Geometric Modeling

Summer Semester 2010

Mathematical Tools (2)

Recap: Analysis · Differential Geometry

Today...

Topics:

- Mathematical Background
 - Linear algebra
 - Analysis & differential geometry

Overview

Analysis

- Multi-dimensional differentiation
- Multi-dimensional integration

Differential Geometry

- Length, area, volume
- Curvature of curves and surfaces

Recap: Analysis

Multi-Dimensional Differentiation

Derivative of a Function

Reminder: The *derivative* of a function is defined as

$$\frac{d}{dt}f(t) := \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

If this limit exists, the function is called differentiable (on the set, on which the limit converges).

Other notation:

$$\frac{d}{dt}f(t) = \underbrace{f'(t)}_{\text{in case the reference is clear from the context}} = \underbrace{\dot{f}(t)}_{\text{in case the variable is the time}}$$

Repeated Differentiation

Multiple Differentiation:

The differentiation operation can be applied repeatedly:

$$\frac{d^{2}}{dt^{2}}f(t) = f''(t) = \ddot{f}(t) = \lim_{h \to 0} \frac{f(t+h) - 2f(t) + f(t-h)}{h^{2}}$$

$$\frac{d^{k}}{dt^{k}}f(t) = f^{(k)}(t)$$

• A function that can be k-times differentiated resulting in a smooth function belongs to the set \mathbb{C}^k .

Abuse of notation: C⁰ means just smoothness. C⁻¹ means "not even smooth".

Taylor Approximation

Smooth functions can be approximated locally:

•
$$f(x) \approx f(x_0)$$

+ $\frac{d}{dx} f(x_0)(x - x_0)$
+ $\frac{1}{2} \frac{d^2}{dx^2} f(x_0)(x - x_0)^2 + \dots$
... + $\frac{1}{k!} \frac{d^k}{dx^k} f(x_0)(x - x_0)^k + O(x^{k+1})$

- Guaranteed to converge globally for holomorphic functions
- Usually a good local approximation for smooth functions

Partial Derivative

If a function depends on more than one variable:

The notation changes: (but the rest remains the same)

use curly-d
$$\frac{\partial}{\partial x_{k}} f(x_{1},...,x_{k-1},x_{k},x_{k+1},...,x_{n}) := \lim_{h \to 0} \frac{f(x_{1},...,x_{k-1},x_{k}+h,x_{k+1},...,x_{n}) - f(x_{1},...,x_{k-1},x_{k},x_{k+1},...,x_{n})}{h}$$

- Derivative in one direction \mathbf{x}_k only, other variables remain constant.
- This is called a partial derivative. Other notation:

$$\frac{\partial}{\partial x_k} f(\mathbf{x}) = \partial_k f(\mathbf{x}) = f_{x_k}(\mathbf{x})$$

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("heightfield")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("heightfield")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Gradient

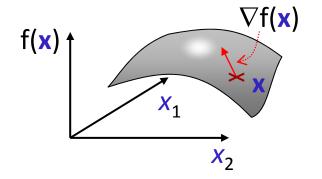
Gradient:

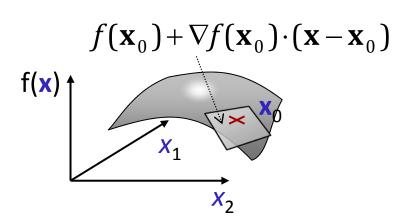
- Given a function $f: \mathbb{R}^n \to \mathbb{R}$ ("heightfield")
- The vector of all partial derivatives of f is called the gradient:

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix} f(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} f(\mathbf{x}) \end{pmatrix}$$

Gradient

Gradient:





- The gradient is a vector that points in the direction of steepest ascent.
- Local linear approximation (first order Taylor approx.):

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

• These are all heightfields $(f: \mathbb{R}^n \to \mathbb{R})$

Higher Order Derivatives

Higher order Derivatives:
• Can do all combinations:
$$\left(\frac{\partial}{\partial x_{i_1}} \frac{\partial}{\partial x_{i_2}} ... \frac{\partial}{\partial x_{i_k}}\right) f$$

• Order does not matter for $f \in C^k$

Hessian Matrix

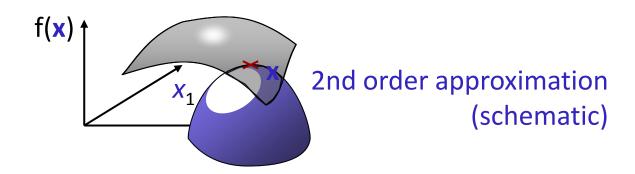
Higher order Derivatives:

Important special case: Second order derivative

$$\begin{pmatrix}
\frac{\partial^{2}}{\partial x_{1}^{2}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}} & \cdots & \frac{\partial}{\partial x_{n}} & \frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial^{2}}{\partial x_{1}^{2}} & \cdots & \frac{\partial}{\partial x_{n}} & \frac{\partial}{\partial x_{2}} \\
\vdots & & \ddots & \vdots \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{n}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{n}} & \cdots & \frac{\partial^{2}}{\partial x_{n}^{2}}
\end{pmatrix} f(\mathbf{x}) =: H_{f}(\mathbf{x})$$

• "Hessian" matrix (symmetric for $f \in C^2$)

Taylor Approximation



Second order Taylor approximation:

Fit a paraboloid to a general function

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\mathrm{T}} \cdot H_f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0)$$

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("heightfield")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

Derivatives of Curves

Derivatives of vector valued functions:

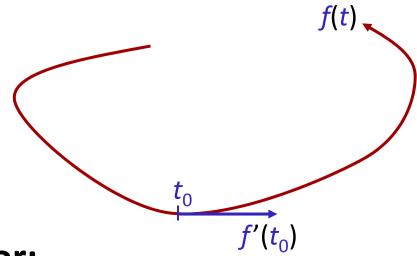
• Given a function $f: \mathbb{R} \to \mathbb{R}^n$ ("curve")

$$f(t) = \begin{pmatrix} f_1(t) \\ \vdots \\ f_n(t) \end{pmatrix}$$

We can compute derivatives for every output dimension:

$$\frac{d}{dt}f(t) := \begin{pmatrix} \frac{d}{dt}f_1(t) \\ \vdots \\ \frac{d}{dt}f_n(t) \end{pmatrix} =: f'(t) =: \dot{f}(t)$$

Geometric Meaning



Tangent Vector:

- f' is a vector in tangent direction
- If *f* describes the motion of a physical particle, *f* is its velocity vector.
- Higher order derivatives: Again vector functions
- The second derivative \ddot{f} is the acceleration vector.

Special Cases

Derivatives for:

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("heightfield")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

You can combine it...

General case:

• Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$ ("space warp")

$$f(\mathbf{x}) = f((x_1, \dots, x_n)) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix}$$

- Maps points in space to other points in space
- Now we can compute derivatives of all output components of f in all input directions.
- This is called the Jacobian matrix, usually still denoted by ∇, like the gradient

Jacobian Matrix

Jacobian Matrix:

$$\nabla f(\mathbf{x}) = J_f(\mathbf{x}) = \nabla f(x_1, \dots, x_n)$$

$$= \begin{pmatrix} \nabla f_1(x_1, \dots, x_n)^{\mathrm{T}} \\ \vdots \\ \nabla f_m(x_1, \dots, x_n)^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \partial_{x_1} f_1(\mathbf{x}) & \cdots & \partial_{x_n} f_1(\mathbf{x}) \\ \vdots & & \vdots \\ \partial_{x_1} f_m(\mathbf{x}) & \cdots & \partial_{x_n} f_m(\mathbf{x}) \end{pmatrix}$$

Use in a first-order Taylor approximation:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + J_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$$

$$\uparrow$$
matrix / vector
product

Recap: Analysis

Properties of Multi-Dimensional Derivatives

Coordinate Systems

Problem:

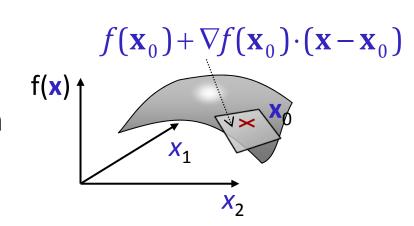
- What happens, if the coordinate system changes?
- Partial derivatives go into different directions then.
- Do we get the same result?

Total Derivative

First order Taylor approx.:

- $f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} \mathbf{x}_0) + R_{x_0}(\mathbf{x})$
- If this converges to the function with first order, i.e.

$$\lim_{\mathbf{x}\to\mathbf{x}_0}\frac{R_{\mathbf{x}_0}(\mathbf{x})}{\|\mathbf{x}-\mathbf{x}_0\|}=0,$$



the function is called *totally differentiable*.

- This means, the function can be locally well-approximated with a linear function.
- Every C¹ function $f: \mathbb{R}^n \to \mathbb{R}^m$ is totally differentiable

Partial Derivatives

Consequences:

- A linear function is fully determined by the image of a basis (a linear independent set)
- This means: The directions of partial derivatives do not matter – this is just a basis transform.
- We can use any linear independent set of directions T and transform to standard basis by multiplying with T⁻¹.

Directional Derivative

The directional derivative is defined as:

- Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$, and a direction $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \neq \mathbf{0}$.
- Then the directional derivative of f in direction v is given by:

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{v}}(\mathbf{x}) := \frac{d}{dt} f(\mathbf{x} + t\mathbf{v})$$

• In case of total differentiability, the directional derivative can be computed using the Jacobian matrix:

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Rules of Thumb

Rules of Thumb

- " ∇ " means differentiation (everything by everything)
 - Might be a scalar $(1D\rightarrow 1D)$,
 - a vector $(kD\rightarrow 1D, 1D\rightarrow kD)$, or
 - a matrix $(nD \rightarrow mD)$.
- "Jacobian" means "∇"
- Higher order derivatives:
 - Can combine directions $\partial x \partial y \partial z...$
 - Order (usually) does not matter (continuity of deriv. sufficient)
 - Hessian matrix: 2nd order derivative (kD→1D)

Rules of Thumb

More Rules of Thumb

- Coordinate system (usually) does not matter
- The derivative is just local linear approximation
 - We can compute this in different (linear independent) directions
 - Do a basis transform to change coordinates
 - To evaluate in a single direction: Multiply Jacobian matrix (first order derivative) with unit direction vector.

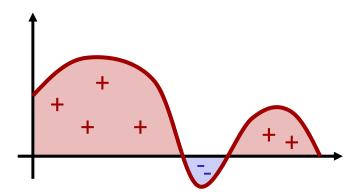
Recap: Analysis

Multi-Dimensional Integration

Integral

Integral of a function

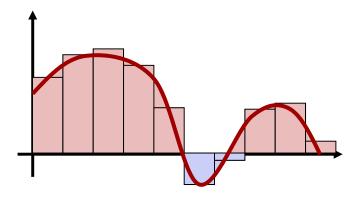
- Given a function $f: \mathbb{R} \to \mathbb{R}$
- The integral $\int_{a}^{b} f(t)dt$ measures the signed area under the curve:



Integral

Numerical Approximation

Sum up a series of approximate shapes

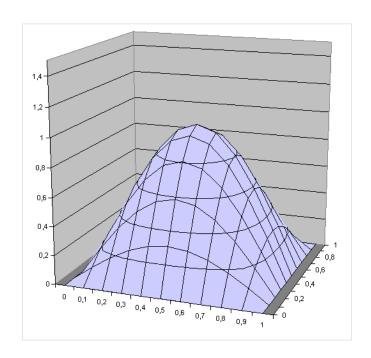


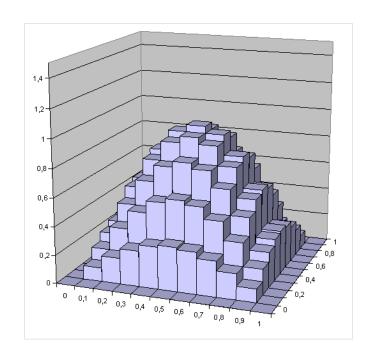
• (Riemannian) Definition: limit for baseline \rightarrow zero

Multi-Dimensional Integral

Integration in higher dimensions

- Same idea.
- Consider functions $f: \mathbb{R}^n \to \mathbb{R}$
- Tessellate domain and sum up volume of cuboids



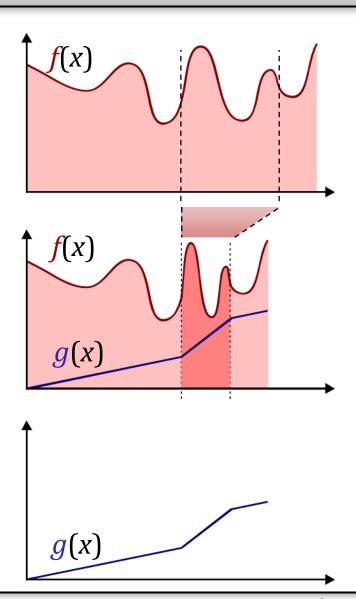


Integral Transformations

Integration by substitution:

$$\int_{a}^{b} f(x)dx = \int_{g^{-1}(a)}^{g^{-1}(b)} f(g(t))g'(t)dt$$

Need to compensate for speed of movement that shrinks the measured area.

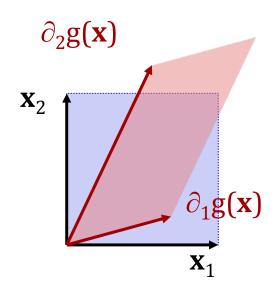


Multi-Dimensional Substitution

Transformation of Integrals:

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{g^{-1}(\Omega)} f(g(\mathbf{y})) |\det(\nabla g(\mathbf{y}))| d\mathbf{y}$$

- $g \in \mathbb{C}^1$, invertible
- Jacobian approximates local behavior of g() (linear consistency sufficient)



- Determinant computes local area/volume change
- In particular: $|\det(\nabla g(\mathbf{y}))| = 1$ means g() is area/volume conserving.

Differential Geometry

of Curves & Surfaces (Overview)

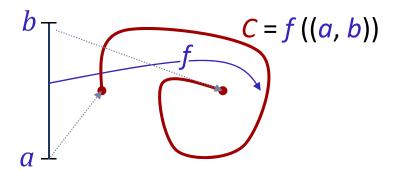
Part I: Curves

Parametric Curves

Parametric Curves:

A differentiable function

$$f: (a, b) \rightarrow \mathbb{R}^n$$



describes a *parametric curve*

$$C = f((a, b)), C \subseteq \mathbb{R}^n$$
.

- The parametrization is called *regular* if $f'(t) \neq 0$ for all t.
- If $||f'(t)|| \equiv 1$ for all t, f is called a *unit-speed* parametrization of the curve C.

Length of a Curve

The length of a curve:

The length of a regular curve C is defined as:

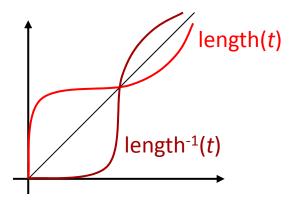
length(
$$C$$
) = $\int_{a}^{b} ||f'(t)|| dt$

- This definition is independent of the parametrization (integral transformation theorem).
- Alternatively, the length of the curve can be defined as length(C) = |b a| for a unit-speed parametrization C = f((a, b)); this obviously yields the same result.

Reparametrization

Enforcing unit-speed parametrization:

- Assume: $||f'(t)|| \neq 0$ for all t.
- We have: $\operatorname{length}(C) = \int_{a}^{b} ||f'(t)|| dt \quad \text{(invertible, because } f'(t) > 0\text{)}$
- Concatenating $f \circ length^{-1}(C)$ yields a unit-speed parametrization of the curve



Tangents

Unit Tangents:

• The unit tangent vector at $x \in (a, b)$ is given by:

tangent(
$$t$$
) = $\frac{f'(t)}{\|f'(t)\|}$

• For curves $C \subseteq \mathbb{R}^2$, the unit normal vector of the curve is defined as:

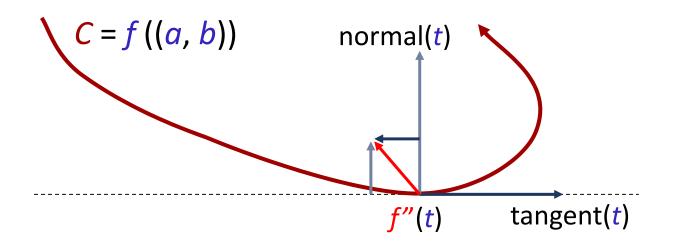
normal
$$(t) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \frac{f'(t)}{\|f'(t)\|}$$

Curvature

Curvature:

- First derivatives show curve direction / speed of movement.
- Curvature is encoded in 2nd order information.
- Why not just use f''?
- Two problems:
 - Depends on parametrization (different velocity yields different results)
 - Have to distinguish between acceleration in tangential and nontangential directions.

Curvature & 2nd Derivatives



Definition of curvature

- We want only the non-tangential component of f''.
- Braking / accelerating does not matter for curvature of the traced out curve C.
- Need to normalize speed.

Curvature

Curvature of a Curve $C \in \mathbb{R}^2$:

$$\kappa 2(t) = \frac{\left\langle f''(t), \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} f'(t) \right\rangle}{\left\| f'(t) \right\|^3}$$

- Normalization factor:
 - Divide by ||f'|| to obtain unit tangent vector
 - Divide again twice to normalize f''
 - Taylor expansion / chain rule:

$$f(\lambda t) = f(t_0) + \lambda f'(t_0)(t - t_0) + \frac{1}{2}\lambda^2 f''(t)(t - t_0)^2 + O(t^3)$$

Second derivative scales quadratically with speed

Unit-speed parametrization

Unit-speed parametrization:

- Assume a unit-speed parametrization, i.e. $||f'|| \equiv 1$.
- Then, κ2 simplifies to:

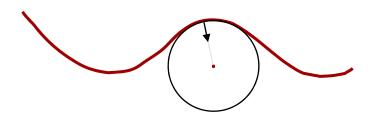
$$\mathbf{\kappa 2}(t) = \left\| f''(t) \right\|$$

Radius of Curvature

Easy to see:

- Curvature of a circle is constant, $\kappa 2 \equiv \pm 1/r$ (r = radius). (see problem sets)
- Accordingly: Define radius of curvature as $1/\kappa 2$.
- Osculating circle:

 - Radius: $1/\kappa 2$ Center: $f(t) + \frac{1}{\kappa 2} normal(t)$



Theorems

Definition:

- Rigid motion: $x \rightarrow Ax+b$ with orthogonal A
 - Orientation preserving (no mirroring) if det(A) = +1
 - Mirroring leads to det(A) = -1

Theorems for plane curves:

- Curvature is invariant under rigid motion
 - Absolute value is invariant
 - Signed value is invariant for orientation preserving rigid motion
- Two unit speed parameterized curves with identical signed curvature function differ only in a orientation preserving rigid motion.

Space Curves

General case: Curvature of a Curve $C \subseteq \mathbb{R}^n$

- W.l.o.g.: Assume we are given a unit-speed parametrization f of C
- The *curvature* of C at parameter value t is defined as: $\kappa(t) = ||f''(t)||$
- For a general, regular curve $C \subseteq \mathbb{R}^3$ (any regular parametrization):

$$\mathbf{\kappa}(t) = \frac{\left\| f'(t) \times f''(t) \right\|}{\left\| f'(t) \right\|^3}$$

General curvature is unsigned

Torsion

Characteristics of Space Curves in \mathbb{R}^3 :

- Curvature not sufficient
- Curve may "bend" in space
- Curvature is a 2nd order property
- 2nd order curves are always flat
 - Quadratic curves are specified by 3 points in space,
 which always lie in a plane
 - Cannot capture out-of-plane bends
- Missing property: Torsion

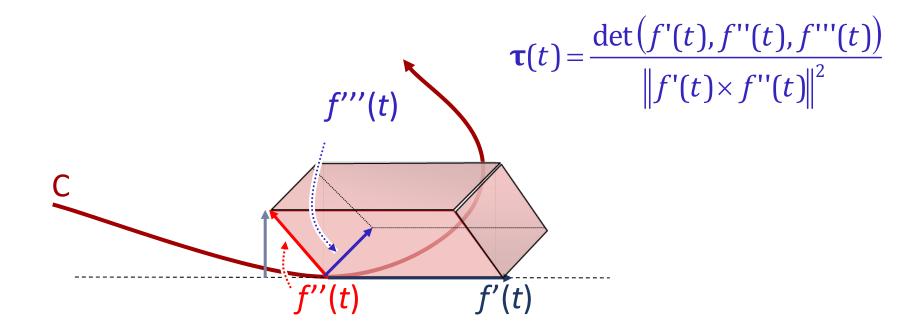
Torsion

Definition:

- Let f be a regular parametrization of a curve $\mathbb{C} \subseteq \mathbb{R}^3$ with non-zero curvature
- The torsion of f at t is defined as

$$\mathbf{\tau}(t) = \frac{f'(t) \times f''(t) \cdot f'''(t)}{\|f'(t) \times f''(t)\|^2} = \frac{\det(f'(t), f''(t), f'''(t))}{\|f'(t) \times f''(t)\|^2}$$

Illustration



Theorem

Fundamental Theorem of Space Curves

• Two unit speed parameterized curves $C \subseteq \mathbb{R}^3$ with identical, positive curvature and identical torsion are identical up to a rigid motion.

Part II: Surfaces

Parametric Patches

Parametric Surface Patches:

A smoothly differentiable function

$$f: \mathbb{R}^2 \supset \Omega \to \mathbb{R}^n$$

describes a parametric surface patch

$$P = f(\Omega), P \subseteq \mathbb{R}^n$$
.

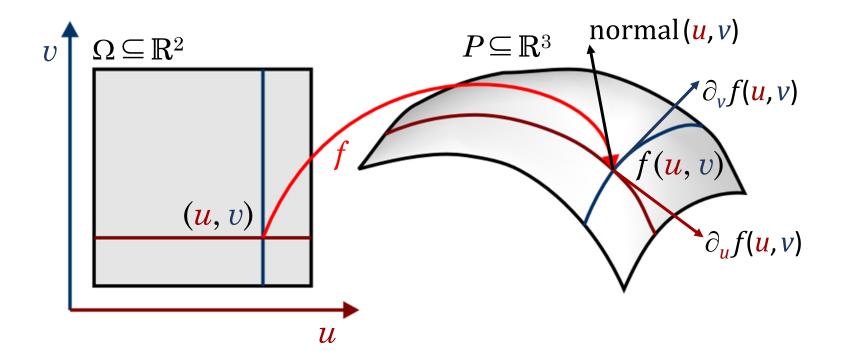
Parametric Patches

Parametric Surface Patches:

- The vectors tangent $_{\mathbf{x}_0}(r) = \frac{d}{dt} f(\mathbf{x}_0 + t\mathbf{r}) = \nabla_{\mathbf{r}} f(\mathbf{x}_0)$ are *tangent vectors* of the surface. In particular, there are canonical tangents $\partial_u f(u,v)$, $\partial_v f(u,v)$ in principal parameter directions.
- Regular parametrization: $\partial_{u}f$, $\partial_{v}f$ linearly independent.
- For a regularly parametrized patch in \mathbb{R}^3 , the unit normal vector is given by: $\partial_u f(u,v) \times \partial_v f(u,v)$

$$\operatorname{normal}(u,v) = \frac{\partial_{u} f(u,v) \times \partial_{v} f(u,v)}{\|\partial_{u} f(u,v) \times \partial_{v} f(u,v)\|}$$

Illustration



Tangents

Computing Tangents:

 General tangents can be computed from principal tangents:

tangent
$$\mathbf{x}_0(\mathbf{r}) = \nabla f(\mathbf{x}_0)\mathbf{r} = \begin{pmatrix} & & & \\ & \partial_u f(\mathbf{x}_0) & \partial_v f(\mathbf{x}_0) \end{pmatrix} \begin{pmatrix} r_u \\ r_v \end{pmatrix}$$

Surface Area

Surface Area:

- Computation is simple
- For a patch $f: \mathbb{R}^2 \supseteq \Omega \to \mathbb{R}^n$, integrate over a constant function (one everywhere) over the surface area:
- Then just apply integral transformation theorem:

area
$$(P) = \int_{\Omega} \|\partial_u f(\mathbf{x}) \times \partial_u f(\mathbf{x})\| d\mathbf{x}, \ \ x = \begin{pmatrix} u \\ v \end{pmatrix}$$

Fundamental Forms

Fundamental Forms:

- Describe the local parametrized surface
- Measure...
 - ...distortion of length (first fundamental form)
 - ...surface curvature (second fundamental form)
- Parametrization independent surface curvature measures will be derived from this

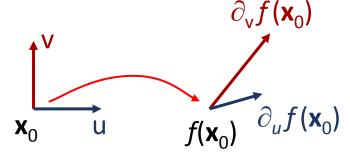
First Fundamental Form

First Fundamental Form

- Also known as metric tensor.
- Given a regular parametric patch $f: \mathbb{R}^2 \supseteq \Omega \to \mathbb{R}^3$.
- f will distort angles and distances
- We will look at a local first order Taylor approximation to measure the effect:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$$

 Length changes become visible in the scalar product...



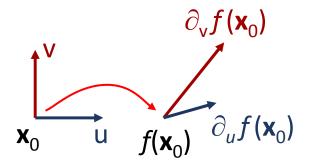
First Fundamental Form

First Fundamental Form

First order Taylor approximation:

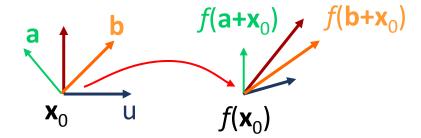
$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0)$$

• Scalar product of vectors a, $b \in \mathbb{R}^2$:



$$\left\langle f(\mathbf{x}_0 + \mathbf{a}) - f(\mathbf{x}_0), f(\mathbf{x}_0 + \mathbf{b}) - f(\mathbf{x}_0) \right\rangle \approx \left\langle \nabla f(\mathbf{x}_0) \mathbf{a}, \nabla f(\mathbf{x}_0) \mathbf{b} \right\rangle$$

$$= \mathbf{a}^{\mathrm{T}} \left(\nabla f(\mathbf{x}_0)^{\mathrm{T}} \nabla f(\mathbf{x}_0) \right) \mathbf{b}$$
first fundamental form



First Fundamental Form

First Fundamental Form

 The first fundamental form can be written as a 2 × 2 matrix:

$$(\nabla f^{\mathsf{T}} \nabla f) = \begin{pmatrix} \partial_{\mathbf{u}} f \partial_{\mathbf{u}} f & \partial_{\mathbf{u}} f \partial_{\mathbf{v}} f \\ \partial_{\mathbf{u}} f \partial_{\mathbf{v}} f & \partial_{\mathbf{v}} f \partial_{\mathbf{v}} f \end{pmatrix} = : \begin{pmatrix} E & F \\ F & G \end{pmatrix} \qquad \mathbf{I}(\mathbf{x}, \mathbf{y}) := \mathbf{x}^{\mathsf{T}} (\nabla f^{\mathsf{T}} \nabla f) \mathbf{y}$$

- The matrix is symmetric and positive definite (for a regular parametrization)
- Defines a *generalized scalar product* that measures lengths and angles *on the surface*.

Second Fundamental Form

Problems:

- The first fundamental form measures length changes only
- A cylinder looks like a flat sheet in this view
- We need a tool to measure curvature of a surface as well
- Again, we will need second order information (any first order approximation is inherently flat)

Second Fundamental Form

Definition:

- Given a regular parametric patch $f: \mathbb{R}^2 \supseteq \Omega \to \mathbb{R}^3$.
- The second fundamental form (also known as shape operator, or curvature tensor) is the matrix:

$$S(\mathbf{x}_0) = \begin{pmatrix} \partial_{\mathbf{u}\mathbf{u}} f(\mathbf{x}_0) \cdot \mathbf{n} & \partial_{\mathbf{u}\mathbf{v}} f(\mathbf{x}_0) \cdot \mathbf{n} \\ \partial_{\mathbf{u}\mathbf{v}} f(\mathbf{x}_0) \cdot \mathbf{n} & \partial_{\mathbf{v}\mathbf{v}} f(\mathbf{x}_0) \cdot \mathbf{n} \end{pmatrix}$$

Notation:

$$\mathbf{II}(\mathbf{x},\mathbf{y}) = \mathbf{x}^{\mathrm{T}} \begin{pmatrix} \partial_{\mathbf{u}\mathbf{u}} f(\mathbf{x}_{0}) \cdot \mathbf{n} & \partial_{\mathbf{u}\mathbf{v}} f(\mathbf{x}_{0}) \cdot \mathbf{n} \\ \partial_{\mathbf{u}\mathbf{v}} f(\mathbf{x}_{0}) \cdot \mathbf{n} & \partial_{\mathbf{v}\mathbf{v}} f(\mathbf{x}_{0}) \cdot \mathbf{n} \end{pmatrix} \mathbf{y}$$

Second Fundamental Form

Basic Idea:

- Compute second derivative vectors
- Project in normal direction (remove tangential acceleration)

Alternative Computation

Alternative Formulation (Gauss):

- Local height field parameterization f(x,y) = z
- Orthonormal x,y coordinates tangential to surface, z in normal direction, origin at zero

• 2nd order Taylor representation:

$$f(\mathbf{x}) \approx \frac{1}{2} \underbrace{\mathbf{x}^{\mathrm{T}} f''(\mathbf{x}) \mathbf{x}}_{= ex^{2} + 2fxy + gy^{2}} + \underbrace{f'(\mathbf{x}) \mathbf{x} + f(0)}_{0}$$

Second fundamental form: Matrix of second derivatives

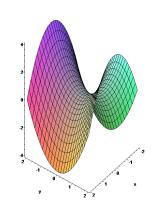
$$\begin{pmatrix} \partial_{xx} f & \partial_{xy} f \\ \partial_{xy} f & \partial_{yy} f \end{pmatrix} =: \begin{pmatrix} e & f \\ f & g \end{pmatrix}$$

Basic Idea

In other words:

- The first fundamental form is the linear part (squared) of local Taylor approximation.
- The second fundamental form is the quadratic part of a local quadratic approximation of the heightfield
- The matrix is symmetric. So next thing to try is eigenanalysis, of course...

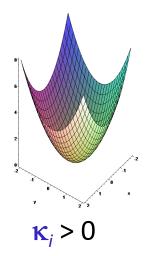


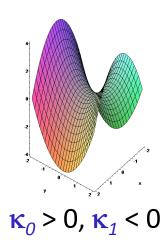


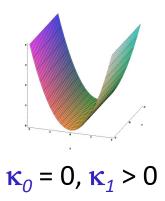
Principal Curvature

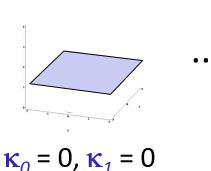
Eigenanalysis:

- The eigenvalues of the shape operator for an orthonormal tangent basis are called *principal curvatures* κ_1 , κ_2 .
- The corresponding eigenvectors (which are orthogonal) are called principal directions of curvature.
- Again, we get different cases...:









Normal Curvature

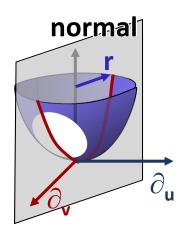
Definition:

• The *normal curvature* $\mathbf{k}(\mathbf{r})$ in direction \mathbf{r} for a unit length direction vector \mathbf{r} at parameter position \mathbf{x}_0 is given by:

$$\mathbf{k}_{\mathbf{x}_0}(\mathbf{r}) = \mathbf{II}_{\mathbf{x}_0}(\mathbf{r},\mathbf{r}) = \mathbf{r}^{\mathrm{T}}\mathbf{S}(\mathbf{x}_0)\mathbf{r}$$

Relation to Curvature of Plane Curves:

- Intersect the surface locally with plane spanned by normal and r through point x₀.
- The curvature of the curve at x_0 is equal to the normal curvature up to its sign.



Principal Curvatures

Relation to principal curvature:

- The maximum principal cuvature κ_1 is the maximum of the normal curvature
- The minimum principal cuvature κ_2 is the minimum of the normal curvature

Gaussian & Mean Curvature

More Definitions:

- The Gaussian curvature K is the product of the principal curvatures: $K = \kappa_1 \kappa_2$
- The mean curvature H is the average: $H = 0.5 \cdot (\kappa_1 + \kappa_2)$

Theorems:

•
$$K(\mathbf{x}_0) = \det(S(x_0)) = \frac{eg - f^2}{EG - F^2}$$

•
$$H(\mathbf{x}_0) = \frac{1}{2} \operatorname{tr}(S(x_0)) = \frac{eG - 2fF + gE}{2(EG - F^2)}$$

Global Properties

Definition:

- An isometry is a mapping between surfaces that preserves distances on the surface (geodesics)
- A developable surface is a surface with Gaussian curvature zero everywhere (i.e. no curvature in at least one direction)
 - Examples: Cylinder, Cone, Plane
- A developable surface can be locally mapped to a plane isometrically (flattening out, unroll).

Theorema Egregium

Theorema egregium (Gauss):

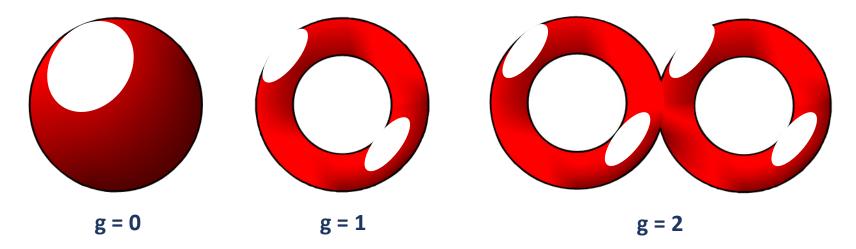
- Any isometric mapping preservers Gaussian curvature, i.e. Gaussian curvature is invariant under isometric maps ("intrinsic surface property")
- Consequence: The earth (≈ sphere) cannot be mapped to a plane in an exactly length preserving way.

Gauss Bonnet Theorem

Gauss Bonnet Theorem:

For a compact, orientable surface without boundary in \mathbb{R}^3 , the area integral of the Gauss curvature is related to the genus g of the surface:

$$\int_{S} K(x)dx = 4\pi(1-g)$$



Fundamental Theorem of Surfaces

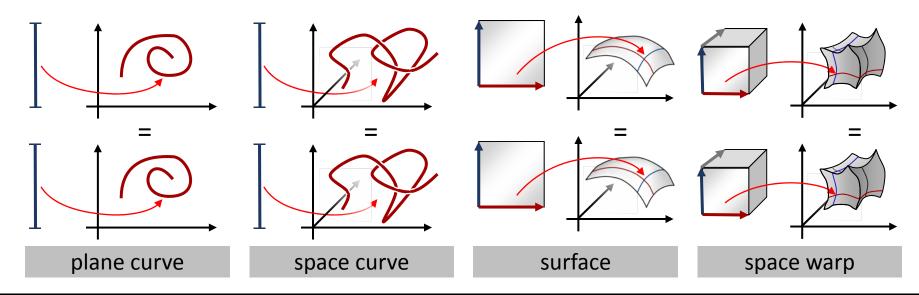
Theorem:

- Given two parametric patches in \mathbb{R}^3 defined on the same domain Ω .
- Assume that the first and second fundamental form are identical.
- Then there exists a rigid motion that maps on surface to the other.

Summary

Objects are the same up to a rigid motion, if...:

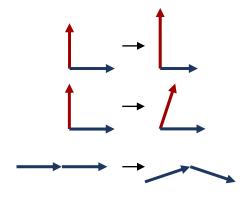
- Curves $\mathbb{R} \to \mathbb{R}^2$: Same *speed*, same *curvature*
- Curves $\mathbb{R} \to \mathbb{R}^3$: Same *speed*, same *curvature*, *torsion*
- Surfaces $\mathbb{R}^2 \to \mathbb{R}^3$: Same *first* & *second* fundamental form
- Volumetric Objects $\mathbb{R}^3 \to \mathbb{R}^3$: Same *first* fundamental form



Deformation Models

What if this does not hold?

- Deviation in fundamental forms is a measure of deformation
- Example: Surfaces
 - Diagonals of I₁ I₂: scaling (stretching)
 - Off-diagonals of I₁ I₂: sheering
 - Elements of II₁ II₂: bending
- This is the basis of deformation models.



Reference: D. Terzopoulos, J. Platt, A. Barr, K. Fleischer: Elastically Deformable Models. In: *Siggraph '87 Conference Proceedings (Computer Graphics 21(4))*, 1987.