Rational Spline Curves

Projective Geometry · Rational Bezier Curves · NURBS
Overview...

Topics:

- Polynomial Spline Curves
- Blossoming and Polars
- Rational Spline Curves
 - Some projective geometry
 - Conics and quadrics
 - Rational Bezier Curves
 - Rational B-Splines: NURBS
Some Projective Geometry
Projective Geometry

A very short overview of projective geometry:

- The computer graphics perspective
- Formal definition
Homogeneous Coordinates

Problem:

- Linear maps (matrix multiplication in \mathbb{R}^d) can represent...
 - Rotations
 - Scaling
 - Sheering
 - Orthogonal projections
- ...but not:
 - Translations
 - Perspective projections
- This is a problem in computer graphics:
 - We would like to represent compound operations in a single, closed representation
Translations

“Quick Hack” #1: Translations

- Linear maps cannot represent translations:
 - Every linear map maps the zero vector to zero \(\mathbf{M} \mathbf{0} = \mathbf{0} \)
 - Thus, non-trivial translations are non-linear

- Solution:
 - Add one dimension to each vector
 - Fill in a one
 - Now we can do translations by adding multiples of the one:

\[
\mathbf{M} \mathbf{x} = \begin{pmatrix} r_{11} & r_{21} & t_x \\ r_{12} & r_{22} & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \\ r_{12} & r_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}
\]
Normalization

Problem: What if the last entry is not 1?

- It’s not a bug, it’s a feature...
- If the last component is not 1, divide everything by it before using the result

\[
\begin{pmatrix}
\omega x \\
\omega
\end{pmatrix}
\]

Cartesian coordinates
(Euclidian space)

\[
\frac{1}{\omega}
\begin{pmatrix}
x \\
\omega
\end{pmatrix}
\]

homogenous coordinates
(projective space)
Notation:

• The extra component is called the *homogenous component* of the vector.

• It is usually denoted by \(\omega \):
 - 2D case:
 \[
 \begin{pmatrix}
 x \\
 y
 \end{pmatrix} \rightarrow \begin{pmatrix}
 \omega x \\
 \omega y \\
 \omega
 \end{pmatrix}
 \]
 - 3D case:
 \[
 \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} \rightarrow \begin{pmatrix}
 \omega x \\
 \omega y \\
 \omega z \\
 \omega
 \end{pmatrix}
 \]
 - General case:
 \[x \rightarrow \begin{pmatrix}
 \omega x \\
 \omega
 \end{pmatrix}\]
New Feature: We can perform perspective projections

- Very useful for 3D computer graphics
- Perspective projection (central projection) involves divisions that can be packaged into the homogeneous component:

![Diagram of perspective projection](image)
Perspective Projection

Physical camera:

Virtual camera:

center of projection image plane object
Perspective Projection

Center of projection | Image plane | Object

Perspective projection: \[x' = d \frac{x}{z}, \quad y' = d \frac{y}{z} \]
Homogenous Transformation

Projection can be expressed as linear transformation in homogenous coordinates:

- Trick: Put the denominator into the ω component.

\[
x' = d \frac{x}{z}, \quad y' = d \frac{y}{z}
\]

\[
\begin{pmatrix}
x' \\
y' \\
z' \\
\omega'
\end{pmatrix} =
\begin{pmatrix}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
\omega
\end{pmatrix}
\]

- Camera placement: move scene in opposite direction
Graphics Pipeline

Graphics pipeline:

3d object (polygon) → vertices x_i → object movement $x \rightarrow M_m \cdot x$ → camera placement $x \rightarrow M_c \cdot x$ → projection $x \rightarrow M_p \cdot x$ → perspective divide $x \rightarrow x / x \cdot \omega$ → 2d image → rasterization → bitmap image

Homogenous coordinates
OpenGL Graphics Pipeline

Example: OpenGL Pipeline

- Polygon primitives (triangles)
- Vertices specified by homogenous coordinates (4 floats)
- Transformation pipeline (basically) implemented by a 4x4 matrix transformation
- Hardware accelerated: Special purpose hardware that supports rapid 4D vector operations ("vertex shader")
Formal Definition

Projective Space \(P^d \):

- Obtained by embedding the Euclidian space \(E^d \) into a \(d+1 \) dimensional Euclidian space at \(\omega = 1 \).
 (The additional dimension is usually named \(\omega \).)
- Identify all points on lines through the origin to represent the same Euclidian points.
Properties:

- Points are represented by lines through the origin.
- Consequence: scaling by common constant does not change the point \((\text{euclidian}(\lambda \mathbf{x}) = \text{euclidian}(\mathbf{x}), \lambda \neq 0) \)
- We can scale the points arbitrarily (scaling does not matter).
- Means: Division by \(\omega \) can be done at any time when multiple projective operations are performed on the projective points.
 (projective operation: map lines through the origin to lines through the origin)
Properties

Projective Maps:

- Represented by linear maps in the higher dimensional space
- Scale at any time: Linear maps are projective operations in the sense of mapping lines through the origin to lines through the origin again.

Therefore:

\[y = Mx \hat{=} \frac{Mx}{y.\omega} \hat{=} M \frac{x}{x.\omega} \quad \text{(for } \omega \neq 0) \]

Important: We have \(x \hat{=} \alpha x \), but in general: \(x + y \hat{=} x + \alpha y \)
Directions

Problem: What if $\omega = 0$?

• Again – it’s not a bug, it’s a feature
• Projective points with $\omega = 0$ do not correspond to Euclidian points
• They represent *directions*, or *points at infinity*.
• This gives a natural distinction:
 • Euclidian points: $\omega \neq 0$ in homogenous coordinates.
 • Euclidian vectors: $\omega = 0$ in homogenous coordinates.
• The difference of points yields a vector.
• Vectors can be added to points, but not (not really) points to points.
Quadrics and Conics
Modeling Wish List

We want to model:

- Circles (Surfaces: Spheres)
- Ellipses (Surfaces: Ellipsoids)
- And segments of those
- Surfaces: Objects with circular cross section
 - Cylinders
 - Cones
 - Surfaces of revolution (lathing)

These objects cannot be represented exactly (only approximated) by piecewise polynomials
Conical Sections

Classic description of such objects:

- Conical sections (conics)
- Intersections of a cone and a plane
- Resulting objects:
 - Circles
 - Ellipses
 - Hyperbolas
 - Parabolas
 - Points
 - Lines
Conic Sections

Circle, Ellipse

Hyperbola

Parabola

Line (degenerate case)

Point (degenerate case)
Implicit Form

Implicit quadrics:

- Conic sections can be expressed as zero set of a quadratic function:

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

\[\iff \mathbf{x}^T \begin{pmatrix} a & 1/2 \cdot b \\ 1/2 \cdot b & c \end{pmatrix} \mathbf{x} + [d \ e] \mathbf{x} + f = 0 \]

- Easy to see why:

 Implicit eq. for a cone: \(Ax^2 + By^2 = z^2 \)
 Explicit eq. for a plane: \(z = Dx + Ey + F \)

Conical Section: \(Ax^2 + By^2 = (Dx + Ey + F)^2 \)
Quadrics & Conics

Quadrics:

- The general zero sets of quadratic functions (any dimension) are called *quadrics*:

 \[\{ x \in \mathbb{R}^d \mid x^T M x + b^T x + c = 0 \} \]

- *Conics* are the special case for \(d = 2 \).
Shapes of Quadratic Polynomials

\[\lambda_1 = 1, \quad \lambda_2 = 1 \]

\[\lambda_1 = 1, \quad \lambda_2 = -1 \]

\[\lambda_1 = 1, \quad \lambda_2 = 0 \]
The Iso-Lines: Quadrics

- **Elliptic**: $\lambda_1 > 0, \lambda_2 > 0$
- **Hyperbolic**: $\lambda_1 < 0, \lambda_2 > 0$
- **Degenerate case**: $\lambda_1 = 0, \lambda_2 \neq 0$
Characterization

Determining the type of Conic from the implicit form:

- Implicit function: quadratic polynomial
 \[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]

 \[\iff \mathbf{x}^T \begin{pmatrix} a & \frac{1}{2}b \\ \frac{1}{2}b & c \end{pmatrix} \mathbf{x} + [d \quad e] \mathbf{x} + f = 0 \]

- Eigenvalues of \(\mathbf{M} \):
 \[\lambda_{1|2} = \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a - c)^2 + b^2} \]
We obtain the following cases:

- **Ellipse**: $b^2 < 4ac$
 - Circle: $b = 0, a = c$
 - Otherwise: general ellipse
- **Hyperbola**: $b^2 > 4ac$
- **Parabola**: $b^2 = 4ac$ (border case)

Implicit function:

$$a x^2 + b xy + c y^2 + d x + e y + f = 0$$
Cases

Explanation:

\[b^2 = 4ac \implies \lambda_{1|2} = \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a - c)^2 + 4ac} \]

\[= \frac{a + c}{2} \pm \frac{1}{2} \sqrt{a^2 - 2ac + c^2 + 4ac} \]

\[= \frac{a + c}{2} \pm \frac{1}{2} \sqrt{a^2 + 2ac + c^2} \]

\[= \frac{a + c}{2} \pm \frac{1}{2} \sqrt{(a + c)^2} \]

\[= \frac{a + c}{2} \pm \frac{a + c}{2} \]

\[= \{0, a + c\} \]

Implicit function:

\[ax^2 + bxy + cy^2 + dx + ey + f = 0 \]
We want to represent conics with parametric curves:

- How can we represent (pieces) of conics as parametric curves?
- How can we generalize our framework of piecewise polynomial curves to include conical sections?

Projections of Parabolas:

- We will look at a certain class of parametric functions – projections of parabolas.
- This class turns out to be general enough,
- and can be expressed easily with the tools we know.
Definition: Projection of a Parabola

- We start with a quadratic space curve.
- Interpret the z-coordinate as homogenous component ω.
- Project the curve on the plane $\omega = 1$.

![Diagram of projections of parabolas](image)
Projected Parabola

Formal Definition:

- Quadratic polynomial curve in three space
- Project by dividing by third coordinate

\[
f^{(\text{hom})}(t) = p_0 + t p_1 + t^2 p_2 = \begin{pmatrix} p_{0,x} \\ p_{0,y} \\ p_{0,\omega} \end{pmatrix} + t \begin{pmatrix} p_{1,x} \\ p_{1,y} \\ p_{1,\omega} \end{pmatrix} + t^2 \begin{pmatrix} p_{2,x} \\ p_{2,y} \\ p_{2,\omega} \end{pmatrix}\]

\[
f^{(\text{eucl})}(t) = \frac{\begin{pmatrix} p_{0,x} \\ p_{0,y} \end{pmatrix} + t \begin{pmatrix} p_{1,x} \\ p_{1,y} \end{pmatrix} + t^2 \begin{pmatrix} p_{2,x} \\ p_{2,y} \end{pmatrix}}{p_{0,\omega} + t p_{1,\omega} + t^2 p_{2,\omega}}\]
Bernstein Basis

Alternatively: Represent in Bernstein basis

- Rational quadratic Bezier curves:

\[
f^{(hom)}(t) = B_0^{(2)}(t)p_0 + B_1^{(2)}(t)p_1 + B_2^{(2)}(t)p_2
\]

\[
f^{(eucl)}(t) = \frac{B_0^{(2)}(t) \begin{pmatrix} p_0 \cdot x \\ p_0 \cdot y \end{pmatrix} + B_1^{(2)}(t) \begin{pmatrix} p_1 \cdot x \\ p_1 \cdot y \end{pmatrix} + B_2^{(2)}(t) \begin{pmatrix} p_2 \cdot x \\ p_2 \cdot y \end{pmatrix}}{B_0^{(2)}(t)p_0 \cdot \omega + B_1^{(2)}(t)p_1 \cdot \omega + B_2^{(2)}(t)p_2 \cdot \omega}
\]
Properties

Projective invariance:

• Quadratic Bezier curves are invariant under projective maps

• The following operations yield the same result
 ▪ Applying a projective map to the control points, then evaluate the curve
 ▪ Applying the same projective map to the curve

• Proof:
 ▪ 3D curve is invariant under linear maps
 ▪ Scaling does not matter for projections (divide by \(\omega \) before or after applying a projection matrix does not matter)
Parametrizing Conics

Conics can be parameterized using projected parabolas:

- We show that we can represent (piecewise):
 - Points and lines (obvious ✓)
 - A unit parabola
 - A unit circle
 - A unit hyperbola

- General cases (ellipses etc.) can be obtained by affine mappings of the control points (which leads to affine maps of the curve)
Parametrizing Parabolas

Parabolas as rational parametric curves:

\[f^{(euc)}(t) = \frac{\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{1 + 0t + 0t^2} = \begin{cases} x(t) = t \\ y(t) = t^2 \end{cases} \]

(pretty obvious as well)
Circle

Let’s try to find a rational parametrization of a (piece of a) unit circle:

\[f^{(\text{eucl})}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \]

\[\cos \varphi = \frac{1 - \tan^2 \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}}, \quad \sin \varphi = \frac{2 \tan \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}} \] \hspace{1cm} (tangent half-angle formula)

\[t := \tan \frac{\varphi}{2} \Rightarrow f^{(\text{eucl})}(\varphi) = \begin{pmatrix} 1 - t^2 \\ 1 + t^2 \\ 2t \\ 1 + t^2 \end{pmatrix} \]
Let’s try to find a rational parametrization of a (piece of a) unit circle:

\[f^{(eucl)}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} = \begin{pmatrix} 1 - t^2 \\ 1 + t^2 \\ 2t \\ 1 + t^2 \end{pmatrix} \text{ with } t := \tan \frac{\varphi}{2} \]

\[\Rightarrow f^{(hom)}(t) = \begin{pmatrix} 1 - t^2 \\ 2t \\ 1 + t^2 \end{pmatrix} \]

parametrization for \(\varphi \in (-90°..90°) \)

\(\Rightarrow \) we need at least three segments to parametrize a full circle
Hyperbolas

Unit Circle: \(x^2 + y^2 = 1 \)

\[\Rightarrow x(t) = \frac{1 - t^2}{1 + t^2}, \quad y(t) = \frac{2t}{1 + t^2} \quad (t \in \mathbb{R}) \]

Unit Hyperbola: \(x^2 - y^2 = 1 \)

\[\Rightarrow x(t) = \frac{1 + t^2}{1 - t^2}, \quad y(t) = \frac{2t}{1 - t^2} \quad (t \in [0..1]) \]
Rational Bezier Curves
Rational Bezier Curves

Rational Bezier curves in \mathbb{R}^n of degree d:

- Form a Bezier curve of degree d in $n+1$-dimensional space
- Interpret last coordinate as homogenous component
- Euclidian coordinates are obtained by projection.

$$f^{(\text{hom})}(t) = \sum_{i=0}^{n} B_i^{(d)}(t)p_i, \quad p_i \in \mathbb{R}^{n+1}$$

$$f^{(\text{eucl})}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t)\begin{pmatrix} p_i^{(1)} \\ \vdots \\ p_i^{(n)} \end{pmatrix}}{\sum_{i=0}^{n} B_i^{(d)}(t)p_i^{(n+1)}}$$
More Convenient Notation

The curve can be written in “weighted points” form:

\[
f^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i}
\]

Interpretation:

- Points are weighted by weights \(\omega_i \)
- Normalized by interpolated weights in the denominator
- Larger weights \(\rightarrow \) more influence of that point
Properties

What about affine invariance, convex hull prop.?

\[
f^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i \mathbf{p}_i}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i} = \sum_{i=0}^{n} q_i(t) \mathbf{p}_i \quad \text{with} \quad \sum_{i=0}^{n} q_i(t) = 1
\]

Consequence:

- Affine invariance still holds
- For strictly positive weights:
 - Convex hull property still holds
 - This is not a big restriction (potential singularities otherwise)
- Projective invariance (projective maps, hom. coord’s)
Quadratic Bezier Curves

Quadratic curves:

- Necessary and sufficient to represent conics
- Therefore, we will examine them closer...

Quadratic rational Bezier curve:

\[f^{(eucl)}(t) = \frac{B_0^{(2)}(t)\omega_0 p_0 + B_1^{(2)}(t)\omega_1 p_1 + B_2^{(2)}(t)\omega_2 p_2}{B_0^{(2)}(t)\omega_0 + B_1^{(2)}(t)\omega_1 + B_2^{(2)}(t)\omega_2}, \quad p_i \in \mathbb{R}^n, \omega_i \in \mathbb{R} \]
How many degrees of freedom are in the weights?

• Quadratic rational Bezier curve:

\[
\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(t)\omega_0\mathbf{p}_0 + B_1^{(2)}(t)\omega_1\mathbf{p}_1 + B_2^{(2)}(t)\omega_2\mathbf{p}_2}{B_0^{(2)}(t)\omega_0 + B_1^{(2)}(t)\omega_1 + B_2^{(2)}(t)\omega_2}
\]

• If one of the weights is \(\neq 0\) (which must be the case), we can divide numerator and denominator by this weight and thus remove one degree of freedom.

• If we are only interested in the \textit{shape of the curve}, we can remove one more degree of freedom by a \textit{reparametrization}...
How many degrees of freedom are in the weights?

- Concerning the shape of the curve, the parametrization does not matter.
- We have:
 \[
 f^{(eucl)}(t) = \frac{(1-t)^2 \omega_0 p_0 + 2t(1-t)\omega_1 p_1 + t^2 \omega_2 p_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2}
 \]
- We set: (with \(\alpha \) to be determined later)
 \[
 t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}}, \quad i.e., (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}}
 \]
Remark: Why this reparametrization?

Reparametrization:
\[t \leftarrow \frac{\tilde{t}}{\alpha(1 - \tilde{t}) + \tilde{t}} \]

Properties:
- \(0 \rightarrow 0,\) \(1 \rightarrow 1,\) monotonic in between
- Shape determined by parameter \(\alpha.\)
Standard Form

\[
t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t}) + \tilde{t}}, \text{ i.e., } (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t}) + \tilde{t}}
\]
Standard Form

\[t \leftarrow \frac{\tilde{t}}{\alpha(1-\tilde{t})+\tilde{t}}, \text{ i.e., } (1-t) \leftarrow \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t})+\tilde{t}} \]

\[
f^{(eucl)}(t) = \left(\frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t})+\tilde{t}} \right)^2 \omega_0 \mathbf{p}_0 + 2\left(\frac{\tilde{t}}{\alpha(1-\tilde{t})+\tilde{t}} \right) \frac{\alpha(1-\tilde{t})}{\alpha(1-\tilde{t})+\tilde{t}} \omega_1 \mathbf{p}_1 + \left(\frac{\tilde{t}}{\alpha(1-\tilde{t})+\tilde{t}} \right)^2 \omega_2 \mathbf{p}_2
\]

\[
= \frac{\alpha^2(1-\tilde{t})^2 \omega_0 \mathbf{p}_0 + 2\alpha\tilde{t}(1-\tilde{t})\omega_1 \mathbf{p}_1 + \tilde{t}^2 \omega_2 \mathbf{p}_2}{\alpha^2(1-\tilde{t})^2 \omega_0 + 2\alpha\tilde{t}(1-\tilde{t})\omega_1 + \tilde{t}^2 \omega_2}
\]

\[
= \frac{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 \mathbf{p}_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 \mathbf{p}_1 + B_2^{(2)}(\tilde{t}) \omega_2 \mathbf{p}_2}{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 + B_2^{(2)}(\tilde{t}) \omega_2}
\]
Standard Form

\[f^{(eucl)}(t) = \frac{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 p_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 p_1 + B_2^{(2)}(\tilde{t}) \omega_2 p_2}{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 + B_2^{(2)}(\tilde{t}) \omega_2} \]

let \(\alpha = \sqrt{\frac{\omega_2}{\omega_0}} \) (assume \(0 \leq \frac{\omega_2}{\omega_0} < \infty \))
Standard Form

\[f^{(eucl)}(t) = \frac{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 \mathbf{p}_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 \mathbf{p}_1 + B_2^{(2)}(\tilde{t}) \omega_2 \mathbf{p}_2}{\alpha^2 B_0^{(2)}(\tilde{t}) \omega_0 + \alpha B_1^{(2)}(\tilde{t}) \omega_1 + B_2^{(2)}(\tilde{t}) \omega_2} \]

let \(\alpha = \sqrt{\frac{\omega_2}{\omega_0}} \) (assume \(0 \leq \frac{\omega_2}{\omega_0} < \infty \))

\[f^{(eucl)}(t) = \frac{B_0^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_0 \mathbf{p}_0 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B_2^{(2)}(\tilde{t}) \mathbf{p}_2}{B_0^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_0 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})} \]

\[= \frac{B_0^{(2)}(\tilde{t}) \omega_2 \mathbf{p}_0 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B_2^{(2)}(\tilde{t}) \mathbf{p}_2}{B_0^{(2)}(\tilde{t}) \omega_2 + B_1^{(2)}(\tilde{t}) \sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})} \]
Standard Form

\[
\begin{align*}
\mathbf{f}^{(eucl)}(t) &= \frac{B_0^{(2)}(\tilde{t})\omega_2 \mathbf{p}_0 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B_2^{(2)}(\tilde{t})\mathbf{p}_2}{B_0^{(2)}(\tilde{t})\omega_2 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})}
\end{align*}
\]
\[
\begin{align*}
\mathbf{f}^{(eul)}(t) &= \frac{B_0^{(2)}(\tilde{t})\omega_2 \mathbf{p}_0 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 \mathbf{p}_1 + \omega_2 B_2^{(2)}(\tilde{t})\mathbf{p}_2}{B_0^{(2)}(\tilde{t})\omega_2 + B_1^{(2)}(\tilde{t})\sqrt{\frac{\omega_2}{\omega_0}} \omega_1 + \omega_2 B_2^{(2)}(\tilde{t})} \\
&= \frac{B_0^{(2)}(\tilde{t})\mathbf{p}_0 + B_1^{(2)}(\tilde{t})\sqrt{\frac{1}{\omega_0 \omega_2}} \omega_1 \mathbf{p}_1 + B_2^{(2)}(\tilde{t})\mathbf{p}_2}{B_0^{(2)}(\tilde{t}) + B_1^{(2)}(\tilde{t})\sqrt{\frac{1}{\omega_0 \omega_2}} \omega_1 + B_2^{(2)}(\tilde{t})} \\
&= \frac{B_0^{(2)}(\tilde{t})\omega \mathbf{p}_0 + B_1^{(2)}(\tilde{t})\omega \mathbf{p}_1 + B_2^{(2)}(\tilde{t})\mathbf{p}_2}{B_0^{(2)}(\tilde{t}) + B_1^{(2)}(\tilde{t})\omega + B_2^{(2)}(\tilde{t})}\quad\text{with: } \omega := \sqrt{\frac{1}{\omega_0 \omega_2}} \omega_1
\end{align*}
\]
Standard Form

Consequence:

- It is sufficient to specify the weight of the inner point
- We can w.l.o.g. set \(\omega_0 = \omega_2 = 1, \omega_1 = \omega \)
- This form of a quadratic Bezier curve is called the standard form.
- Choices:
 - \(\omega < 1 \): ellipse segment
 - \(\omega = 1 \): parabola segment (non-rational curve)
 - \(\omega > 1 \): hyperbola segment
Illustration

Changing the weight:

$p(0,1)$

$p(0,0)$

$p(1,1)$

$\omega > 1$ Hyperbola

$\omega = 1$ Parabola

$\omega < 1$ Ellipse
Conversion to Implicit Form

Convert parametric to implicit form:

- In order to show the shape conditions
- For distance computations / inside-outside tests

Express curve in barycentric coordinates:

- Curve can be expressed in barycentric coordinates (linear transform):

\[f(t) = \tau_0(t)p_0 + \tau_1(t)p_1 + \tau_2(t)p_2 \]
Conversion to Implicit Form

Comparison of coefficients yields:

\[
\begin{align*}
\tau_0(t) &= \frac{\omega_0 B_0^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{\omega_0 (1-t)^2}{D(t)} \\
\tau_1(t) &= \frac{\omega_1 B_1^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{2\omega_1 t(1-t)}{D(t)} \\
\tau_2(t) &= \frac{\omega_2 B_2^{(2)}(t)}{\sum_{i=0}^{2} \omega_i B_i^{(2)}(t)} = \frac{\omega_2 t^2}{D(t)}
\end{align*}
\]

\[
f(t) = \tau_0(t)p_0 + \tau_1(t)p_1 + \tau_2(t)p_2
\]

\[
f^{(eul)}(t) = \frac{(1-t)^2 \omega_0 p_0 + 2t(1-t)\omega_1 p_1 + t^2 \omega_2 p_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2}
\]
Conversion to Implicit Form

Solving for t, $(1-t)$:

\[
\tau_0(t) = \frac{\omega_0(1-t)^2}{D(t)} \Rightarrow (1-t) = \sqrt{\frac{\tau_0(t)D(t)}{\omega_0}}
\]

\[
\tau_1(t) = \frac{2\omega_1 t(1-t)}{D(t)}
\]

\[
\tau_2(t) = \frac{\omega_2 t^2}{D(t)} \Rightarrow t = \sqrt{\frac{\tau_2(t)D(t)}{\omega_2}}
\]

\[
\tau_1(t) = \frac{2\omega_1 \sqrt{\frac{\tau_2(t)D(t) \tau_0(t)D(t)}{\omega_2 \omega_0}}}{D(t)} = 2\omega_1 \sqrt{\frac{\tau_2(t) \tau_0(t)}{\omega_0 \omega_2}}
\]

\[
\Rightarrow \frac{\tau_1(t)^2}{\tau_2(t) \tau_0(t)} = 4 \frac{\omega_1^2}{\omega_0 \omega_2}
\]
Conversion to Implicit Form

Some more algebra...

\[
\frac{\tau_1(t)^2}{\tau_2(t)\tau_0(t)} = 4 \frac{\omega_1^2}{\omega_0\omega_2}
\]

Using \(\tau_2(t) = (1 - \tau_0(t) - \tau_1(t)) \) we get:

\[
\begin{align*}
[\omega_0\omega_2]\tau_1(t)^2 &= [4\omega_1^2]\tau_2(t)\tau_0(t) \\
&= [4\omega_1^2]\tau_0(t)(1 - \tau_0(t) - \tau_1(t)) \\
&= [4\omega_1^2](\tau_0(t) - \tau_0(t)^2 - \tau_1(t)\tau_0(t))
\end{align*}
\]

\[
\Rightarrow [\omega_0\omega_2]\tau_1(t)^2 + [4\omega_1^2]\tau_1(t)\tau_0(t) + [4\omega_1^2]\tau_0(t)^2 - [4\omega_1^2]\tau_0(t) = 0
\]

\[
a x^2 + b xy + c y^2 + e x + 0 y + 0 = 0
\]
Classification

Eigenvalue argument led to:

- Parabola requires $b^2 = 4ac$ in $a x^2 + b xy + c y^2 + d x + e y + f = 0$
- In our case:

$$\begin{bmatrix} \omega_0 \omega_2 \\ \omega_1 \end{bmatrix} \tau_1(t)^2 + \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_1(t) \tau_0(t) + \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_0(t)^2 - \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} \tau_0(t) = 0$$

i.e.:

$$4 \begin{bmatrix} \omega_0 \omega_2 \end{bmatrix} \begin{bmatrix} 4 \omega_1^2 \end{bmatrix} = \begin{bmatrix} 4 \omega_1^2 \end{bmatrix}^2$$

$\Leftrightarrow 16 \omega_0 \omega_2 \omega_1^2 = 16 \omega_1^4$

$\Leftrightarrow \omega_0 \omega_2 = \omega_1^2$

Standard form: $\omega_0 = \omega_2 = 1$

$\Rightarrow \omega_1 = 1$
Classification

Similarly, it follows that:

\[\omega_1 < 1 \rightarrow \text{Ellipse} \]
\[\omega_1 = 1 \rightarrow \text{Parabola} \quad (\omega_0 = \omega_2 = 1) \]
\[\omega_1 > 1 \rightarrow \text{Hyperbola} \]
Circle in Bezier Form

Quadratic rational polynomial:

\[f(t) = \frac{1}{1 + t^2} \left(1 - t^2 \right), t = \tan \frac{\varphi}{2}, \varphi \in (-90^\circ ..90^\circ) \]

Conversion to Bezier basis:

\[
B_0^{(2)} = (1-t)^2 = 1 - 2t + t^2 \triangleq \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T \quad 1-t^2 \triangleq \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T
\]

\[
B_1^{(2)} = 2t(1-t) = 2t - 2t^2 \triangleq \begin{bmatrix} 0 & 2 & -2 \end{bmatrix}^T \quad 2t \triangleq \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}^T
\]

\[
B_2^{(2)} = t^2 \triangleq \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \quad 1+t^2 \triangleq \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T
\]
Circle in Bezier Form

Conversion to Bezier basis:

\[B_0^{(2)} = (1-t)^2 = 1 - 2t + t^2 = ^\top [1 \quad -2 \quad 1] \]
\[B_1^{(2)} = 2t(1-t) = 2t - 2t^2 = ^\top [0 \quad 2 \quad -2] \]
\[B_2^{(2)} = t^2 = ^\top [0 \quad 0 \quad 1] \]

Comparison yields:

\[1 - t^2 = B_0^{(2)} + B_1^{(2)} \]
\[2t = B_1^{(2)} + 2B_2^{(2)} \]
\[1 + t^2 = B_0^{(2)} + B_1^{(2)} + 2B_2^{(2)} \]

\[f^{(\text{hom})}(t) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} B_0^{(2)} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} B_1^{(2)} + \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} B_2^{(2)} \]
Circle in Bezier Form

Result:

\[f(t) = \frac{B_0^{(2)}(t)\begin{pmatrix} 1 \\ 0 \end{pmatrix} + B_1^{(2)}(t)\begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2B_2^{(2)}(t)\begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)}(t) + B_1^{(2)}(t) + 2B_2^{(2)}(t)} \]

Parameters:

\[t = \tan \frac{\varphi}{2} \Rightarrow \varphi = 2 \arctan t \]
\[t \in [0,1] \rightarrow \varphi \in [0^\circ..90^\circ] \]
Circle in Bezier Form

Standard Form:

\[f(t) = \frac{B_0^{(2)}(\tilde{t})p_0 + B_1^{(2)}(\tilde{t})\omega p_1 + B_2^{(2)}(\tilde{t})p_2}{B_0^{(2)}(\tilde{t}) + B_1^{(2)}(\tilde{t})\omega + B_2^{(2)}(\tilde{t})} \]

with: \(\omega := \sqrt{\frac{1}{\omega_0\omega_2}} \omega_1 \)

\[f(t) = \frac{B_0^{(2)} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \sqrt{2} B_1^{(2)} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + B_2^{(2)} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)} + \frac{1}{2} \sqrt{2} B_1^{(2)} + B_2^{(2)}} \]
Result: Circle in Bezier Form

Final Result:

\[\omega_0 = 1 \]
\[\begin{array}{l}
\omega_1 = \frac{1}{2} \sqrt{2} \\
p_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\
p_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\
p_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\
\omega_2 = 1
\end{array} \]
In general:

for $\omega_0 = \omega_2 = 1$:

$\omega_1 = \cos \alpha$

angle interval $< 180^\circ$

$\alpha = 60^\circ$

$\rightarrow \omega_1 = 0.5$
Properties, Remarks

Continuity:

- The parametrization is only C^1, but G^∞
- No arc length parametrization possible
- *Even stronger:* No rational curve other than a straight line can have an arc-length parametrization.

Circles in in general degree Bezier splines:

- Simplest solution:
 - Form quadratic circle (segments)
 - Apply degree elevation to obtain the desired degree
Rational De Casteljau Algorithm

Evaluation with De Casteljau Algorithm

- Two Variants:
 - Compute numerator and denominator separately, then divide
 - Divide in each intermediate step ("rational de Casteljau")

- Non-rational de Casteljau algorithm:
 \[b_i^{(r)}(t) = (1-t)b_i^{(r-1)}(t) + tb_{i+1}^{(r-1)}(t) \]

- Rational de Casteljau algorithm:
 \[b_i^{(r)}(t) = (1-t)\frac{\omega_i^{(r-1)}(t)}{\omega_i^{(r)}(t)}b_i^{(r-1)}(t) + t\frac{\omega_{i+1}^{(r-1)}(t)}{\omega_i^{(r)}(t)}b_{i+1}^{(r-1)}(t) \]

with

\[\omega_i^{(r)}(t) = (1-t)\omega_i^{(r-1)}(t) + t\omega_{i+1}^{(r-1)}(t) \]
Rational De Casteljau Algorithm

Advantages:

- More intuitive (repeated weighted linear interpolation of points and weights)
- Numerically more stable (only convex combinations for the standard case of positive weights, $t \in [0,1]$)
Weight Points

Alternative technique to specify weights:

- Weight points
- User interface: More intuitive in interactive design

Weight Points:

\[q_0 = \frac{\omega_0 p_0 + \omega_1 p_1}{\omega_0 + \omega_1}, \quad q_1 = \frac{\omega_1 p_1 + \omega_2 p_2}{\omega_1 + \omega_2} \]

Standard Form:

\[q_0 = \frac{p_0 + \omega_1 p_1}{1 + \omega_1}, \quad q_1 = \frac{p_1 + \omega_1 p_2}{1 + \omega_1} \]
Derivatives

Computing derivatives of rational Bezier curves:

- Straightforward: Apply quotient rule
- A simpler expression can be derived using an algebraic trick:

\[
f(t) = \frac{\sum_{i=0}^{d} B^{(d)}_{i}(t) \omega_i p_i}{\sum_{i=0}^{d} B^{(d)}_{i}(t) \omega_i} = \frac{p(t)}{\omega(t)}
\]

\[
f(t) = \frac{p(t)}{\omega(t)} \Rightarrow p(t) = f(t)\omega(t) \Rightarrow p'(t) = f'(t)\omega(t) + f(t)\omega'(t)
\]

\[
\Rightarrow f'(t)\omega(t) = p'(t) - f(t)\omega'(t) \Rightarrow f'(t) = \frac{p'(t) - f(t)\omega'(t)}{\omega(t)}
\]
Derivatives

At the endpoints:

\[f'(t) = \frac{p'(t) - \omega'(t)f(t)}{\omega(t)} \]

\[f'(0) = \frac{p'(0) - \omega'(0)f(0)}{\omega(0)} = \frac{d}{\omega_0} \left(\omega_1 p_1 - \omega_0 p_0 \right) - d \left(\omega_1 - \omega_0 \right) p_0 = \frac{d}{\omega_0} \left(\omega_1 p_1 - \omega_0 p_0 - \omega_1 p_0 + \omega_0 p_0 \right) \]

\[= d \frac{\omega_1}{\omega_0} (p_1 - p_0) \]

\[f'(1) = d \frac{\omega_{d-1}}{\omega_d} (p_d - p_{d-1}) \]
NURBS: Rational B-Splines
NURBS: Rational B-Splines

• Same idea:
 ▪ Control points in homogenous coordinates
 ▪ Evaluate curve in \((d+1)\)-dimensional space
 (same as before)
 ▪ For display, divide by \(\omega\)-component
 − (we can divide anytime)
NURBS: Rational B-Splines

- Formally: \((N_i^{(d)}: \text{B-spline basis function } i \text{ of degree } d) \)

\[
f(t) = \frac{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i p_i}{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i}
\]

- Knot sequences etc. all remain the same
- De Boor algorithm – similar to rational de Casteljau alg.
 - 1. option – apply separately to numerator, denominator
 - 2. option – normalize weights in each intermediate result
 - The second option is numerically more stable
Some Issues

Interpolation problems:

• Finding a B-Spline curve that *interpolates* a set of *homogeneous* points is easy
• Just solve a linear system
• Note: The problem is easy when the weights are *given*.

What if no weights are given (only Euclidian points)?

• More degrees of freedom than constraints
• If we reduce the number of points:
 ▪ Non-linear system of equations
 ▪ Issues: How to find a solution? Does it exist? Is it unique?
Related Problem

Approximation with rational curves:

- **Scenario 1:** Homogeneous data points given, with weights
 - Easy problem – linear system

- **Scenario 2:** Euclidian data points are given, but weights are fixed for each control point (e.g. manually)
 - Easy problem again – linear system
 - Weights just change the shape of the basis functions

- **Scenario 3:** Euclidian data points, want to compute weights as well
 - Non-linear optimization problem
General Rational Data Approximation

Scenerio 3: Euclidian data points, want to compute weights as well

- Non-linear optimization problem
- Issues:
 - No direct solution possible
 - Numerical optimization might get stuck in local minima
- Constraints:
 - We have to avoid poles
 - E.g. by demanding $\omega_i > 0$
 - Constrained optimization problem (even nastier)
Simple idea for a numerical approach:

- First solve non-rational problem (all weights = 1)
- Then start constrained non-linear gradient descend (or Newton) solver from there