
Geometric Modeling
Summer Semester 2010

Triangle Meshes and Multi-Resolution
Representations

Representations · Hierarchical Data Structures · Rendering

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 2 / 120

Overview...

Topics:

• Blossoming and Polars

• Rational Spline Curves

• Spline Surfaces

• Triangle Meshes & Multi-Resolution Representations

 Mesh Data Structures

 Triangulations

 Spatial Data Structures and Algorithms

 Mesh Simplification

 Appearance Approximation

Triangle Meshes
Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 4 / 120

 Parametric Models Primitive Meshes

 Implicit Models Particle Models

Modeling Zoo

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 5 / 120

Triangle Meshes

Triangle Meshes:

• Triangle meshes are probably the most common surface
representation in computer graphics

• Triangles are probably the simplest surface primitives that
can be assembled into meshes

 Rendering can be implemented in hardware (z-buffering)

 Simple algorithms for intersections (raytracing, collisions)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 6 / 120

Attributes

How to define a triangle?

• We need three points in 3 (obviously).

• But we can have more:

per-vertex normals
(represent smooth
surfaces more accurately)

per-vertex color

texture per-vertex texture
coordinates

(etc...)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 7 / 120

Shared Attributes in Meshes

In Triangle Meshes:

• Attributes might be shared or separated:

adjacent triangles
share normals

adjacent triangles
have separated normals

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 8 / 120

“Triangle Soup”

Variants in triangle mesh representations:

• “Triangle Soup”

 A set S = {t1, ..., tn} of triangles

 No further conditions

 This is “the most common” representation (if you download
models from the web, you never know what you get)

• Triangle Meshes: Additional consistency conditions

 Conforming meshes: Vertices meet only at vertices

 Manifold meshes: No intersections, no T-junctions

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 9 / 120

Conforming Meshes

Conforming Triangulation:

• Vertices of triangles must only meet at vertices, not in the
middle of edges:

• This makes sure that we can move vertices around
arbitrarily without creating holes in the surface

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 10 / 120

Manifold Meshes

Triangulated two-manifold:

• Every edge is incident to exactly 2 triangles
(closed manifold)

• ...or to at most two triangles (manifold with boundary)

• No triangles intersect (other than along common edges or
vertices)

• Two triangles that share a vertex must share an edge

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 11 / 120

Attributes

In general:

• Vertex attributes:

 Position (mandatory)

 Normals

 Color

 Texture Coordinates

• Face attributes:

 Color

 Texture

• Edge attributes (rarely used)

 E.g.: Visible line

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 12 / 120

Data Structures

The simple approach: List of vertices, edges, triangles

v1: (posx posy posy), attrib1, ..., attribnav
 ...

vnv: (posx posy posy), attrib1, ..., attribnav

e1: (index1 index2), attrib1, ..., attribnae
 ...

ene: (index1 index2), attrib1, ..., attribnae

t1: (idx1 idx2 idx3), attrib1, ..., attribnat
 ...

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 13 / 120

Pros & Cons

Advantages:

• Simple to understand and build

• Provides exactly the information necessary for rendering

Disadvantages:

• Dynamic operations are expensive:

 Removing or inserting a vertex
 renumber expected edges, triangles

• Adjacency information is one-way

 Vertices adjacent to triangles, edges  direct access

 Any other relationship  need to search

 Can be improved using hash tables (but still not dynamic)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 14 / 120

Adjacency Data Structures

Alternative:

• Some algorithms require extensive neighborhood
operations (get adjacent triangles, edges, vertices)

• ...as well as dynamic operations (inserting, deleting
triangles, edges, vertices)

• For such algorithms, an adjacency based data structure is
usually more efficient

 The data structure encodes the graph of mesh elements

 Using pointers to neighboring elements

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 15 / 120

First try...

Straightforward Implementation:
• Use a list of vertices, edges,

triangles

• Add a pointer from each element
to each of its neighbors

• Global triangle list can be used for rendering

Remaining Problems:

• Lots of redundant information – hard to keep consistent

• Adjacency lists might become very long

 Need to search again (might become expensive)

 This is mostly a “theoretical problem” (O(n) search)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 16 / 120

Half edge data structure:

• Half edges, connected by clockwise / ccw pointers

• Pointers to opposite half edge

• Pointers to/from start vertex of each edge

• Pointers to/from left face of each edge

Less Redundant Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 17 / 120

// a vertex

struct Vertex {

 HalfEdge* someEdge;

 /* vertex attributes */

};

// the face (triangle, poly)

struct Face {

 HalfEdge* half;

 /* face attributes */

};

Implementation

// a half edge

struct HalfEdge {

 HalfEdge* next;

 HalfEdge* previous;

 HalfEdge* opposite;

 Vertex* origin;

 Face* leftFace;

 EdgeData* edge;

};

// the data of the edge

// stored only once

struct EdgeData {

 HalfEdge* anEdge;

 /* attributes */

};

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 18 / 120

Implementation

Implementation:

• The data structure should be encapsulated

 To make sure that updates are consistent

 Implement abstract data type with more high level operations
that guarantee consistency of back and forth pointers

• Free Implementations are available, for example

 OpenMesh

 CGAL

• Alternative data structures: for example winged edge
(Baumgart 1975)

Triangulations
Algorithms and Data Structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 20 / 120

Triangulation

Problem Statement:
• Given a 2-dimensional domain

• We want to triangulate the domain

• We need this for example for rendering parametric
surfaces by triangle rasterization

• Adaptive triangulation: Higher resolution in more
important area

Different Problem:
• Triangulating a point cloud in 3

• This is the surface reconstruction problem
(we will look at that later)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 21 / 120

Problem Variations

Simplest Version

• Domain is a rectangle or a triangle

• Uniform or adaptive tessellation

More Complex: Constrained Triangulation

• Point constraints:
specific points must be included

• Edge constraints:
specific edges must be included

• Boundary constraints:
triangulate within some area only

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 22 / 120

Unconstrained Uniform Triangulation

Unconstrained uniform triangulation:

• This is simple

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 23 / 120

Adaptive Triangulation

Unconstrained adaptive
triangulation:

• Hierarchy of rectangles / triangles
(Quadtree)

• Use “balancing” to limit depth
differences

• Balancing will increase the number
of nodes in the tree by a factor of
at most O(1)

• Finally, create a conforming
triangulation (fixed number of
cases per node)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 24 / 120

Implementation

Storage: Tree Structure

• Tree can be represented directly

• Neighbor search for balancing:

 We can store fixed pointers to
neighboring cells
(not that elegant, easy to mess up
the consistency)

 Alternative: use neighborhood
search

– Go up in tree until common
ancestor is found

– Then go down again

– O(1) expected running time

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 25 / 120

Adaptive Rendering

Adaptive rendering algorithm

• Recursive algorithm

• Starts at root node

• Is precision sufficient?

 If so  stop recursion

 Otherwise  go to child nodes

• The recursion extracts a subgraph of the tree (“cut”)

• Next: The subgraph needs to be balanced

• Then, a triangulation can be created

“cut”

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 26 / 120

Adaptive Rendering

Termination Criteria:

• Rendering error:

 Projected size on screen shrinks
with 1/z (where z is the depth
in camera coordinates)

 Might also depend on viewing
angle (typically, this is neglected)

• Geometric error:

 Tessellating a curved surface with planar faces is only an
approximation

 Error depends on curvature

?

go deeper?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 27 / 120

Adaptive Rendering

Termination Criteria:

• Typically: divide geometric
error by z

• To estimate z, use a bounding
box (for splines: convex hull
property)

• Chooses nearest z (conservative estimate)

• REYES algorithm [Cook, Carpenter, Catmull 1987]
(Pixar’s RenderMan)

 Stop subdivision when BB below one pixel on screen size

 Subdivision connectivity not really necessary in that case

?

go deeper?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 28 / 120

Subdivision Connectivity Meshes

Generalization: Arbitrary Domains

• Start with a base mesh

 “3D parametrization”

 A conforming two-manifold mesh
in 3D used as parametrization domain

• The base mesh fixes the topology

• Subdivide recursively as needed

• Now: Balancing/triangulation,
also across borders

• Then compute the final surface

base mesh

consistency across boundaries

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 29 / 120

Hardware Friendly Version

Problems:

• Costs for hierarchy creation / balancing are quite large

• In particular: Problematic for rendering

• Rendering triangles is very cheap these days

• But we still need adaptivity (moving camera, we can get
arbitrarily close)

• Solution: Subdivision connectivity grids

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 30 / 120

Subdivision Connectivity Grids

Idea:

• Do the same thing (hierarchical triangulation)

• But use a grid of many triangles in each node:

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 31 / 120

Subdivision Connectivity Grids

Advantage:

• Amortizes hierarchy creation /
traversal costs over many triangles

• Well suited for graphics hardware (GPU)
implementations (regular structure)

Disadvantage:

• Less adaptivity

• This is ok for the 1/z term in perspective rendering
(we will see that later)

• But geometry will be oversampled

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 32 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 33 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 34 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 35 / 120

Example

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 36 / 120

Constraint Triangulations

Additional Constraints:

• Vertices, edges, area

• Need to augment subdivision algorithm

Hierarchical Subdivision:

• Subdivide until a simple case is found

 At most one vertex in each cell

 At most one line segment intersecting each cell

 At most two boundary / cell intersections

• Then triangulate according to fixed rules

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 37 / 120

Vertex Constraints

Vertex Constraints:

• When only one point is left
in each box

• Subdivide once more

• Move center to point

• Then balance and
triangulate
(proceed as before)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 38 / 120

Edge / Area Constraints

Edge and area constraints

• Subdivide until intersection with
edges / boundary curves has
constant complexity (e.g. two
intersections per cell)

• Then apply fixed subdivision rule

• Edge constraints:

 Keep all triangles

• Area constraint:

 Delete outside triangles

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 39 / 120

Alternative Algorithm

Alternative: (constrained) Delaunay triangulation

• Delaunay triangulation of a point set:

 Triangulation in which the circumcircle
of each triangle is empty

 This triangulation maximizes the
minimum angle in any triangle

 The triangulation always exist

 Can be computed by iterated
edge flipping or (more efficiently)
by line sweep algorithms (O(n log n) time for n points)

• Constrained Delaunay triangulation:

 Additional edge / polygonal area constraints

 More involved to compute

Spatial Data Structures
Range Queries, Collision Detection

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 41 / 120

Spatial Data Structures

Motivation:
• Common problems:

 Select a handle point by mouse click (millions of handles)

 Click on other stuff (edges, triangles, patches)

 Find the nearest point in a point set

 Find the k nearest points (e.g. for surface fitting)

 Find all geometry within a range (cube, sphere, etc.)

• This should work on large models
 Billions of primitives

 Frequent operations

– E.g.: compute 20 nearest points for 1.000.000 points

– Quadratic runtime is unacceptable

• Such operations can be speed up tremendously
using spatial indexing data structures

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 42 / 120

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

• Almost all approaches commonly used in practice are
based on hierarchical spatial decompositions

• For some problems, there are more sophisticated data
structures from computational geometry, but they often
have to large space requirements

• In practice, anything beyond linear space is out of
question

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 43 / 120

Spatial Data Structures

Basic Idea: Hierarchical decomposition of space

• If the number of objects is still too large:

 Cluster geometry into a small number
of spatially coherent groups

 Compute a simple bounding
volume for each group

 Apply this principle recursively
to all subgroups formed

• We obtain a tree of bounding volumes

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 44 / 120

Hierarchical Space Partitioning

Formally:

• We have a set of objects  = {s1, ..., sn}, si  d

(where d is small, usually d = 2..3)

• We form a hierarchy of nodes Ni.

 Let C(Ni) be the set of child nodes, ...

 ...and P(Ni) the unique parent node, or null,
if Ni is the root node R.

• We associate a set of objects S(Ni) with each node Ni.

• We demand S(R) =  (root contains everything)
and Nj  C(Ni)  S(Nj)  S(Ni) (inner nodes represent the
whole subtree)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 45 / 120

Hierarchical Space Partitioning

Formally:

• Bounding volumes: let B(Ni) be a bounding volume of
node Ni, B(Ni)  d.

• This means: S(Ni)  B(Ni)
(objects are contained in the bounding volume)

• Typically, a bounding volume is a much simpler object
than the stored geometry S(Ni).

 It should be easy to test for intersections with other bounding
volumes, geometric ranges and objects to be sorted into the
hierarchy.

 Usually, the memory footprint of B(Ni) is O(1).

 Axis aligned boxes, spheres and the similar are popular.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 46 / 120

Variants

Variants:

• Bounding volume hierarchy

 Most general definition, we can use any
bounding volumes

 Each inner node represents the union of
objects in the subtrees

• BSP-tree

 Use planes to split the nodes into half-spaces

 Usually stored as a binary tree (“binary space
partition”)

 Cells are not O(1), but each tree level cuts of a
half space, which can be tested incrementally.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 47 / 120

Variants

Variants

• kD-tree / axis aligned BSP tree

 Use axis parallel splitting planes

 Special case kD-tree:

– Cyclically alternating splitting dimensions

–Use median cut

• Quadtrees / Octrees

 Always divide into 4 (8) cubes of the same
size

 This is a special case of a BSP- / kD-tree
(identifying 3 consecutive binary splits with
one octree node)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 48 / 120

Extended Objects

Construction for extended objects (other than points)

• Extended objects:

 Triangles

 Polygons

 Patches

 Line segments

 etc...

• Division of space might intersect with object

• Two solutions

 Splitting objects

 Overlapping nodes

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 49 / 120

Splitting Objects

First solution: splitting objects

• For example, sorting triangles into a BSP tree:

 Split each triangle along splitting plane, if necessary

 Try to optimize such that as few as possible triangles are split

• (Rather) easy to see:

 A BSP tree needs at least worst case O(n2) fragments for
n triangles (in practice typically  O(n log n))

 This is worst-case quadratic storage

 The same bound also applies to kD trees, octrees etc (special
cases)

• Splitting objects is usually too expensive

 Used in early low-polygon 3D engines for visibility computation

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 50 / 120

Overlapping Regions

Other alternative:

• Allow objects to exceed the region
associated with each node

• Store a second, extended bounding box
to reflect this information

• Typical strategy:

 Allow up to 10% oversize (exceeding node limits by 10% in each
direction)

 If this does not fit into leaf nodes, use an inner node.

• Effective bounding volumes may overlap now

 Limiting the percentage limits the amount of space covered
multiple times (e.g. 10% in each direction means 1.23  1.7)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 51 / 120

Range Query Algorithm

Start at root node: Then, recursively

• If range overlaps bounding box

 Collect inner node primitives

 Test for range intersection

 Go on recursively for child nodes

• If range does not overlap bounding box

 End recursion

Nodes overlapping
the geometric range

types hierarchy

all for works

















Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 52 / 120

Examples

Range Range Range

Nodes overlapping
the geometric range

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 53 / 120

Parametric Surfaces

In case every primitive itself is a parametric object:

• We can “continue” the hierarchy

• Use a regular subdivision of the parameter domain
(binary splits, quadtree)

• Form bounding volumes dynamically (e.g. convex hull of
subdivided control points)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 54 / 120

Abstract Implementation

Geometric Ranges:

• We just need to define two methods:

 Intersection primitive range

 Intersection bounding volume  range

• With this information, we can implement a generic
hierarchical range search algorithm

• Important special cases:

 Boxes, Spheres, etc...

 Rays (raytracing)

 Projective extrusions (2D curve extended into space by central
projection; this can be used for drawing selection regions on
screen and retrieving the corresponding objects)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 55 / 120

Collision Detection

Related Problem: Collision Detection

• We want to compute whether two geometric objects
intersect with each other

• Important problem for dynamic simulations

• Also useful for CAD applications (arrange objects that do
not collide)

Simple Solution:

• Test every part of object A for collision with every part of
object B (e.g. each triangle with each other triangle)

• This is usually to expensive [O(mn)]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 56 / 120

Hierarchical Collision Detection

Hierarchical Collision Detection

• Precompute a hierarchy for both objects A and B that
should be tested for collision.

• Then apply a hierarchical collision test (next slide)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 57 / 120

Hierarchical Collision Test

Collision Test: Input – nodes NA, NB from objects A, B.

• Test bounding volumes B(NA), B(NB) for intersection

• If B(NA)  B(NB) :
 Test all objects S(NA), S(NB) for intersection

 Output those objects that do intersect

 If diameter(B(NA)) > diameter(B(NB)):

– For all children C  C(NA)

- CollisionTest(C, NB)

 Otherwise:

– For all children C  C(NB)

- CollisionTest(C, NA)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 58 / 120

A

Illustration

B

A B

A B

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 59 / 120

Illustration

A

B

A

B

A

B

A

B

A

B

A

B

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 60 / 120

Parametric Objects

Collision of parametric objects:

• Again, we can “continue” the hierarchy in the parametric
domain

• Useful for speeding up patch-patch collision detection

• We can also compute intersection lines hierarchically

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 61 / 120

Parametric Objects

Computing intersection lines:
• Hierarchical intersections until a number of small boxes is left

• Place a control point in each box

• Use a Newton iteration to project points on intersection line

 Move points in direction orthogonal to line only
(avoid degeneracies)

• Fit a spline through the control points (spline interpolation
problem, linear system)

• Can be additionally constrained to lie on intersection line
 Minimize integral residual of distances to patches

 But this is a non-linear optimization problem (Newton solver)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 62 / 120

Intersection lines

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 63 / 120

Projecting a Point

Quasi-Newton Scheme

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 64 / 120

Nearest Neighbor Queries

Problem:

• Given n objects si and a point p in space

• Two variants:

 Find the object that is closest to p

 Find the k closest objects (k-nearest neighbors, kNN)

Operations:

• Compute distance point  primitive

• Compute distance point  bounding volume

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 65 / 120

Hierarchical Query Algorithm

Data Structures:

• The query algorithm needs some bounding volume
hierarchy for the objects

 A kD tree works best in practice, but other data structures also
do the job

• In addition, two auxiliary data structures are needed:

 A priority queue of objects Qobj

 A priority queue of bounding volumes QBB

 Both sorted by distance to the query point

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 66 / 120

Hierarchical Query Algorithm

Algorithm: Compute k nearest neighbors

Input: Hierarchy of objects N, query point p

• Initialization: Put root node on QBB

• While #output < k and both priority queues non-empty

 Compute distance to min(QBB) and min(Qobj)

 If an object is closer

– output the object

 Otherwise, if a box is closer

– Take the box from the queue

– Insert all objects into Qobj and all child nodes into QBB
(for this, the corresponding distances need to be computed)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 67 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 68 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 69 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 70 / 120

Illustration

QBB Qobj

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 71 / 120

Illustration

QBB Qobj

Mesh Simplification

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 73 / 120

Mesh Simplification

Mesh Simplification:

• Triangle meshes are
often oversampled

• In particular, meshes
from 3D scanners

• We want to decimate the number of triangles such that
the shape of the object is roughly maintained

• We want to do this automatically

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 74 / 120

Variants of the Problem

Problem Variations:

• Mesh simplification

 Reduce the number of triangles

 Fixed triangle budget or fixed approximation error

• Multi-resolution models

 Create a representation that provides many levels of resolution

 The matching level-of-detail can be extracted at runtime

 Useful for real-time rendering

– Choose level of detail for each object in the scene

– More sophisticated: varying level of detail across one object
(the whole scene can be one object)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 75 / 120

Curve Simplification

Curve Simplification:

• Compute an approximation of a piecewise linear curve by
another piecewise linear curve with fewer segments

• The optimal least-squares solution can be computed in
O(mn2) time using dynamic programming

 where n = #(input line segments)

 and m = #(output line segments)

• Usually, this is still to costly.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 76 / 120

Curve Simplification

Curve Simplification:

• Most frequently used heuristic:
Douglas-Peucker Algorithm.

• Simple Idea:

 Start with a line connecting the end points

 Find the input point farthest away from the straight line

 Insert a new vertex there. We obtain two new segments

 Apply the algorithm recursively to the parts (a number of times)

• Usually gives (visually) good results

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 77 / 120

Mesh Simplification

Mesh Simplification:

• We need to find an approximating mesh to a given mesh

Optimal solution?

• It can be shown that finding an L-norm best
approximation to a mesh is NP-hard

• For other cases (e.g., least-squares) no efficient optimal
techniques are known.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 78 / 120

Mesh Simplification

Approximation algorithms:

• Polynomial time approximation
algorithms with strict error guarantees
are known, but they are too slow for
practical applications

Michelangelo's St. Matthew
386,488,573 triangles

[Stanford Digital Michelangelo Project]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 79 / 120

Parametric Simplification

If we have a parametric representation

• Spline surface

• Trimmed NURBS

• or the similar

we can just retessellate the original. No need for
mesh-based simplification.

In the following: Input is a mesh (no side information)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 80 / 120

Mesh Simplification

Three classes of techniques:

• Mesh refinement
 Start with a simple base mesh, refine to approximate the object

 “Gift-wrapping”

 Complicated to implement (need to adjust topology)

• Mesh decimation
 Start with full mesh

 Keep on throwing away triangles until precision is met

 This is the current standard technique

• Other approaches
 Transform into implicit function and retessellate

 Vertex clustering on a regular grid (useful for out-of-core impl.)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 81 / 120

Mesh Decimation

Mesh decimation – basic idea:

• Start with the full mesh

• Then, subsequently remove

 Triangles (fill hole)

 Vertices (retriangulate hole)

 Edges (kills two triangles)

• Edge contraction (“edge collapse”) algorithms are
nowadays the most common technique

• Robust and simple to implement

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 82 / 120

Edge Contraction

Edge contraction:

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 83 / 120

Edge Contraction

Edge contraction algorithm:

• Questions:

 Which edges can be collapsed?

 What error does this cause?

 Edges collapse into points –
where should we place the new point?

 What is the best order for edge collapses?

• Standard algorithm:

 Greedy algorithm

 Put edges in priority queue

 Pick the “cheapest” edge and remove it

 Recompute costs

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 84 / 120

Edge Contraction

Algorithm:

• For each edge in the mesh, compute the costs of
collapsing the edge

 If an edge collapse changes the topology, set costs to +

 Put all (finite cost) edges in priority queue sorted by cost

• While queue not empty and result not simple enough

 Remove min-cost edge

 Collapse the edge

 Recompute costs of all affected edges (incl. topology check)

 Update the priority queue accordingly

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 85 / 120

Edge Contraction

Affected edges:

affected edges edge contraction

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 86 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 87 / 120

Topology Check

We do not want to change the topology of the mesh

• Input is a triangulated two-manifold, probably with
boundary

• This means:

 Every edge is adjacent to one or two triangles
(boundary / interior)

 Triangles do not intersect

 The mesh is conforming – no vertices in the middle of edges
(fortunately, edge collapsing cannot change this)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 88 / 120

Problem #1: Folds

Problem #1:

• Edge collapses can cause topological folds in meshes

• We need a criterion to prevent this

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 89 / 120

Criterion

Criterion:

• Consider the two vertices of the edge v1, v2

• Let R(1)(v) be the on-ring neighborhood of v,
excluding v1, v2

• If #(R(1)(v1)  R(1)(v2)) = 2, the collapse is permitted

• For boundary points: #(R(1)(v1)  R(1)(v2)) = 1

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 90 / 120

this works

Illustration

this folds

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 91 / 120

Intersections

Preventing Intersections

• The previous criterion only guarantees topologically
correct meshes

• The embedding into space (read: vertex placement in 3)
can still cause self intersections

• We need to check this separately:

 Do the newly created triangles intersect with the shape

– (Hierarchical intersection test with dynamic hierarchy)

 If so, avoid the collapse operation

• Often, people omit this check (hard to implement, does
not happen frequently in practice)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 92 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 93 / 120

Error Metrics

Various potential error metrics:

• S = original, S’ = approximation, dist(·,·) = smallest distance

• L2-error:

• L1-error:

• L-error:

• Hausdorff error:

(two sided maximum distance, symmetric measure)


S

dxxSdist 2),'(


S

dxxSdist),'(

),'(max xSdist
Sx










),(max,),'(maxmax

'
xSdistxSdist

SxSx

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 94 / 120

Complexity Problem

Evaluating the error metric can be expensive:

• Compute the distance between two objects in (n + m)

• Naive computation takes O(nm)

• Doing this for each edge collapse is expensive

Solutions:

• Compute distance to previous level of detail only
(works well in practice, but no guarantees)

• Use an approximate distance measure.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 95 / 120

Quadric Error Metric

Quadric error metric: [Garland and Heckbert 1997]

• Very efficient solution to the error quantification problem

• However, the estimates might be too pessimistic

Idea:

• Measure distance to planes, rather than original triangles

• The error is represented as a 3D quadric

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 96 / 120

variable

variable

2

0, xxn 

Quadric Error Metric

Implicit plane equation:

Quadratic error function:

Minimum distance to
several planes:

squared
distance function

0, 0 xxn
x0

x n

x0
(1)

n(1)

x0
(2)

n(2)





n

i

ii

1

2
)(

0
)(, xxn

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 97 / 120

Quadric Error Metrics

Use in mesh simplification:

• Assign an initial error quadric to each vertex

 Formed by summing up the plane error functions of the planes
of all adjacent triangles

 Weight components by triangle area

 Error will be zero for the vertex itself (intersection of all planes)

• For each possible edge contraction:

 Just add the error quadrics of both vertices involved

 This means, the new, contracted vertex should approximate the
planes of all triangles involved so far as well as possible

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 98 / 120

Quadric Error Metrics

Use in mesh simplification:

• For each possible edge contraction:

 Compute the optimum vertex position according to the summed
error metric

 Evaluate the quadric to determine the error

 This is the candidate move (error, position) that is stored in the
edge contraction queue

• When an edge contraction occurs:

 Use the computed position

 To recompute neighborhood error quadrics, add the error matrix
of the new vertex to each neighboring vertex

 This gives new edge contraction costs

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 99 / 120

Extension

Meshes also have attributes, such as:

• Color

• Texture coordinates

This can be handled using quadric error metrics as
well:

• Just store additional columns in the x-vectors

• Treat color values (etc.) as additional dimensions of the
vertex position, weighted by relative importance to
preserve them

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 100 / 120

How well does this work?

Advantage:
• Very fast: Evaluating the error metric and finding a new

vertex position is O(1)

Disadvantage:
• For noisy meshes, the error approximation is bad:

• Possible solutions:

 Mesh smoothing (normals from larger neighborhoods)

 Reset quadrics after a few computation steps

scale fine




Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 101 / 120

Components

The algorithm needs the following components:

• Topology check (mostly fixed)

• Error metric (lots of choices)

• Placement of new vertices (lots of choices)

Conclusion:

• Quadric error metrics are a very popular choice due to
their simplicity and performance.

• More accurate alternatives exist (at higher costs).

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 102 / 120

Multi-Resolution Meshes

Multi-resolution version:

• We want to store multiple levels of detail in one
representation

• Simple, but effective approach: Progressive meshes
[Hoppe 1996]

Progressive meshes:

• Simplify as strongly as possible (we get a base mesh)

• Record all edge contractions in a list

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 103 / 120

Progressive Meshes

Adjusting the level of detail:

• Start with the base mesh

• Perform inverse edge contractions, which are vertex splits,
to increase the level of detail

• Perform edge contractions to reduce the level of detail

• The index in the list of edge contractions controls the
level of detail:

 Index up: Level of detail increases

 Index down: Level of detail decreases

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 104 / 120

Example

[H. Hoppe, Microsoft Research, 1996]

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 105 / 120

Hardware Friendly Implementation

Progressive meshes are expensive:

• Graphics hardware can render billions of triangles

• Performing precomputed edge collapses / vertex splits
still takes a lot of computational resources

Hardware Friendly approach:

• Precompute a number of levels of detail

• Just render them as needed

• Use linear interpolation to smoothly blend in the new
vertices (avoid popping)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 106 / 120

Adaptive Rendering

Problem:

• Assume we are handling a very large object

• For example a terrain model of the globe (Google earth)

• Progressive levels of detail are not helpful

 Either too coarse or too much geometry

• We need adaptive extraction of details

 Level-of-detail varying across the object

 How can this be done with a progressive mesh representation?

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 107 / 120

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

• Assumption:

 We are given a camera position

 and a geometric error messure g(x, lod).

 We want to extract geometry such that g(x, lod) / z(camera) < .

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 108 / 120

Adaptive LOD Extraction

Adaptive / non-uniform level of detail extraction:

• Simple idea:

 Start with base mesh

 Test for each vertex if adjacent triangles are accurate enough

– Conservative test (minimum depth)

 If accuracy is not sufficient: perform vertex split

• Problem: Vertex splits are not independent

 We can only perform splits if the vertex already exists

 Vertices might have been created by previous vertex splits

 Need to take into account the dependence hierarchy.

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 109 / 120

Multi-Triangulation

Formal Framework: Multi-Triangulation

• During construction of the progressive mesh:

 An edge contraction depends on a previous contraction if one of
its vertices is the result of a previous edge contraction.

– Correspondingly, a vertex split depends on previous splits if
its vertex is the result of a previous split

 One edge contraction might depend on up to two other
contractions, which each might depend on up to two others

 This yields a acyclic directed graph (DAG)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 110 / 120

Vertex Split

Affected edges:

vertex split base mesh

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 111 / 120

Dependencies

e1

e2 e3

e5 e6

e4

e1

e2 e4

e3

e6

e5

e1

e2 e3

e5 e6

e4

e1

e2 e4

e3

e6

e5

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 112 / 120

Optimizing the Hierarchy

Need to take care of the dependencies:

• Need to store dependencies (DAG)

• When building the hierarchy:

 Minimizing dependencies maximizes adaptivity, but might
reduce quality

 Possible strategy:

– Only collapse non-dependent edges

– When no edges are left, start new round of collapsing

– Creates hierarchy with several levels

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 113 / 120

Hardware Friendly Version

Same problems again:

• The representation might be to costly to extract

• Executing a single vertex split / edge collapse from a
precomputed hierarchy might still be more expensive
than rendering (processing) many triangles

• Solution:

 Clustered simplification with “large nodes”

 Same idea as for the adaptive grids, but with edge collapses

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 114 / 120

Large Node Hierarchies

Idea for a hardware friendly algorithm (sketch):

• Divide the object into hierarchy of clusters

• For example:

 Octree decomposition

 Binary splitting along principal axis

 Or the similar

• Hierarchy:

 Leaf nodes store original triangles, at least k  a few thousand
triangles per node

 Inner nodes:

– Union of child node triangles

– Simplification to reduce complexity to 1/4 of input (octree)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 115 / 120

Large Node Hierarchies

Problem: Boundaries

• Triangulations might be non-conforming at boundaries

• Possible solution:

 For each edge: Compute two triangulations

– Neighbor with the same resolution

– Neighbor with resolution one level lower

 During rendering:

– Extract balanced cut of the hierarchy

– Choose appropriate adaptor triangulation

• Alternative solution: [Klein & Guthe]

 Bounded Hausdorff error approximation

 Triangles overlap at the boundaries (“fat boarders”)

Appearance Simplification
(for Large Scene Rendering)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations 117 / 120

Problems with Mesh Simplification

Problems:

• Mesh simplification cannot perform arbitrarily strong
simplifications without destroying object appearance
completely

• We need an alternative approach for rendering really
large scenes

• As an example: Hierarchical point-based simplification
(extra slides set)

Geometric Modeling SoSem 2010 – Triangle Meshes & Multi-Resolution Representations

Announcement

Written Exam:

• If someone cannot participate in the first of the two
exams:

 In the case of not pass the second (and only) try, we would offer
an optional, additional oral exam.

 If the student passes the oral exam, she/he would pass the
lecture.

• This applies only if...

 ...you need to have an important reason for not being able to
take the first exam (for example, collision with another exam on
the same day)

 ...you need to notify us (by email) at least one week before the
first exam.

