Geometric Modeling
Summer Semester 2010

Triangle Meshes and Multi-Resolution Representations

Representations · Hierarchical Data Structures · Rendering
Topics:

- Blossoming and Polars
- Rational Spline Curves
- Spline Surfaces
- Triangle Meshes & Multi-Resolution Representations
 - Mesh Data Structures
 - Triangulations
 - Spatial Data Structures and Algorithms
 - Mesh Simplification
 - Appearance Approximation
Triangle Meshes
Data Structures
Modeling Zoo

Parametric Models

Implicit Models

Primitive Meshes

Particle Models
Triangle Meshes:

- Triangle meshes are probably the most common surface representation in computer graphics
- Triangles are probably the simplest surface primitives that can be assembled into meshes
 - Rendering can be implemented in hardware (z-buffering)
 - Simple algorithms for intersections (raytracing, collisions)
Attributes

How to define a triangle?

• We need three points in \mathbb{R}^3 (obviously).
• But we can have more:

- per-vertex normals (represent smooth surfaces more accurately)
- per-vertex color
- texture
- per-vertex texture coordinates (etc...)
Shared Attributes in Meshes

In Triangle Meshes:

- Attributes might be shared or separated:

 - adjacent triangles share normals
 - adjacent triangles have separated normals
“Triangle Soup”

Variants in triangle mesh representations:

• **“Triangle Soup”**
 - A set $S = \{t_1, ..., t_n\}$ of triangles
 - No further conditions
 - This is “the most common” representation (if you download models from the web, you never know what you get)

• **Triangle Meshes**: Additional consistency conditions
 - Conforming meshes: Vertices meet only at vertices
 - Manifold meshes: No intersections, no T-junctions
Conforming Triangulation:

- Vertices of triangles must only meet at vertices, not in the middle of edges:

 ![Wrong](image1) ![Correct](image2)

- This makes sure that we can move vertices around arbitrarily without creating holes in the surface.
Manifold Meshes

Triangulated two-manifold:

- Every edge is incident to exactly 2 triangles (closed manifold)
- ...or to at most two triangles (manifold with boundary)
- No triangles intersect (other than along common edges or vertices)
- Two triangles that share a vertex must share an edge
Attributes

In general:

- **Vertex attributes:**
 - Position (mandatory)
 - Normals
 - Color
 - Texture Coordinates

- **Face attributes:**
 - Color
 - Texture

- **Edge attributes (rarely used):**
 - E.g.: Visible line
Data Structures

The simple approach: List of vertices, edges, triangles

\[
\begin{align*}
v_1 &: (\text{pos}_x \ \text{pos}_y \ \text{pos}_z), \ attrib_1, \ldots, \ attrib_{n_v} \\
&\ldots \\
v_{nv} &: (\text{pos}_x \ \text{pos}_y \ \text{pos}_z), \ attrib_1, \ldots, \ attrib_{n_v}
\end{align*}
\]

\[
\begin{align*}
e_1 &: (\text{index}_1 \ \text{index}_2), \ attrib_1, \ldots, \ attrib_{n_e} \\
&\ldots \\
e_{ne} &: (\text{index}_1 \ \text{index}_2), \ attrib_1, \ldots, \ attrib_{n_e}
\end{align*}
\]

\[
\begin{align*}
t_1 &: (\text{idx}_1 \ \text{idx}_2 \ \text{idx}_3), \ attrib_1, \ldots, \ attrib_{n_t} \\
&\ldots \\
t_{nt} &: (\text{idx}_1 \ \text{idx}_2 \ \text{idx}_3), \ attrib_1, \ldots, \ attrib_{n_t}
\end{align*}
\]
Pros & Cons

Advantages:

- Simple to understand and build
- Provides exactly the information necessary for rendering

Disadvantages:

- Dynamic operations are expensive:
 - Removing or inserting a vertex
 → renumber expected edges, triangles
- Adjacency information is one-way
 - Vertices adjacent to triangles, edges → direct access
 - Any other relationship → need to search
 - Can be improved using hash tables (but still not dynamic)
Adjacent Data Structures

Alternative:

- Some algorithms require extensive neighborhood operations (get adjacent triangles, edges, vertices)
- ...as well as dynamic operations (inserting, deleting triangles, edges, vertices)
- For such algorithms, an \textit{adjacency based} data structure is usually more efficient
 - The data structure encodes the graph of mesh elements
 - Using pointers to neighboring elements
First try...

Straightforward Implementation:

- Use a list of vertices, edges, triangles
- Add a pointer from each element to each of its neighbors
- Global triangle list can be used for rendering

Remaining Problems:

- Lots of redundant information – hard to keep consistent
- Adjacency lists might become very long
 - Need to search again (might become expensive)
 - This is mostly a “theoretical problem” (O(n) search)
Half edge data structure:

- Half edges, connected by clockwise / ccw pointers
- Pointers to opposite half edge
- Pointers to/from start vertex of each edge
- Pointers to/from left face of each edge
Implementation

// a half edge
struct HalfEdge {
 HalfEdge* next;
 HalfEdge* previous;
 HalfEdge* opposite;
 Vertex* origin;
 Face* leftFace;
 EdgeData* edge;
};

// the data of the edge
// stored only once
struct EdgeData {
 HalfEdge* anEdge;
 /* attributes */
};

// a vertex
struct Vertex {
 HalfEdge* someEdge;
 /* vertex attributes */
};

// the face (triangle, poly)
struct Face {
 HalfEdge* half;
 /* face attributes */
};
Implementation

Implementation:

• The data structure should be encapsulated
 ▪ To make sure that updates are consistent
 ▪ Implement abstract data type with more high level operations that guarantee consistency of back and forth pointers

• Free Implementations are available, for example
 ▪ OpenMesh
 ▪ CGAL

• Alternative data structures: for example winged edge (Baumgart 1975)
Triangulations
Algorithms and Data Structures
Triangulation

Problem Statement:

- Given a 2-dimensional domain
- We want to triangulate the domain
- We need this for example for rendering parametric surfaces by triangle rasterization
- Adaptive triangulation: Higher resolution in more important area

Different Problem:

- Triangulating a point cloud in \mathbb{R}^3
- This is the surface reconstruction problem (we will look at that later)
Problem Variations

Simplest Version

- Domain is a rectangle or a triangle
- Uniform or adaptive tessellation

More Complex: Constrained Triangulation

- Point constraints:
 specific points must be included
- Edge constraints:
 specific edges must be included
- Boundary constraints:
 triangulate within some area only
Unconstrained uniform triangulation:

- This is simple
Adaptive Triangulation

Unconstrained adaptive triangulation:

- Hierarchy of rectangles / triangles (Quadtree)
- Use “balancing” to limit depth differences
- Balancing will increase the number of nodes in the tree by a factor of at most $O(1)$
- Finally, create a conforming triangulation (fixed number of cases per node)
Implementation

Storage: Tree Structure

• Tree can be represented directly

• Neighbor search for balancing:
 ▪ We can store fixed pointers to neighboring cells
 (not that elegant, easy to mess up the consistency)
 ▪ Alternative: use neighborhood search
 – Go up in tree until common ancestor is found
 – Then go down again
 – $O(1)$ expected running time
Adaptive Rendering

Adaptive rendering algorithm

- Recursive algorithm
- Starts at root node
- Is precision sufficient?
 - If so \rightarrow stop recursion
 - Otherwise \rightarrow go to child nodes
- The recursion extracts a subgraph of the tree ("cut")
- Next: The subgraph needs to be balanced
- Then, a triangulation can be created
Adaptive Rendering

Termination Criteria:

- Rendering error:
 - Projected size on screen shrinks with $1/z$ (where z is the depth in camera coordinates)
 - Might also depend on viewing angle (typically, this is neglected)

- Geometric error:
 - Tessellating a curved surface with planar faces is only an approximation
 - Error depends on curvature
Adaptive Rendering

Termination Criteria:

- Typically: divide geometric error by \(z \)
- To estimate \(z \), use a bounding box (for splines: convex hull property)
- Chooses nearest \(z \) (conservative estimate)
- REYES algorithm [Cook, Carpenter, Catmull 1987] (Pixar’s RenderMan)
 - Stop subdivision when BB below one pixel on screen size
 - Subdivision connectivity not really necessary in that case
Generalization: Arbitrary Domains

- Start with a base mesh
 - “3D parametrization”
 - A conforming two-manifold mesh in 3D used as parametrization domain
- The base mesh fixes the topology
- Subdivide recursively as needed
- Now: Balancing/triangulation, also across borders
- Then compute the final surface

Consistency across boundaries
Hardware Friendly Version

Problems:

- Costs for hierarchy creation / balancing are quite large
- In particular: Problematic for rendering
- Rendering triangles is very cheap these days
- But we still need adaptivity (moving camera, we can get arbitrarily close)
- Solution: \textit{Subdivision connectivity grids}
Idea:

- Do the same thing (hierarchical triangulation)
- But use a grid of many triangles in each node:
Subdivision Connectivity Grids

Advantage:

- Amortizes hierarchy creation / traversal costs over many triangles
- Well suited for graphics hardware (GPU) implementations (regular structure)

Disadvantage:

- Less adaptivity
- This is ok for the $1/z$ term in perspective rendering (we will see that later)
- But geometry will be oversampled
Example
Example
Example
Constraint Triangulations

Additional Constraints:

- Vertices, edges, area
- Need to augment subdivision algorithm

Hierarchical Subdivision:

- Subdivide until a simple case is found
 - At most one vertex in each cell
 - At most one line segment intersecting each cell
 - At most two boundary / cell intersections
- Then triangulate according to fixed rules
Vertex Constraints:

- When only one point is left in each box
- Subdivide once more
- Move center to point
- Then balance and triangulate (proceed as before)
Edge / Area Constraints

Edge and area constraints

- Subdivide until intersection with edges / boundary curves has constant complexity (e.g. two intersections per cell)
- Then apply fixed subdivision rule
- Edge constraints:
 - Keep all triangles
- Area constraint:
 - Delete outside triangles
Alternative Algorithm

Alternative: (constrained) Delaunay triangulation

• Delaunay triangulation of a point set:
 ▪ Triangulation in which the circumcircle of each triangle is empty
 ▪ This triangulation *maximizes* the *minimum angle* in any triangle
 ▪ The triangulation always exist
 ▪ Can be computed by iterated edge flipping or (more efficiently) by line sweep algorithms (O(n log n) time for n points)

• Constrained Delaunay triangulation:
 ▪ Additional edge / polygonal area constraints
 ▪ More involved to compute
Spatial Data Structures
Range Queries, Collision Detection
Spatial Data Structures

Motivation:

• Common problems:
 - Select a handle point by mouse click (millions of handles)
 - Click on other stuff (edges, triangles, patches)
 - Find the nearest point in a point set
 - Find the k nearest points (e.g. for surface fitting)
 - Find all geometry within a range (cube, sphere, etc.)

• This should work on large models
 - Billions of primitives
 - Frequent operations
 - E.g.: compute 20 nearest points for 1.000.000 points
 - Quadratic runtime is unacceptable

• Such operations can be speed up tremendously using spatial indexing data structures
Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

- Almost all approaches commonly used in practice are based on hierarchical spatial decompositions
- For some problems, there are more sophisticated data structures from computational geometry, but they often have to large space requirements
- In practice, anything beyond linear space is out of question
Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

- If the number of objects is still too large:
 - Cluster geometry into a small number of spatially coherent groups
 - Compute a simple bounding volume for each group
 - Apply this principle recursively to all subgroups formed
- We obtain a tree of bounding volumes
Hierarchical Space Partitioning

Formally:

- We have a set of objects \(\Omega = \{ s_1, ..., s_n \} \), \(s_i \subseteq \mathbb{R}^d \) (where \(d \) is small, usually \(d = 2..3 \))
- We form a hierarchy of nodes \(N_i \).
 - Let \(C(N_i) \) be the set of child nodes, ...
 - ...and \(P(N_i) \) the unique parent node, or \textit{null}, if \(N_i \) is the root node \(R \).
- We associate a set of objects \(S(N_i) \) with each node \(N_i \).
- We demand \(S(R) = \Omega \) (root contains everything) and \(N_j \in C(N_i) \Rightarrow S(N_j) \subseteq S(N_i) \) (inner nodes represent the whole subtree)
Hierarchical Space Partitioning

Formally:

• Bounding volumes: let $B(N_i)$ be a bounding volume of node N_i, $B(N_i) \subseteq \mathbb{R}^d$.

• This means: $S(N_i) \subseteq B(N_i)$ (objects are contained in the bounding volume)

• Typically, a bounding volume is a much simpler object than the stored geometry $S(N_i)$.

 ▪ It should be easy to test for intersections with other bounding volumes, geometric ranges and objects to be sorted into the hierarchy.

 ▪ Usually, the memory footprint of $B(N_i)$ is $O(1)$.

 ▪ Axis aligned boxes, spheres and the similar are popular.
Variants:

- Bounding volume hierarchy
 - Most general definition, we can use any bounding volumes
 - Each inner node represents the union of objects in the subtrees

- BSP-tree
 - Use planes to split the nodes into half-spaces
 - Usually stored as a binary tree ("binary space partition")
 - Cells are not $O(1)$, but each tree level cuts of a half space, which can be tested incrementally.
Variants

- **kD-tree / axis aligned BSP tree**
 - Use axis parallel splitting planes
 - Special case kD-tree:
 - Cyclically alternating splitting dimensions
 - Use median cut

- **Quadtrees / Octrees**
 - Always divide into 4 (8) cubes of the same size
 - This is a special case of a BSP- / kD-tree (identifying 3 consecutive binary splits with one octree node)
Extended Objects

Construction for extended objects (other than points)

- Extended objects:
 - Triangles
 - Polygons
 - Patches
 - Line segments
 - etc...
- Division of space might intersect with object
- Two solutions
 - Splitting objects
 - Overlapping nodes
Splitting Objects

First solution: splitting objects

- For example, sorting triangles into a BSP tree:
 - Split each triangle along splitting plane, if necessary
 - Try to optimize such that as few as possible triangles are split

- (Rather) easy to see:
 - A BSP tree needs at least worst case $O(n^2)$ fragments for n triangles (in practice typically $\approx O(n \log n)$)
 - This is worst-case quadratic storage
 - The same bound also applies to kD trees, octrees etc (special cases)

- Splitting objects is usually too expensive
 - Used in early low-polygon 3D engines for visibility computation
Overlapping Regions

Other alternative:
- Allow objects to exceed the region associated with each node
- Store a second, extended bounding box to reflect this information
- Typical strategy:
 - Allow up to 10% oversize (exceeding node limits by 10% in each direction)
 - If this does not fit into leaf nodes, use an inner node.
- Effective bounding volumes may overlap now
 - Limiting the percentage limits the amount of space covered multiple times (e.g. 10% in each direction means $1.2^3 \approx 1.7\times$)
Range Query Algorithm

Start at root node: Then, recursively

• If range overlaps bounding box
 ▪ Collect inner node primitives
 ▪ Test for range intersection
 ▪ Go on recursively for child nodes

• If range does not overlap bounding box
 ▪ End recursion

Nodes overlapping the geometric range

works for all hierarchy types
Examples

Nodes overlapping the geometric range
Parametric Surfaces

In case every primitive itself is a parametric object:

- We can “continue” the hierarchy
- Use a regular subdivision of the parameter domain (binary splits, quadtree)
- Form bounding volumes dynamically (e.g. convex hull of subdivided control points)
Abstract Implementation

Geometric Ranges:

- We just need to define two methods:
 - Intersection primitive \(\leftrightarrow\) range
 - Intersection bounding volume \(\leftrightarrow\) range

- With this information, we can implement a generic hierarchical range search algorithm

- Important special cases:
 - Boxes, Spheres, etc...
 - Rays (raytracing)
 - Projective extrusions (2D curve extended into space by central projection; this can be used for drawing selection regions on screen and retrieving the corresponding objects)
Collision Detection

Related Problem: Collision Detection

- We want to compute whether two geometric objects intersect with each other
- Important problem for dynamic simulations
- Also useful for CAD applications (arrange objects that do not collide)

Simple Solution:

- Test every part of object A for collision with every part of object B (e.g. each triangle with each other triangle)
- This is usually too expensive [O(mn)]
Hierarchical Collision Detection

- Precompute a hierarchy for both objects A and B that should be tested for collision.
- Then apply a hierarchical collision test (next slide)
Hierarchical Collision Test

Collision Test: Input – nodes N_A, N_B from objects A, B.

- Test bounding volumes $B(N_A)$, $B(N_B)$ for intersection
- If $B(N_A) \cap B(N_B) \neq \emptyset$:
 - Test all objects $S(N_A)$, $S(N_B)$ for intersection
 - Output those objects that do intersect
 - If $\text{diameter}(B(N_A)) > \text{diameter}(B(N_B))$:
 - For all children $C \in C(N_A)$
 - CollisionTest(C, N_B)
 - Otherwise:
 - For all children $C \in C(N_B)$
 - CollisionTest(C, N_A)
Illustration
Collision of parametric objects:

- Again, we can “continue” the hierarchy in the parametric domain
- Useful for speeding up patch-patch collision detection
- We can also compute intersection lines hierarchically
Parametric Objects

Computing intersection lines:

- Hierarchical intersections until a number of small boxes is left
- Place a control point in each box
- Use a Newton iteration to project points on intersection line
 - Move points in direction orthogonal to line only (avoid degeneracies)
- Fit a spline through the control points (spline interpolation problem, linear system)
- Can be additionally constrained to lie on intersection line
 - Minimize integral residual of distances to patches
 - But this is a non-linear optimization problem (Newton solver)
Intersection lines
Projecting a Point

Quasi-Newton Scheme
Nearest Neighbor Queries

Problem:

- Given n objects s_i and a point p in space
- Two variants:
 - Find the object that is closest to p
 - Find the k closest objects (k-nearest neighbors, kNN)

Operations:

- Compute distance point \leftrightarrow primitive
- Compute distance point \leftrightarrow bounding volume
Hierarchical Query Algorithm

Data Structures:

- The query algorithm needs some bounding volume hierarchy for the objects
 - A kD tree works best in practice, but other data structures also do the job
- In addition, two auxiliary data structures are needed:
 - A priority queue of objects Q_{obj}
 - A priority queue of bounding volumes Q_{BB}
 - Both sorted by distance to the query point
Hierarchical Query Algorithm

Algorithm: Compute \(k \) nearest neighbors

Input: Hierarchy of objects \(N \), query point \(p \)

- **Initialization:** Put root node on \(Q_{BB} \)
- **While** \#output < \(k \) and both priority queues non-empty
 - Compute distance to \(\min(Q_{BB}) \) and \(\min(Q_{obj}) \)
 - If an object is closer
 - output the object
 - Otherwise, if a box is closer
 - Take the box from the queue
 - Insert all objects into \(Q_{obj} \) and all child nodes into \(Q_{BB} \)
 (for this, the corresponding distances need to be computed)
Illustration

\[Q_{BB} \]

\[Q_{obj} \]
Illustration

Q_{BB}

Q_{obj}
Illustration

\[Q_{BB} \]

\[Q_{obj} \]
Illustration

Q_{BB}

Q_{obj}
Illustration

Q_{BB}

Q_{obj}
Mesh Simplification
Mesh Simplification:

- Triangle meshes are often oversampled
- In particular, meshes from 3D scanners
- We want to decimate the number of triangles such that the shape of the object is roughly maintained
- We want to do this automatically
Variants of the Problem

Problem Variations:

• Mesh simplification
 ▪ Reduce the number of triangles
 ▪ Fixed triangle budget or fixed approximation error

• Multi-resolution models
 ▪ Create a representation that provides many levels of resolution
 ▪ The matching level-of-detail can be extracted at runtime
 ▪ Useful for real-time rendering
 – Choose level of detail for each object in the scene
 – More sophisticated: varying level of detail across one object
 (the whole scene can be one object)
Curve Simplification:

- Compute an approximation of a piecewise linear curve by another piecewise linear curve with fewer segments.
- The optimal least-squares solution can be computed in $O(mn^2)$ time using dynamic programming:
 - where $n = \#(input \ line \ segments)$
 - and $m = \#(output \ line \ segments)$
- Usually, this is still too costly.
Curve Simplification:

- Most frequently used heuristic: *Douglas-Peucker Algorithm*.

- Simple Idea:
 - Start with a line connecting the end points
 - Find the input point farthest away from the straight line
 - Insert a new vertex there. We obtain two new segments
 - Apply the algorithm recursively to the parts (a number of times)

- Usually gives (visually) good results
Mesh Simplification:

- We need to find an approximating mesh to a given mesh

Optimal solution?

- It can be shown that finding an L_∞-norm best approximation to a mesh is NP-hard
- For other cases (e.g., least-squares) no efficient optimal techniques are known.
Mesh Simplification

Approximation algorithms:

- Polynomial time approximation algorithms with strict error guarantees are known, but they are too slow for practical applications

Michelangelo's St. Matthew
386,488,573 triangles
[Stanford Digital Michelangelo Project]
Parametric Simplification

If we have a parametric representation

- Spline surface
- Trimmed NURBS
- or the similar

we can just retessellate the original. No need for mesh-based simplification.

In the following: Input is a mesh (no side information)
Mesh Simplification

Three classes of techniques:

- **Mesh refinement**
 - Start with a simple base mesh, refine to approximate the object
 - “Gift-wrapping”
 - Complicated to implement (need to adjust topology)

- **Mesh decimation**
 - Start with full mesh
 - Keep on throwing away triangles until precision is met
 - This is the current standard technique

- **Other approaches**
 - Transform into implicit function and retessellate
 - Vertex clustering on a regular grid (useful for out-of-core impl.)
Mesh Decimation

Mesh decimation – basic idea:

• Start with the full mesh
• Then, subsequently remove
 ▪ Triangles (fill hole)
 ▪ Vertices (retriangulate hole)
 ▪ Edges (kills two triangles)
• Edge contraction ("edge collapse") algorithms are nowadays the most common technique
• Robust and simple to implement
Edge Contraction

Edge contraction:
Edge Contraction

Edge contraction algorithm:

• Questions:
 ▪ Which edges can be collapsed?
 ▪ What error does this cause?
 ▪ Edges collapse into points – where should we place the new point?
 ▪ What is the best order for edge collapses?

• Standard algorithm:
 ▪ Greedy algorithm
 ▪ Put edges in priority queue
 ▪ Pick the “cheapest” edge and remove it
 ▪ Recompute costs
Edge Contraction

Algorithm:

• For each edge in the mesh, compute the costs of collapsing the edge
 ▪ If an edge collapse changes the topology, set costs to $+\infty$
 ▪ Put all (finite cost) edges in priority queue sorted by cost

• While queue not empty and result not simple enough
 ▪ Remove min-cost edge
 ▪ Collapse the edge
 ▪ Recompute costs of all affected edges (incl. topology check)
 ▪ Update the priority queue accordingly
Edge Contraction

Affected edges:

edge contraction

affected edges
Components

The algorithm needs the following components:

- Topology check *(mostly fixed)*
- Error metric *(lots of choices)*
- Placement of new vertices *(lots of choices)*
We do not want to change the topology of the mesh

• Input is a triangulated two-manifold, probably with boundary

• This means:
 - Every edge is adjacent to one or two triangles
 (boundary / interior)
 - Triangles do not intersect
 - The mesh is conforming – no vertices in the middle of edges
 (fortunately, edge collapsing cannot change this)
Problem #1: Folds

- Edge collapses can cause topological folds in meshes
- We need a criterion to prevent this
Criterion

Consider the two vertices of the edge v_1, v_2

Let $R^{(1)}(v)$ be the on-ring neighborhood of v, excluding v_1, v_2

If $\#(R^{(1)}(v_1) \cap R^{(1)}(v_2)) = 2$, the collapse is permitted

For boundary points: $\#(R^{(1)}(v_1) \cap R^{(1)}(v_2)) = 1$
Illustration

this works

this folds
Intersections

Preventing Intersections

- The previous criterion only guarantees topologically correct meshes
- The embedding into space (read: vertex placement in \mathbb{R}^3) can still cause self intersections
- We need to check this separately:
 - Do the newly created triangles intersect with the shape
 - (Hierarchical intersection test with dynamic hierarchy)
 - If so, avoid the collapse operation
- Often, people omit this check (hard to implement, does not happen frequently in practice)
Components

The algorithm needs the following components:

• Topology check *(mostly fixed)* ✓
• Error metric *(lots of choices)*
• Placement of new vertices *(lots of choices)*
Error Metrics

Various potential error metrics:

- $S = \text{original, } S' = \text{approximation, } \text{dist}(\cdot, \cdot) = \text{smallest distance}$

- L_2-error: $\int_S \text{dist}(S', x)^2 \, dx$

- L_1-error: $\int_S |\text{dist}(S', x)| \, dx$

- L_∞-error: $\max_{x \in S} |\text{dist}(S', x)|$

- Hausdorff error: $\max \left(\max_{x \in S} |\text{dist}(S', x)|, \max_{x \in S'} |\text{dist}(S, x)| \right)$

(two sided maximum distance, symmetric measure)
Complexity Problem

Evaluating the error metric can be expensive:

- Compute the distance between two objects in $\Omega(n + m)$
- Naive computation takes $O(nm)$
- Doing this for each edge collapse is expensive

Solutions:

- Compute distance to previous level of detail only (works well in practice, but no guarantees)
- Use an approximate distance measure.
Quadric Error Metric

Quadric error metric: [Garland and Heckbert 1997]

- Very efficient solution to the error quantification problem
- However, the estimates might be too pessimistic

Idea:

- Measure distance to planes, rather than original triangles
- The error is represented as a 3D quadric
Quadric Error Metric

Implicit plane equation:

\[\langle n, x - x_0 \rangle = 0 \]

Quadratic error function:

\[\langle n, x - x_0 \rangle^2 \]

Minimum distance to several planes:

\[\sum_{i=1}^{n} \langle n^{(i)}, x - x^{(i)}_0 \rangle^2 \]

Squared distance function

Variable
Quadric Error Metrics

Use in mesh simplification:

• Assign an initial error quadric to each vertex
 ▪ Formed by summing up the plane error functions of the planes of all adjacent triangles
 ▪ Weight components by triangle area
 ▪ Error will be zero for the vertex itself (intersection of all planes)

• For each possible edge contraction:
 ▪ Just add the error quadrics of both vertices involved
 ▪ This means, the new, contracted vertex should approximate the planes of all triangles involved so far as well as possible
Quadric Error Metrics

Use in mesh simplification:

• For each possible edge contraction:
 ▪ Compute the optimum vertex position according to the summed error metric
 ▪ Evaluate the quadric to determine the error
 ▪ This is the candidate move (error, position) that is stored in the edge contraction queue

• When an edge contraction occurs:
 ▪ Use the computed position
 ▪ To recompute neighborhood error quadrics, add the error matrix of the new vertex to each neighboring vertex
 ▪ This gives new edge contraction costs
Extension

Meshes also have attributes, such as:

- Color
- Texture coordinates

This can be handled using quadric error metrics as well:

- Just store additional columns in the x-vectors
- Treat color values (etc.) as additional dimensions of the vertex position, weighted by relative importance to preserve them
How well does this work?

Advantage:
- Very fast: Evaluating the error metric and finding a new vertex position is $O(1)$

Disadvantage:
- For noisy meshes, the error approximation is bad:

Possible solutions:
- Mesh smoothing (normals from larger neighborhoods)
- Reset quadrics after a few computation steps
Components

The algorithm needs the following components:

- Topology check (mostly fixed) ✓
- Error metric (lots of choices) ✓
- Placement of new vertices (lots of choices) ✓

Conclusion:

- Quadric error metrics are a very popular choice due to their simplicity and performance.
- More accurate alternatives exist (at higher costs).
Multi-Resolution Meshes

Multi-resolution version:

- We want to store multiple levels of detail in one representation
- Simple, but effective approach: Progressive meshes [Hoppe 1996]

Progressive meshes:

- Simplify as strongly as possible (we get a base mesh)
- Record all edge contractions in a list
Progressive Meshes

Adjusting the level of detail:

• Start with the base mesh
• Perform *inverse edge contractions*, which are *vertex splits*, to increase the level of detail
• Perform edge contractions to reduce the level of detail
• The index in the list of edge contractions controls the level of detail:
 ▪ Index up: Level of detail increases
 ▪ Index down: Level of detail decreases
Example

[H. Hoppe, Microsoft Research, 1996]
Hardware Friendly Implementation

Progressive meshes are expensive:

- Graphics hardware can render billions of triangles
- Performing precomputed edge collapses / vertex splits still takes a lot of computational resources

Hardware Friendly approach:

- Precompute a number of levels of detail
- Just render them as needed
- Use linear interpolation to smoothly blend in the new vertices (avoid popping)
Adaptive Rendering

Problem:

• Assume we are handling a very large object
• For example a terrain model of the globe (Google earth)
• Progressive levels of detail are not helpful
 ▪ Either too coarse or too much geometry
• We need adaptive extraction of details
 ▪ Level-of-detail varying across the object
 ▪ How can this be done with a progressive mesh representation?
Adaptive / non-uniform level of detail extraction:

- Assumption:
 - We are given a camera position
 - and a geometric error measure $g(x, lod)$.
 - We want to extract geometry such that $g(x, lod) / z(\text{camera}) < \varepsilon$.
Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

• Simple idea:
 ▪ Start with base mesh
 ▪ Test for each vertex if adjacent triangles are accurate enough
 – Conservative test (minimum depth)
 ▪ If accuracy is not sufficient: perform vertex split

• Problem: *Vertex splits are not independent*
 ▪ We can only perform splits if the vertex already exists
 ▪ Vertices might have been created by previous vertex splits
 ▪ Need to take into account the *dependence hierarchy*.
Multi-Triangulation

Formal Framework: Multi-Triangulation

• During construction of the progressive mesh:
 ▪ An edge contraction \textit{depends} on a previous contraction if one of its vertices is the result of a previous edge contraction.
 – Correspondingly, a vertex split depends on previous splits if its vertex is the result of a previous split
 ▪ One edge contraction might depend on up to two other contractions, which each might depend on up to two others
 ▪ This yields a acyclic directed graph (DAG)
Vertex Split

Affected edges:

base mesh

vertex split
Dependencies

\begin{align*}
& e_1 & e_2 & e_3 \\
& e_4 & & \\
& e_5 & e_6 \\
& & & \\
& & & \\
& \quad e_2 & \quad e_3 \\
& \quad e_6 & \quad e_5 \\
& & & \\
& & & \\
& & & \\
& e_1 & \quad e_4 \\
& e_2 & \quad e_5 \\
& & \quad e_6
\end{align*}
Optimizing the Hierarchy

Need to take care of the dependencies:

- Need to store dependencies (DAG)
- When building the hierarchy:
 - Minimizing dependencies maximizes adaptivity, but might reduce quality
 - Possible strategy:
 - Only collapse non-dependent edges
 - When no edges are left, start new round of collapsing
 - Creates hierarchy with several levels
Hardware Friendly Version

Same problems again:

- The representation might be too costly to extract.
- Executing a single vertex split / edge collapse from a precomputed hierarchy might still be more expensive than rendering (processing) many triangles.

Solution:

- Clustered simplification with “large nodes”
- Same idea as for the adaptive grids, but with edge collapses.
Large Node Hierarchies

Idea for a hardware friendly algorithm (sketch):

- Divide the object into hierarchy of clusters
- For example:
 - Octree decomposition
 - Binary splitting along principal axis
 - Or the similar
- Hierarchy:
 - Leaf nodes store original triangles, at least \(k \geq \text{a few thousand} \) triangles per node
 - Inner nodes:
 - Union of child node triangles
 - Simplification to reduce complexity to 1/4 of input (octree)
Large Node Hierarchies

Problem: Boundaries

- Triangulations might be non-conforming at boundaries
- Possible solution:
 - For each edge: Compute two triangulations
 - Neighbor with the same resolution
 - Neighbor with resolution one level lower
 - During rendering:
 - Extract balanced cut of the hierarchy
 - Choose appropriate adaptor triangulation
- Alternative solution: [Klein & Guthe]
 - Bounded Hausdorff error approximation
 - Triangles overlap at the boundaries (“fat boarders”)
Appearance Simplification
(for Large Scene Rendering)
Problems with Mesh Simplification

Problems:

• Mesh simplification cannot perform arbitrarily strong simplifications without destroying object appearance completely
• We need an alternative approach for rendering really large scenes
• As an example: Hierarchical point-based simplification (extra slides set)
Written Exam:

- If someone cannot participate in the first of the two exams:
 - In the case of not passing the second (and only) try, we would offer an optional, additional oral exam.
 - If the student passes the oral exam, she/he would pass the lecture.

- This applies only if...
 - ...you need to have an important reason for not being able to take the first exam (for example, collision with another exam on the same day)
 - ...you need to notify us (by email) at least one week before the first exam.