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Overview...

Topics:
e Polynomial Spline Curves
e Blossoming and Polars

_____________________________________

= Some projective geometry
= Conics and quadrics

= Rational Bezier Curves

= Rational B-Splines: NURBS
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Some Projective Geometry



Projective Geometry

A very short overview of projective geometry:
e The computer graphics perspective
e Formal definition
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Homogeneous Coordinates

Problem:

e Linear maps (matrix multiplication in R?) can represent...
= Rotations
= Scaling
= Sheering
= Orthogonal projections

e ...but not:
= Translations
= Perspective projections
e This is a problem in computer graphics:

= We would like to represent compound operations in a single,
closed representation
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Translations

“Quick Hack” #1: Translations

e Linear maps cannot represent translations:
= Every linear map maps the zero vector to zero M0 =0
= Thus, non-trivial translations are non-linear

e Solution:

= Add one dimension to each vector
= Fill in a one

= Now we can do translations by adding multiples of the one:

Ny Ty L X ny Iy | X .\ .
Mx=\ry rmp 4,0y |={n, m)\y) |4
1

0 0 1

Geometric Modeling SoSem 2010 — Rational Spline Curves

6/80



Normalization

Problem: What if the last entry is not 17

e [t’s not a bug, it’s a feature...

e If the last component is not 1, divide everything by it
before using the result

(%)
R

Cartesian coordinates homogenous coordinates

(Euclidian space) \/ (projective space)

] X
—X <
@ 0
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Notation

Notation:

e The extra component is called the homogenous

component of the vector.
e |tis usually denoted by w:

= 2D case: = 3D case:
[0)9 X
— | @y y|—
Y
a Z

= General case:

(2]

WX
wy
Wz

Q
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Perspective Projections

New Feature: We can perform perspective projections
e Very useful for 3D computer graphics

e Perspective projection (central projection) involves
divisions that can be packaged into the homogeneous
component:

image pinhole camera object
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Perspective Projection

Physical camera:

image pinhole camera object
Virtual camera:

center of projection image plane object
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Perspective Projection

center of projection image plane object

Perpective projection: x'=d 1, y'=d 2
Z Z
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Homogenous Transformation

Projection can be expressed as linear transformation
in homogenous coordinates:

e Trick: Put the denominator into the @ component.

X'=d—, y'=a’l

z z

-

s

N‘

\<‘
S © o
S O O
— L O O

Q N = =

o O O O

S

e Camera placement: move scene in opposite direction
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Graphics Pipeline

Graphics pipeline:

2d image

vertices X;
_ ° rasterization
3d object |°
(polygon)
object camera ... perspective
> » projection . .
movement placement divide
X>M, X X->MXx x> M;X X— X/X.0 bitmap
> image
Homogenous coordinates
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OpenGL Graphics Pipeline

Example: OpenGL Pipeline
e Polygon primitives (triangles)
e Vertices specified by homogenous coordinates (4 floats)

e Transformation pipeline (basically) implemented by
a 4x4 matrix transformation

e Hardware accelerated: Special purpose hardware that
supports rapid 4D vector operations (“vertex shader”)
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Formal Definition

Projective Space P¢:

e Obtained by embedding the Euclidian space E? into a
d+1 dimensional Euclidian space at w = 1.
(The additional dimension is usually named ®.)

e |dentify all points on lines through the origin to represent
the same Euclidian points.

p € E!

p— {[wp}a) € Rio}
@
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Properties

Properties:

e Points are represented by lines through the origin

e Consequence: scaling by common constant does not
change the point (euclidian(Ax) = euclidian(x), A # 0)
e We can scale the points arbitrarily
(scaling does not matter)

e Means: Division by @ can be done at any time when
multiple projective operations are performed on the
projective points.

(projective operation: map lines through the origin to
lines through the origin)
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Properties

Projective Maps:

e Represented by linear maps in the higher
dimensional space

e Scale at any time: Linear maps are projective operations
in the sense of mapping lines through the origin to lines
through the origin again.

e Therefore:
M
y=Mx = X_M— (for o # 0)
Y. X.0

Important: We have x2aox, butin general: x+y#x+ay
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Directions

Problem: What if =07

e Again —it’s not a bug, it’s a feature

e Projective points with @ =0 do not correspond to
Euclidian points

e They represent directions, or points at infinity.
e This gives a natural distinction:

= Euclidian points: @# 0 in homogenous coordinates.

= Euclidian vectors: @ =0 in homogenous coordinates.
e The difference of points yields a vector.

e Vectors can be added to points, but not (not really) points
to points.
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Quadrics and Conics



Modeling Wish List

We want to model:
e Circles (Surfaces: Spheres)
e Ellipses (Surfaces: Ellipsoids)
e And segments of those

e Surfaces: Objects with circular cross section
= Cylinders
= Cones
= Surfaces of revolution (lathing)

These objects cannot be represented exactly (only
approximated) by piecewise polynomials
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Conical Sections

Classic description of such objects:

e Conical sections (conics)
e Intersections of a cone and a plane
e Resulting objects:

= Circles

Ellipses

Hyperbolas

Parabolas
Points

Lines
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Conic Sections

TV VY
ANANANAA

Circle, Hyperbola Parabola Line Point
Ellipse (degenerate case)  (degenerate case)
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Implicit Form

Implicit quadrics:
e Conic sections can be expressed as zero set of a quadratic
function:

ax*+bxy+cy +dx+ey+f=0

| a 1/2-b B
X[1/2-b . jx+[d e]x+f—0

e Easy to see why:

Implicit eq. for a cone:  Ax” + Byz = 7
A

o ————— P

Explicit eq. for a plane: z=Dx+ Ey+F

Conical Section: Ax* + By* = (Dx + Ey + F)2
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Quadrics & Conics

Quadrics:

e The general zero sets of quadratic functions (any
dimension) are called quadrics:

{XE]Rd |XTMX+bTX+C=O}

e Conics are the special case for d = 2.
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Shapes of Quadratic Polynomials
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The Iso-Lines: Quadrics

elliptic hyperbolic

degenerate case

-

.

A,>0,4,>0 A4,<0,4,>0

A,=0,4,#0
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Characterization

Determining the type of Conic from the implicit form:

e Implicit function: quadratic polynomial
ax*+bxy+cy* +dx+ey+ f=0
1/2-b
o xT a /
[1/2-17 %

Vv

M
e Eigenvalues of M:

=2t (- 4

]x+[d e]x+f=0

.
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Cases

implicit function:

We obtain the following cases:

e Ellipse: b’ < 4ac
= Circle:b=0,a=c
= Otherwise: general ellipse

e Hyperbola: »% > 4ac
e Parabola: p? =4qc (border case)

ax* +bxy+cy’ +dx+ey+ f=0
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Cases

implicit function:

Explanation:

ax* +bxy+cy’ +dx+ey+ f=0

a—+c

2

a+c
= i\/a2—2a6+cz+4ac

2

arc il\/az+2ac+c2
2 2

= a;rc i%\/(aJrc)z

a-—+c¢ a-—+c¢
— +

b =4dac = ﬂm = i%\/(a—c)z + 4ac

2 2
=1{0,a+c}
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Parametrization

We want to represent conics with parametric curves:

e How can we represent (pieces) of conics as parametric
curves?

e How can we generalize our framework of piecewise
polynomial curves to include conical sections?

Projections of Parabolas:

 We will look at a certain class of parametric functions —
projections of parabolas.

e This class turns out to be general enough,
e and can be expressed easily with the tools we know.
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Projections of Parabolas

Definition: Projection of a Parabola
e We start with a quadratic space curve.
e Interpret the z-coordinate as homogenous component w.
e Project the curve on the plane @w = 1.

Geometric Modeling SoSem 2010 — Rational Spline Curves 31/80



Projected Parabola

Formal Definition:

e Quadratic polynomial curve in three space

e Project by dividing by third coordinate

f7" () =py +1p, +17p, =

pO.x
Po-V

Po-@

pz.x

P,.y

+1

J

X .
f(eucl) (t) _ Po-Y Py

Po.@+1p,.@+1 P,®

pl.x
Py

p-@

+1

p2.x
Py.y

| R
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Bernstein Basis

Alternatively: Represent in Bernstein basis

e Rational quadratic Bezier curves:
£ (1) = By (1)py + B (1)p; + B5™ (1)p,

X X X
Bé”(r)[po ]+Bf2><z>[pl j+B§2><r>[p2 j
Po-V Py P>V

f(eucl) (f) _
B (1)py.0+ B (1)p.0+ B (1)p,.0
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Properties

Projective invariance:

e Quadratic Bezier curves are invariant under projective
maps
e The following operations yield the same result

= Applying a projective map to the control points, then evaluate
the curve

= Applying the same projective map to the curve

e Proof:
= 3D curve is invariant under linear maps

= Scaling does not matter for projections
(divide by @ before or after applying a projection matrix does
not matter)
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Parametrizing Conics

Conics can be parameterized using projected
parabolas:
e We show that we can represent (piecewise):

= Points and lines (obvious \/)
= A unit parabola
= A unit circle
= A unit hyperbola
e General cases (ellipses etc.) can be obtained by affine
mappings of the control points (which leads to affine
maps of the curve)
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Parametrizing Parabolas

Parabolas as rational parametric curves:

0y (1) ,(0
0 +1 0 + 7 | (x(t)—t
f(eucD(t):

(pretty obvious
1+ 0z + 0¢° J’(f)—tzl J as well)
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Circle

Let’s try to find a rational parametrization of a

(piece of a) unit circle:

f(eucl) ((0) _ (COS ggj

sin @
I—tan??
COS @ = , SINQ =
I+tan??
2
= tan% — D () =

2tan

1+tan2£
2

1—¢2

1+ ¢
2t

14 ¢

(tangent half-angle formula)
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Circle

Let’s try to find a rational parametrization of a
(piece of a) unit circle:

cuc COS(O
f ”(qﬂ):(. j=
Sin @
1—¢2
= fom @y =| 2t
1+ ¢

1 —¢

1+ with? == tan2
2t 2

1+ ¢

parametrization for ¢ € (-90°..90°)

—> we need at least three segments
to parametrize a full circle
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Hyperbolas

Unit Circle: x* +,% =1

2 Dt

1—1
(1) =

1+¢

= x(t) = (t € R)

2

Unit Hyperbola: > - % =1

14 ¢
1—¢27

= x(t) = y(t) = (t €[0..1))

1—¢2

R
L
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Rational Bezier Curves



Rational Bezier Curves

Rational Bezier curves in R" of degree d:

e Form a Bezier curve of degree d in n+1-dimensional space

e Interpret last coordinate as homogenous component
e Euclidian coordinates are obtained by projection.

frome)=> B(t)p;, p;eR™"
i=0

> B0)
i=0

1
pV
p\"

f(eucl)(t) — -

(n+1)

ZBi(d)(t)pi
i=0
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More Convenient Notation

The curve can be written in “weighted points” form:

. P1
ZBI'(d)(t)wi :
i=0

Pn
ZBI'(d)(t)wi
i=0

f(eucl)(t) —

Interpretation:
e Points are weighted by weights o,
 Normalized by interpolated weights in the denominator
e Larger weights — more influence of that point
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Properties

What about affine invariance, convex hull prop.?

n

ZBI'(d)(t)a)ipi ; .
fle(t) =2 - Zq,.(t)p,. with Zqi(t) -1
ZB,(d) (t)a)l i=0 i=0
i=0

Consequence:
e Affine invariance still holds

e For strictly positive weights:
= Convex hull property still holds
= This is not a big restriction (potential singularities otherwise)

e Projective invariance (projective maps, hom. coord’s)
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Quadratic Bezier Curves

Quadpratic curves:
e Necessary and sufficient to represent conics
e Therefore, we will examine them closer...

Quadratic rational Bezier curve:

B(()z) (H)awypy + 31(2) (H)ap, + Béz) (H)w,p,

£ () = 2) 2) 2)
By (wy + B, (Do + By (Hw,

, p,eR", 0w eR
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Standard Form

How many degrees of freedom are in the weights?

e Quadratic rational Bezier curve:
B(gz) (H)awyp, + BI(Z) (Hop, + 352) (H)o,p,

Fe () = ) ) )
By” (H)w, + B (t)w, + B;” () w,

e |f one of the weights is # 0 (which must be the case), we
can divide numerator and denominator by this weight and
thus remove one degree of freedom.

e If we are only interested in the shape of the curve, we can
remove one more degree of freedom by a
reparametrization...
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Standard Form

How many degrees of freedom are in the weights?

e Concerning the shape of the curve, the parametrization
does not matter.
e We have:

(eucl) (1 t) a)OpO_I_Zt(l t)a)lpl—l_lL P,
(1) =

e We set: (with o to be determined later)

e e (1=« Al-7)
a(l—1)+1 a(l-t)+1
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Remark: Why this reparametrization?

Reparametrization: o= — o =1
- |
a(l—t)+1

[ <

Properties:

e 0—>0,

1—>1,

monotonic in between
e Shape determined

by parameter c.
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Standard Form

[ < tN N,i.e.,l—t)(— “(lit)N
a(l-t)+1t a(l-t)+1
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Standard Form

[ < tN N,i.e.,(l—t)(— a<1:t)~
a(l—t)+1t a(l-t)+t¢

a(1-7) 2@P0+4: 7 j

a(l—1t)+1

all-7) Y 7 a(l-7) R
~—= | Wy +2 — ~—= @, + ~ | @,
a(l—-t)+1t a(l-t)+t Ja(l—t)+1t a(l-—t)+1t

_ a’ B (1)agp, + aB” (1) op, + B (Hwyp,
o’ B (D), + aB (1), + B (1 ),

- - 2
a<lt)~a)1pl+( : j P,

a(l—-1)+1 a(l—-t)+1
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Standard Form

Fleed (1) = 052332) (D)oo + O‘Bl( > (1)op, + Béz) (1)arp,

a’BP (H)a, + aBP (o, + B (1w,

w w
let ¢ = [—= (assume 0 < —% < )
Wy W
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Standard Form

Fleed (1) = 24 2382) (D)oo + aBl( > (1)op, + Béz) (1)arp,
a’ By (1), + B (D)o + B (1w,

let o = /& (assume 0 < @2 0)
2 o
2
BP (1 )1/ oo + BV (1 )1/ S+ ®,B” (1)p,
f(eucl) (f) _

2
B, /ﬂ oy + B (1), /ﬂw +w,BY (1)
) )
By (1)anp, + B (1 )1/ Zop, +,BY” (1)p,
o 0

E%m%+E%0/ 20, + ,B (1)
@y
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Standard Form

B(z)(t Jo,p, + B(Z)(t )‘/ Py + WZB(Z)(t D,
@y

f(eucl)(t):
B (t)w, + BP(t) / w, +0,B(t)
2

Geometric Modeling SoSem 2010 — Rational Spline Curves

52/80



Standard Form

~ ~_ |l ~
B(()Z)(t Jo,p, + Bgz)(t ) ;2501[)1 + a)ngz)(t P,
V 0

f(eucl)(t) _
B{)( ), + B (F), /%w +,BY(T)
0

~ - 1 -
B(()Z)(t )Py + Bgz)(t ) o1py + Bgz)(t P,

B Wy,

BOE)+BOE) o+ BOE)

Wy (0,

_BO(Op + B (D)apy +B(E)p, | ]
T B 1B (T w4 BO(T Wi @ @1

By~ (t )+ B;”(t o+ By (t) N
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Standard Form

Consequence:
e |t is sufficient to specify the weight of the inner point
e Wecanw.log.setw,=w,=1, v,=w
e This form of a quadratic Bezier curve is called the
standard form.

e Choices:
= w<1:ellipse segment
= w=1: parabola segment (non-rational curve)
= @ > 1: hyperbola segment
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lllustration

Changing the weight:

p(0,1)

Hyperbola

Parabola

p(0,0)
p(1,1)
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Conversion to Implicit Form

Convert parametric to implicit form:
e In order to show the shape conditions

e For distance computations / inside-outside tests
P

Express curve in barycentric coordinates:

e Curve can be expressed in
barycentric coordinates
(linear transform):

£(¢)=17,(t)po + 7, (¢)P; +7,(t)P,

P>
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Conversion to Implicit Form

COm pa rison Of f(¢)=17,()py +71(E)P; +72(E)P,

coefficients yields: pleaen gy - (=0 @po + 241 =D0p; +"w5p,
(=1 ay +2t(1 -1, +t* o,

o B (1) wy(1-1)’

7o(t) =
O Zzla)iBz‘(z)(f) b P
i=0
=D
()= o B> (1) 2w(1-1)
| Sosn PO /
i=0
Tz(f): a)OB(gz)(t) :6001‘2
2
Za)l.Bl.(z)(t) b Po
i=0

P>
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Conversion to Implicit Form

Solving for t, (1-t):

_og(1=t) o [n(8)D(t)
7o(t) = b = (1-t)= J o
7,(t)= Zwllt)g)_ ) P
()= ot” _  _ |n(0)D()
D) @,

2 \/ 0, (0)D(t) 75(1) D(1)
r(t) = W, @ — 20, 7,()7, (1)
D(t) 0y,
7,(1)° _4 a)lz Po
5,7, (1) oo, P2
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Conversion to Implicit Form

p
Some more algebra...: ¥

Tl(f)z _4 a)lz

7, (8)7,(2) i Wy,

Using r,(t)=(1—17,(t)—17,(1)) we get:

[a)oa)z ]71(t)2 = ;‘4‘5012;72 (£)7,(t)

= [do,” |7 ()1 7,(6) ~7,(¢)) 4

= o, |(0(0)~ 7, (0 ~ 7, ()7, () 0,

=[]0 + Bk ()7, 1) + ek 0 - a2k ()= 0

ax? + bxy + cy? + ex +0y+0=0
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Classification

Eigenvalue argument led to:
e Parabola requires b” =4ac in ax* +bxy+cy’ +dx+ey+ f =0
e In our case:
[0)0%]71 ()’ + [45012 ]71 (D7 (1) + [4(012 ]fo (t) - [4(012 ]fo (1)=0
l.e.:
4[(000)2 ][40)12]= [4(012]2
< 16a)oa)20)12 :160)14
& Wy, = 0)12
Standard form: o, =w, =1

= o =1
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Classification

Similarly, it follows that:
w <1 —> Ellipse
o =1 — Parabola (@, =, =1)

o, >1 — Hyperbola
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Circle in Bezier Form

Quadratic rational polynomial:

1 (1-¢ 1,
f(t) = t=tan—, @ e (-90°..90°
®) 1+12[21j 2 Y ( )

Conversion to Bezier basis:
B =(1-tf=1-204+22[1 -2 1]  1-¢* 21 0 -1f

B =2(1-t)=2t-2¢* 20 2 -2f 2c 2o 2 of
Bgz):tz é[O 0 T 1+t° =11 0 1]T

>
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Circle in Bezier Form

Conversion to Bezier basis:

BP =(1-tf =1-2e+*2)1 -2 1] -2 21t o -1
B® =21(1-t)=2t-2¢* 20 2 -2 20 20 2 0]
B = o o ] 1+ 21 0 1]
Comparison yields:

1-t* =B\ +BP 1 0

2t =  BP++2B®  f"M@)=0|BY +|1|BY +| 2 B}
1+t* =B{’ +B{* +2B{ 1,
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Circle in Bezier Form

Result:

By” (r)@ + B”) (z)@ +2B (z)m

B (1) + B (1) + 2B (1)

f(¢) =

Parameters:

t= tan% — @ = 2arctant

t €[0,1]— ¢ €[0°..90°]
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Circle in Bezier Form

Standard Form:

B (t)p + B ()ap, + B (E)p, |1
B (t)+ B (t)w+BP(¢) D@,

(2) 1 2 [ 0
g0 gl el
f(t) =

B + %«/EBF) +B®

£(t) =
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Result: Circle in Bezier Form

Final Result:

o

1
0 =—+2 .'p1=

a)o =
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General Circle Segments

In general:
forwy =w, =1:
®; =COS

angle interval < 180°

o =60°
—> w,=0.5
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Properties, Remarks

Continuity:
e The parametrization is only C, but G®
e No arc length parametrization possible

e Even stronger: No rational curve other than a straight line
can have an arc-length parametrization.

Circles in in general degree Bezier splines:
e Simplest solution:

= Form quadratic circle (segments)
= Apply degree elevation to obtain the desired degree
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Rational De Casteljau Algorithm

Evaluation with De Casteljau Algorithm
e Two Variants:

= Compute numerator and denominator separately, then divide
= Divide in each intermediate step (“rational de Casteljau”)

e Non-rational de Casteljau algorithm:
bi()=(1-t)bV D)+ bl V(1)

i+1

e Rational de Casteljau algorithm:

(’" )
b(r)(t) (1-1) l(r;((g)b(r D(t)+t 1 ()b(r D)

(r)( ) i+1

with
() =(1-t)a" V() +tal [ V(E)

1+1

Geometric Modeling SoSem 2010 — Rational Spline Curves 69 / 80



Rational De Casteljau Algorithm

Advantages:

e More intuitive (repeated weighted linear interpolation of
points and weights)

 Numerically more stable (only convex combinations for
the standard case of positive weights, t € [0,1])
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Weight Points

Alternative technique to specify weights:
e Weight points
e User interface: More intuitive in interactive design

Weight Points:

_ yPy T+ 01P1
qO - )
@, + o,

Standard Form:

+ Q@
qO:po 1p1’ q;
1+ o,
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Derivatives

Computing derivatives of rational Bezier curves:
e Straightforward: Apply quotient rule
e A simpler expression can be derived using an algebraic
trick:

d
BD (Yo,
f(t):g; D)o, o
d

S0 O

=0

f(t)=% — PO=f(Ow(t) = P(0)=FOw(e)+ 0 (0)

— PO =p () - () = £()=P O
w(t)
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Derivatives

At the endpoints:

o)~ PO Of0)
o(t)

(o) PO -0 (Of(0)
w(0)

Wy

)
= d_l(p1 —Po)
W

Wy_q

f'(1)=d——(ps —Py-1)

Wy

_d(a)lpl—a)opo)—d(a)l—a)o)p() _d (

W

WP — Py — @O1Py t a’opo)
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NURBS

NURBS: Rational B-Splines
e Same idea:

= Control points in homogenous coordinates

= Evaluate curve in (d+1)-dimensional space
(same as before)

= For display, divide by w-component
— (we can divide anytime)
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NURBS

NURBS: Rational B-Splines

e Formally: (v'“: B-spline basis function / of degree d)
Zn:Ni(d)(t)a)ipi
f(t) ==L
ZNI'(d)(t)a)i
i=1

e Knot sequences etc. all remain the same

e De Boor algorithm — similar to rational de Casteljau alg.
= 1. option — apply separately to numerator, denominator
= 2. option — normalize weights in each intermediate result
— The second option is numerically more stable
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Some Issues

Interpolation problems:

e Finding a B-Spline curve that interpolates a set of
homogeneous points is easy

e Just solve a linear system
 Note: The problem is easy when the weights are given.

What if no weights are given (only Euclidian points)?
e More degrees of freedom than constraints
e If we reduce the number of points:

= Non-linear system of equations
= |ssues: How to find a solution? Does it exist? Is it unique?
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Related Problem

Approximation with rational curves:
e Scenario 1: Homogeneous data points given, with weights

= Easy problem —linear system
e Scenario 2: Euclidian data points are given, but weights
are fixed for each control point (e.g. manually)
= Easy problem again — linear system
= Weights just change the shape of the basis functions
e Scenario 3: Euclidian data points, want to compute
weights as well

= Non-linear optimization problem
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General Rational Data Approximation

Scenerio 3: Euclidian data points, want to compute
weights as well

e Non-linear optimization problem
e |Ssues:

= No direct solution possible
= Numerical optimization might get stuck in local minima

e Constraints:
= We have to avoid poles
= E.g. by demanding @. >0
= Constrained optimization problem (even nastier)
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General Rational Data Approximation

Simple idea for a numerical approach:
e First solve non-rational problem (all weights = 1)

e Then start constrained non-linear gradient descend
(or Newton) solver from there
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