on surface to
the other.
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Summary

Objects are the same up to a rigid motion, if...:
e Curves R — R?: Same speed, same curvature
e Curves R — R3: Same speed, same curvature, torsion
e Surfaces R? — R3: Same first & second fundamental form
e VVolumetric Objects R3® — R3: Same first fundamental form

L1 s> Lifes
| | §> / | :/,—
1150 -
“\_/ L\ ‘ y: : 4
plane curve space curve surface space warp
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Deformation Models

What if this does not hold?

e Deviation in fundamental forms is a measure of

deformation

e Example: Surfaces
= Diagonals of I - I,: scaling (stretching)
= Off-diagonals of I; - I,: sheering
= Elements of Il - II,: bending

e This is the basis of deformation models.

—

Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically
Deformable Models. In: Siggraph '87 Conference Proceedings (Computer

Graphics 21(4)), 1987.

A

> —
A
—
)
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