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Overview... 

Topics: 

• Blossoming and Polars 

• Rational Spline Curves 

• Spline Surfaces 

• Triangle Meshes & Multi-Resolution Representations 

 Mesh Data Structures 

 Triangulations 

 Spatial Data Structures and Algorithms 

 Mesh Simplification 

 Appearance Approximation 



Triangle Meshes 
Data Structures 
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 Parametric Models Primitive Meshes 

 

 

 Implicit Models Particle Models 

Modeling Zoo 
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Triangle Meshes 

Triangle Meshes: 

• Triangle meshes are probably the most common surface 
representation in computer graphics 

• Triangles are probably the simplest surface primitives that 
can be assembled into meshes 

 Rendering can be implemented in hardware (z-buffering) 

 Simple algorithms for intersections (raytracing, collisions) 
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Attributes 

How to define a triangle? 

• We need three points in 3 (obviously). 

• But we can have more: 

per-vertex normals 
(represent smooth 
surfaces more accurately) 

per-vertex color 

texture per-vertex texture 
coordinates 

(etc...) 
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Shared Attributes in Meshes 

In Triangle Meshes: 

• Attributes might be shared or separated: 

adjacent triangles  
share normals 

adjacent triangles  
have separated normals 
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“Triangle Soup” 

Variants in triangle mesh representations: 

• “Triangle Soup” 

 A set S = {t1, ..., tn} of triangles 

 No further conditions 

 This is “the most common” representation (if you download 
models from the web, you never know what you get) 

• Triangle Meshes: Additional consistency conditions 

 Conforming meshes: Vertices meet only at vertices 

 Manifold meshes: No intersections, no T-junctions 
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Conforming Meshes 

Conforming Triangulation: 

• Vertices of triangles must only meet at vertices, not in the 
middle of edges: 

 

 

 

 

 

• This makes sure that we can move vertices around 
arbitrarily without creating holes in the surface 
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Manifold Meshes 

Triangulated two-manifold: 

• Every edge is incident to exactly 2 triangles 
(closed manifold) 

• ...or to at most two triangles (manifold with boundary) 

• No triangles intersect (other than along common edges or 
vertices) 

• Two triangles that share a vertex must share an edge 
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Attributes 

In general: 

• Vertex attributes: 

 Position (mandatory) 

 Normals 

 Color 

 Texture Coordinates 

• Face attributes: 

 Color 

 Texture 

• Edge attributes (rarely used) 

 E.g.: Visible line 
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Data Structures 

The simple approach: List of vertices, edges, triangles 
 

v1: (posx posy posy), attrib1, ..., attribnav 
                    ... 

vnv: (posx posy posy), attrib1, ..., attribnav 

 

e1: (index1 index2), attrib1, ..., attribnae 
                    ... 

ene: (index1 index2), attrib1, ..., attribnae 

 

t1: (idx1 idx2 idx3), attrib1, ..., attribnat 
                    ... 

tnt: (idx1 idx2 idx3), attrib1, ..., attribnat 
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Pros & Cons 

Advantages: 

• Simple to understand and build 

• Provides exactly the information necessary for rendering 

Disadvantages: 

• Dynamic operations are expensive: 

 Removing or inserting a vertex  
 renumber expected edges, triangles 

• Adjacency information is one-way 

 Vertices adjacent to triangles, edges  direct access 

 Any other relationship  need to search 

 Can be improved using hash tables (but still not dynamic) 
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Adjacency Data Structures 

Alternative: 

• Some algorithms require extensive neighborhood 
operations (get adjacent triangles, edges, vertices) 

• ...as well as dynamic operations (inserting, deleting 
triangles, edges, vertices) 

• For such algorithms, an adjacency based data structure is 
usually more efficient 

 The data structure encodes the graph of mesh elements 

 Using pointers to neighboring elements 
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First try... 

Straightforward Implementation: 
• Use a list of vertices, edges, 

triangles 

• Add a pointer from each element 
to each of its neighbors 

• Global triangle list can be used for rendering 

Remaining Problems: 

• Lots of redundant information – hard to keep consistent 

• Adjacency lists might become very long 

 Need to search again (might become expensive) 

 This is mostly a “theoretical problem” (O(n) search) 
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Half edge data structure: 

• Half edges, connected by clockwise / ccw pointers 

• Pointers to opposite half edge 

• Pointers to/from start vertex of each edge 

• Pointers to/from left face of each edge 

Less Redundant Data Structures 
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// a vertex 

struct Vertex { 

   HalfEdge* someEdge; 

   /* vertex attributes */ 

}; 

 

// the face (triangle, poly) 

struct Face { 

   HalfEdge* half; 

   /* face attributes */ 

}; 

Implementation 

// a half edge 

struct HalfEdge { 

   HalfEdge* next; 

   HalfEdge* previous; 

   HalfEdge* opposite; 

 

   Vertex* origin; 

   Face* leftFace; 

   EdgeData* edge; 

}; 

 

// the data of the edge 

// stored only once 

struct EdgeData { 

   HalfEdge* anEdge; 

   /* attributes */ 

}; 
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Implementation 

Implementation: 

• The data structure should be encapsulated 

 To make sure that updates are consistent 

 Implement abstract data type with more high level operations 
that guarantee consistency of back and forth pointers 

• Free Implementations are available, for example 

 OpenMesh 

 CGAL 

• Alternative data structures: for example winged edge 
(Baumgart 1975) 



Triangulations 
Algorithms and Data Structures 
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Triangulation 

Problem Statement: 
• Given a 2-dimensional domain 

• We want to triangulate the domain 

• We need this for example for rendering parametric 
surfaces by triangle rasterization 

• Adaptive triangulation: Higher resolution in more 
important area 

Different Problem: 
• Triangulating a point cloud in 3 

• This is the surface reconstruction problem 
(we will look at that later) 
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Problem Variations 

Simplest Version 

• Domain is a rectangle or a triangle 

• Uniform or adaptive tessellation 

More Complex: Constrained Triangulation 

• Point constraints:  
specific points must be included 

• Edge constraints: 
specific edges must be included 

• Boundary constraints: 
triangulate within some area only 
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Unconstrained Uniform Triangulation 

Unconstrained uniform triangulation: 

• This is simple 
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Adaptive Triangulation 

Unconstrained adaptive 
triangulation: 

• Hierarchy of rectangles / triangles 
(Quadtree) 

• Use “balancing” to limit depth 
differences 

• Balancing will increase the number 
of nodes in the tree by a factor of 
at most O(1) 

• Finally, create a conforming 
triangulation (fixed number of 
cases per node) 
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Implementation 

Storage: Tree Structure 

• Tree can be represented directly 

• Neighbor search for balancing: 

 We can store fixed pointers to 
neighboring cells 
(not that elegant, easy to mess up 
the consistency) 

 Alternative: use neighborhood 
search 

– Go up in tree until common 
ancestor is found 

– Then go down again 

– O(1) expected running time 
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Adaptive Rendering 

Adaptive rendering algorithm 

• Recursive algorithm 

• Starts at root node 

• Is precision sufficient? 

 If so  stop recursion 

 Otherwise  go to child nodes 

• The recursion extracts a subgraph of the tree (“cut”) 

• Next: The subgraph needs to be balanced 

• Then, a triangulation can be created 

“cut” 
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Adaptive Rendering 

Termination Criteria: 

• Rendering error: 

 Projected size on screen shrinks 
with 1/z (where z is the depth  
in camera coordinates) 

 Might also depend on viewing 
angle (typically, this is neglected) 

• Geometric error: 

 Tessellating a curved surface with planar faces is only an 
approximation 

 Error depends on curvature 

? 

go deeper? 
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Adaptive Rendering 

Termination Criteria: 

• Typically: divide geometric  
error by z 

• To estimate z, use a bounding  
box (for splines: convex hull 
property) 

• Chooses nearest z (conservative estimate) 

• REYES algorithm [Cook, Carpenter, Catmull 1987] 
(Pixar’s RenderMan) 

 Stop subdivision when BB below one pixel on screen size 

 Subdivision connectivity not really necessary in that case 

? 

go deeper? 
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Subdivision Connectivity Meshes 

Generalization: Arbitrary Domains 

• Start with a base mesh 

 “3D parametrization” 

 A conforming two-manifold mesh  
in 3D used as parametrization domain 

• The base mesh fixes the topology 

• Subdivide recursively as needed 

• Now: Balancing/triangulation, 
also across borders 

• Then compute the final surface 

base mesh 

consistency across boundaries 
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Hardware Friendly Version 

Problems: 

• Costs for hierarchy creation / balancing are quite large 

• In particular: Problematic for rendering 

• Rendering triangles is very cheap these days 

• But we still need adaptivity (moving camera, we can get 
arbitrarily close) 

• Solution: Subdivision connectivity grids 
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Subdivision Connectivity Grids 

Idea: 

• Do the same thing (hierarchical triangulation) 

• But use a grid of many triangles in each node: 
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Subdivision Connectivity Grids 

Advantage: 

• Amortizes hierarchy creation / 
traversal costs over many triangles 

• Well suited for graphics hardware (GPU) 
implementations (regular structure) 

Disadvantage: 

• Less adaptivity 

• This is ok for the 1/z term in perspective rendering 
(we will see that later) 

• But geometry will be oversampled 
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Example 
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Example 
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Example 
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Example 
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Constraint Triangulations 

Additional Constraints: 

• Vertices, edges, area 

• Need to augment subdivision algorithm 

Hierarchical Subdivision: 

• Subdivide until a simple case is found 

 At most one vertex in each cell 

 At most one line segment intersecting each cell 

 At most two boundary / cell intersections 

• Then triangulate according to fixed rules 
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Vertex Constraints 

Vertex Constraints: 

• When only one point is left 
in each box 

• Subdivide once more 

• Move center to point 

• Then balance and  
triangulate 
(proceed as before) 
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Edge / Area Constraints 

Edge and area constraints 

• Subdivide until intersection with 
edges / boundary curves has 
constant complexity (e.g. two 
intersections per cell) 

• Then apply fixed subdivision rule 

• Edge constraints: 

 Keep all triangles 

• Area constraint: 

 Delete outside triangles 
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Alternative Algorithm 

Alternative: (constrained) Delaunay triangulation 

• Delaunay triangulation of a point set: 

 Triangulation in which the circumcircle 
of each triangle is empty 

 This triangulation maximizes the 
minimum angle in any triangle 

 The triangulation always exist 

 Can be computed by iterated 
edge flipping or (more efficiently) 
by line sweep algorithms (O(n log n) time for n points) 

• Constrained Delaunay triangulation: 

 Additional edge / polygonal area constraints 

 More involved to compute 



Spatial Data Structures 
Range Queries, Collision Detection 
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Spatial Data Structures 

Motivation: 
• Common problems:  

 Select a handle point by mouse click (millions of handles) 

 Click on other stuff (edges, triangles, patches) 

 Find the nearest point in a point set 

 Find the k nearest points (e.g. for surface fitting) 

 Find all geometry within a range (cube, sphere, etc.) 

• This should work on large models 
 Billions of primitives 

 Frequent operations 

– E.g.: compute 20 nearest points for 1.000.000 points 

– Quadratic runtime is unacceptable 

• Such operations can be speed up tremendously 
using spatial indexing data structures 
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Spatial Data Structures 

Basic Idea: Hierarchical decomposition of space 

• Almost all approaches commonly used in practice are 
based on hierarchical spatial decompositions 

• For some problems, there are more sophisticated data 
structures from computational geometry, but they often 
have to large space requirements 

• In practice, anything beyond linear space is out of 
question 
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Spatial Data Structures 

Basic Idea: Hierarchical decomposition of space 

• If the number of objects is still too large: 

 Cluster geometry into a small number 
of spatially coherent groups 

 Compute a simple bounding 
volume for each group 

 Apply this principle recursively 
to all subgroups formed 

• We obtain a tree of bounding volumes 
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Hierarchical Space Partitioning 

Formally: 

• We have a set of objects  = {s1, ..., sn}, si  d 

(where d is small, usually d = 2..3) 

• We form a hierarchy of nodes Ni.  

 Let C(Ni) be the set of child nodes, ... 

 ...and P(Ni) the unique parent node, or null,  
if Ni is the root node R. 

• We associate a set of objects S(Ni) with each node Ni. 

• We demand S(R) =  (root contains everything) 
and Nj  C(Ni)  S(Nj)  S(Ni) (inner nodes represent the 
whole subtree) 
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Hierarchical Space Partitioning 

Formally: 

• Bounding volumes: let B(Ni) be a bounding volume of 
node Ni, B(Ni)  d. 

• This means: S(Ni)  B(Ni) 
(objects are contained in the bounding volume) 

• Typically, a bounding volume is a much simpler object 
than the stored geometry S(Ni). 

 It should be easy to test for intersections with other bounding 
volumes, geometric ranges and objects to be sorted into the 
hierarchy. 

 Usually, the memory footprint of B(Ni) is O(1). 

 Axis aligned boxes, spheres and the similar are popular. 
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Variants 

Variants: 

• Bounding volume hierarchy 

 Most general definition, we can use any 
bounding volumes 

 Each inner node represents the union of 
objects in the subtrees 

• BSP-tree 

 Use planes to split the nodes into half-spaces 

 Usually stored as a binary tree (“binary space 
partition”) 

 Cells are not O(1), but each tree level cuts of a 
half space, which can be tested incrementally. 
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Variants 

Variants 

• kD-tree / axis aligned BSP tree 

 Use axis parallel splitting planes 

 Special case kD-tree:  

– Cyclically alternating splitting dimensions 

–Use median cut 

• Quadtrees / Octrees 

 Always divide into 4 (8) cubes of the same 
size 

 This is a special case of a BSP- / kD-tree 
(identifying 3 consecutive binary splits with 
one octree node) 
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Extended Objects 

Construction for extended objects (other than points) 

• Extended objects: 

 Triangles 

 Polygons 

 Patches 

 Line segments 

 etc... 

• Division of space might intersect with object 

• Two solutions 

 Splitting objects 

 Overlapping nodes 
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Splitting Objects 

First solution: splitting objects 

• For example, sorting triangles into a BSP tree: 

 Split each triangle along splitting plane, if necessary 

 Try to optimize such that as few as possible triangles are split 

• (Rather) easy to see: 

 A BSP tree needs at least worst case O(n2) fragments for 
n triangles (in practice typically   O(n log n) ) 

 This is worst-case quadratic storage 

 The same bound also applies to kD trees, octrees etc (special 
cases) 

• Splitting objects is usually too expensive 

 Used in early low-polygon 3D engines for visibility computation 
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Overlapping Regions 

Other alternative: 

• Allow objects to exceed the region 
associated with each node 

• Store a second, extended bounding box 
to reflect this information 

• Typical strategy: 

 Allow up to 10% oversize (exceeding node limits by 10% in each 
direction) 

 If this does not fit into leaf nodes, use an inner node. 

• Effective bounding volumes may overlap now 

 Limiting the percentage limits the amount of space covered 
multiple times (e.g. 10% in each direction means 1.23  1.7) 
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Range Query Algorithm 

Start at root node: Then, recursively 

• If range overlaps bounding box 

 Collect inner node primitives 

 Test for range intersection 

 Go on recursively for child nodes 

• If range does not overlap bounding box 

 End recursion 

Nodes overlapping 
the geometric range 

 
types hierarchy

all for works
















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Examples 

Range Range Range 

Nodes overlapping 
the geometric range 



Geometric Modeling SoSem 2010  –  Triangle Meshes & Multi-Resolution Representations 53 / 120 

Parametric Surfaces 

In case every primitive itself is a parametric object: 

• We can “continue” the hierarchy 

• Use a regular subdivision of the parameter domain 
(binary splits, quadtree) 

• Form bounding volumes dynamically (e.g. convex hull of 
subdivided control points) 
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Abstract Implementation 

Geometric Ranges: 

• We just need to define two methods: 

 Intersection primitive range 

 Intersection bounding volume  range 

• With this information, we can implement a generic 
hierarchical range search algorithm 

• Important special cases: 

 Boxes, Spheres, etc... 

 Rays (raytracing) 

 Projective extrusions (2D curve extended into space by central 
projection; this can be used for drawing selection regions on 
screen and retrieving the corresponding objects) 
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Collision Detection 

Related Problem: Collision Detection 

• We want to compute whether two geometric objects 
intersect with each other 

• Important problem for dynamic simulations 

• Also useful for CAD applications (arrange objects that do 
not collide) 

Simple Solution: 

• Test every part of object A for collision with every part of 
object B (e.g. each triangle with each other triangle) 

• This is usually to expensive [O(mn)] 
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Hierarchical Collision Detection 

Hierarchical Collision Detection 

• Precompute a hierarchy for both objects A and B that 
should be tested for collision. 

• Then apply a hierarchical collision test (next slide) 
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Hierarchical Collision Test 

Collision Test: Input – nodes NA, NB from objects A, B. 

• Test bounding volumes B(NA), B(NB) for intersection 

• If B(NA)  B(NB) : 
 Test all objects S(NA), S(NB) for intersection 

 Output those objects that do intersect 

 If diameter(B(NA)) > diameter(B(NB)): 

– For all children C  C(NA) 

- CollisionTest(C, NB) 

 Otherwise: 

– For all children C  C(NB) 

- CollisionTest(C, NA) 
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A 

Illustration 

B 

A B 

A B 
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Illustration 
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Parametric Objects 

Collision of parametric objects: 

• Again, we can “continue” the hierarchy in the parametric 
domain 

• Useful for speeding up patch-patch collision detection 

• We can also compute intersection lines hierarchically 
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Parametric Objects 

Computing intersection lines: 
• Hierarchical intersections until a number of small boxes is left 

• Place a control point in each box 

• Use a Newton iteration to project points on intersection line 

 Move points in direction orthogonal to line only 
(avoid degeneracies) 

• Fit a spline through the control points (spline interpolation 
problem, linear system) 

• Can be additionally constrained to lie on intersection line 
 Minimize integral residual of distances to patches 

 But this is a non-linear optimization problem (Newton solver) 
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Intersection lines 
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Projecting a Point 

Quasi-Newton Scheme 
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Nearest Neighbor Queries 

Problem: 

• Given n objects si and a point p in space 

• Two variants: 

 Find the object that is closest to p 

 Find the k closest objects (k-nearest neighbors, kNN) 

Operations: 

• Compute distance point  primitive 

• Compute distance point  bounding volume 
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Hierarchical Query Algorithm 

Data Structures: 

• The query algorithm needs some bounding volume 
hierarchy for the objects 

 A kD tree works best in practice, but other data structures also 
do the job 

• In addition, two auxiliary data structures are needed: 

 A priority queue of objects Qobj 

 A priority queue of bounding volumes QBB 

 Both sorted by distance to the query point 
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Hierarchical Query Algorithm 

Algorithm: Compute k nearest neighbors 

Input: Hierarchy of objects N, query point p 

• Initialization: Put root node on QBB 

• While #output < k and both priority queues non-empty 

 Compute distance to min(QBB) and min(Qobj) 

 If an object is closer 

– output the object 

 Otherwise, if a box is closer 

– Take the box from the queue 

– Insert all objects into Qobj and all child nodes into QBB 
(for this, the corresponding distances need to be computed) 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 
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Illustration 

QBB Qobj 



Mesh Simplification 
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Mesh Simplification 

Mesh Simplification: 

• Triangle meshes are  
often oversampled 

• In particular, meshes  
from 3D scanners 

• We want to decimate the number of triangles such that 
the shape of the object is roughly maintained 

• We want to do this automatically 
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Variants of the Problem 

Problem Variations: 

• Mesh simplification 

 Reduce the number of triangles 

 Fixed triangle budget or fixed approximation error 

• Multi-resolution models 

 Create a representation that provides many levels of resolution 

 The matching level-of-detail can be extracted at runtime 

 Useful for real-time rendering 

– Choose level of detail for each object in the scene 

– More sophisticated: varying level of detail across one object 
(the whole scene can be one object) 
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Curve Simplification 

Curve Simplification: 

• Compute an approximation of a piecewise linear curve by 
another piecewise linear curve with fewer segments 

• The optimal least-squares solution can be computed in 
O(mn2) time using dynamic programming 

 where n = #(input line segments) 

 and m = #(output line segments) 

• Usually, this is still to costly. 
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Curve Simplification 

Curve Simplification: 

• Most frequently used heuristic: 
Douglas-Peucker Algorithm. 

• Simple Idea: 

 Start with a line connecting the end points 

 Find the input point farthest away from the straight line 

 Insert a new vertex there. We obtain two new segments 

 Apply the algorithm recursively to the parts (a number of times) 

• Usually gives (visually) good results 
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Mesh Simplification 

Mesh Simplification: 

• We need to find an approximating mesh to a given mesh 

Optimal solution? 

• It can be shown that finding an L-norm best 
approximation to a mesh is NP-hard 

• For other cases (e.g., least-squares) no efficient optimal 
techniques are known. 
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Mesh Simplification 

Approximation algorithms: 

• Polynomial time approximation 
algorithms with strict error guarantees 
are known, but they are too slow for 
practical applications 

Michelangelo's St. Matthew 
386,488,573 triangles 

[Stanford Digital Michelangelo Project] 
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Parametric Simplification 

If we have a parametric representation 

• Spline surface 

• Trimmed NURBS 

• or the similar 

we can just retessellate the original. No need for 
mesh-based simplification. 

In the following: Input is a mesh (no side information) 
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Mesh Simplification 

Three classes of techniques: 

• Mesh refinement 
 Start with a simple base mesh, refine to approximate the object 

 “Gift-wrapping” 

 Complicated to implement (need to adjust topology) 

• Mesh decimation 
 Start with full mesh 

 Keep on throwing away triangles until precision is met 

 This is the current standard technique 

• Other approaches 
 Transform into implicit function and retessellate 

 Vertex clustering on a regular grid (useful for out-of-core impl.) 
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Mesh Decimation 

Mesh decimation – basic idea: 

• Start with the full mesh 

• Then, subsequently remove 

 Triangles (fill hole) 

 Vertices (retriangulate hole) 

 Edges (kills two triangles) 

• Edge contraction (“edge collapse”) algorithms are 
nowadays the most common technique 

• Robust and simple to implement 
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Edge Contraction 

Edge contraction: 
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Edge Contraction 

Edge contraction algorithm: 

• Questions: 

 Which edges can be collapsed? 

 What error does this cause? 

 Edges collapse into points – 
where should we place the new point? 

 What is the best order for edge collapses? 

• Standard algorithm: 

 Greedy algorithm 

 Put edges in priority queue 

 Pick the “cheapest” edge and remove it 

 Recompute costs 
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Edge Contraction 

Algorithm: 

• For each edge in the mesh, compute the costs of 
collapsing the edge 

 If an edge collapse changes the topology, set costs to + 

 Put all (finite cost) edges in priority queue sorted by cost 

• While queue not empty and result not simple enough  

 Remove min-cost edge 

 Collapse the edge 

 Recompute costs of all affected edges (incl. topology check) 

 Update the priority queue accordingly 
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Edge Contraction 

Affected edges: 

affected edges edge contraction 
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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 
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Topology Check 

We do not want to change the topology of the mesh 

• Input is a triangulated two-manifold, probably with 
boundary 

• This means: 

 Every edge is adjacent to one or two triangles 
(boundary / interior) 

 Triangles do not intersect 

 The mesh is conforming – no vertices in the middle of edges 
(fortunately, edge collapsing cannot change this) 
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Problem #1: Folds 

Problem #1: 

• Edge collapses can cause topological folds in meshes 

• We need a criterion to prevent this 
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Criterion 

Criterion: 

• Consider the two vertices of the edge v1, v2 

• Let R(1)(v) be the on-ring neighborhood of v, 
excluding v1, v2 

• If #(R(1)(v1)  R(1)(v2)) = 2, the collapse is permitted 

• For boundary points: #(R(1)(v1)  R(1)(v2)) = 1 
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this works 

Illustration 

this folds 
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Intersections 

Preventing Intersections 

• The previous criterion only guarantees topologically 
correct meshes 

• The embedding into space (read: vertex placement in 3) 
can still cause self intersections 

• We need to check this separately: 

 Do the newly created triangles intersect with the shape 

– (Hierarchical intersection test with dynamic hierarchy) 

 If so, avoid the collapse operation 

• Often, people omit this check (hard to implement, does 
not happen frequently in practice) 
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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 
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Error Metrics 

Various potential error metrics: 

• S = original, S’ = approximation, dist(·,·) = smallest distance 

• L2-error: 

• L1-error: 

• L-error: 

• Hausdorff error: 

(two sided maximum distance, symmetric measure) 
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Complexity Problem 

Evaluating the error metric can be expensive: 

• Compute the distance between two objects in (n + m) 

• Naive computation takes O(nm) 

• Doing this for each edge collapse is expensive 

Solutions: 

• Compute distance to previous level of detail only 
(works well in practice, but no guarantees) 

• Use an approximate distance measure. 
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Quadric Error Metric 

Quadric error metric: [Garland and Heckbert 1997] 

• Very efficient solution to the error quantification problem 

• However, the estimates might be too pessimistic 

Idea: 

• Measure distance to planes, rather than original triangles 

• The error is represented as a 3D quadric 
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Quadric Error Metrics 

Use in mesh simplification: 

• Assign an initial error quadric to each vertex 

 Formed by summing up the plane error functions of the planes 
of all adjacent triangles 

 Weight components by triangle area 

 Error will be zero for the vertex itself (intersection of all planes) 

• For each possible edge contraction: 

 Just add the error quadrics of both vertices involved 

 This means, the new, contracted vertex should approximate the 
planes of all triangles involved so far as well as possible 
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Quadric Error Metrics 

Use in mesh simplification: 

• For each possible edge contraction: 

 Compute the optimum vertex position according to the summed 
error metric 

 Evaluate the quadric to determine the error 

 This is the candidate move (error, position) that is stored in the 
edge contraction queue 

• When an edge contraction occurs: 

 Use the computed position 

 To recompute neighborhood error quadrics, add the error matrix 
of the new vertex to each neighboring vertex 

 This gives new edge contraction costs 
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Extension 

Meshes also have attributes, such as: 

• Color 

• Texture coordinates 

This can be handled using quadric error metrics as 
well: 

• Just store additional columns in the x-vectors 

• Treat color values (etc.) as additional dimensions of the 
vertex position, weighted by relative importance to 
preserve them 
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How well does this work? 

Advantage: 
• Very fast: Evaluating the error metric and finding a new 

vertex position is O(1) 

Disadvantage: 
• For noisy meshes, the error approximation is bad: 

 

 

 

• Possible solutions: 

 Mesh smoothing (normals from larger neighborhoods) 

 Reset quadrics after a few computation steps 

scale fine 



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Components 

The algorithm needs the following components: 

• Topology check (mostly fixed) 

• Error metric (lots of choices) 

• Placement of new vertices (lots of choices) 

Conclusion: 

• Quadric error metrics are a very popular choice due to 
their simplicity and performance. 

• More accurate alternatives exist (at higher costs). 
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Multi-Resolution Meshes 

Multi-resolution version: 

• We want to store multiple levels of detail in one 
representation 

• Simple, but effective approach: Progressive meshes 
[Hoppe 1996] 

Progressive meshes: 

• Simplify as strongly as possible (we get a base mesh) 

• Record all edge contractions in a list 
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Progressive Meshes 

Adjusting the level of detail: 

• Start with the base mesh 

• Perform inverse edge contractions, which are vertex splits, 
to increase the level of detail 

• Perform edge contractions to reduce the level of detail 

• The index in the list of edge contractions controls the 
level of detail: 

 Index up: Level of detail increases 

 Index down: Level of detail decreases 
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Example 

[H. Hoppe, Microsoft Research, 1996] 
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Hardware Friendly Implementation 

Progressive meshes are expensive: 

• Graphics hardware can render billions of triangles 

• Performing precomputed edge collapses / vertex splits 
still takes a lot of computational resources 

Hardware Friendly approach: 

• Precompute a number of levels of detail 

• Just render them as needed 

• Use linear interpolation to smoothly blend in the new 
vertices (avoid popping) 
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Adaptive Rendering 

Problem: 

• Assume we are handling a very large object 

• For example a terrain model of the globe (Google earth) 

• Progressive levels of detail are not helpful 

 Either too coarse or too much geometry 

• We need adaptive extraction of details 

 Level-of-detail varying across the object 

 How can this be done with a progressive mesh representation? 
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Adaptive LOD Extraction 

Adaptive / non-uniform level of detail extraction: 

• Assumption: 

 We are given a camera position 

 and a geometric error messure g(x, lod). 

 We want to extract geometry such that g(x, lod) / z(camera) < . 
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Adaptive LOD Extraction 

Adaptive / non-uniform level of detail extraction: 

• Simple idea: 

 Start with base mesh 

 Test for each vertex if adjacent triangles are accurate enough 

– Conservative test (minimum depth) 

 If accuracy is not sufficient: perform vertex split 

• Problem: Vertex splits are not independent 

 We can only perform splits if the vertex already exists 

 Vertices might have been created by previous vertex splits 

 Need to take into account the dependence hierarchy. 
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Multi-Triangulation 

Formal Framework: Multi-Triangulation 

• During construction of the progressive mesh: 

 An edge contraction depends on a previous contraction if one of 
its vertices is the result of a previous edge contraction. 

– Correspondingly, a vertex split depends on previous splits if 
its vertex is the result of a previous split 

 One edge contraction might depend on up to two other 
contractions, which each might depend on up to two others 

 This yields a acyclic directed graph (DAG) 
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Vertex Split 

Affected edges: 

vertex split base mesh 
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Optimizing the Hierarchy 

Need to take care of the dependencies: 

• Need to store dependencies (DAG) 

• When building the hierarchy: 

 Minimizing dependencies maximizes adaptivity, but might 
reduce quality 

 Possible strategy: 

– Only collapse non-dependent edges 

– When no edges are left, start new round of collapsing 

– Creates hierarchy with several levels 
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Hardware Friendly Version 

Same problems again: 

• The representation might be to costly to extract 

• Executing a single vertex split / edge collapse from a 
precomputed hierarchy might still be more expensive 
than rendering (processing) many triangles 

• Solution: 

 Clustered simplification with “large nodes” 

 Same idea as for the adaptive grids, but with edge collapses 
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Large Node Hierarchies 

Idea for a hardware friendly algorithm (sketch): 

• Divide the object into hierarchy of clusters 

• For example: 

 Octree decomposition 

 Binary splitting along principal axis 

 Or the similar 

• Hierarchy: 

 Leaf nodes store original triangles, at least k  a few thousand 
triangles per node 

 Inner nodes: 

– Union of child node triangles 

– Simplification to reduce complexity to 1/4 of input (octree) 
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Large Node Hierarchies 

Problem: Boundaries 

• Triangulations might be non-conforming at boundaries 

• Possible solution: 

 For each edge: Compute two triangulations 

– Neighbor with the same resolution 

– Neighbor with resolution one level lower 

 During rendering: 

– Extract balanced cut of the hierarchy 

– Choose appropriate adaptor triangulation 

• Alternative solution: [Klein & Guthe] 

 Bounded Hausdorff error approximation 

 Triangles overlap at the boundaries (“fat boarders”) 



Appearance Simplification 
(for Large Scene Rendering) 
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Problems with Mesh Simplification 

Problems: 

• Mesh simplification cannot perform arbitrarily strong 
simplifications without destroying object appearance 
completely 

• We need an alternative approach for rendering really 
large scenes 

• As an example: Hierarchical point-based simplification 
(extra slides set) 
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Announcement 

Written Exam: 

• If someone cannot participate in the first of the two 
exams: 

 In the case of not pass the second (and only) try, we would offer 
an optional, additional oral exam. 

 If the student passes the oral exam, she/he would pass the 
lecture. 

• This applies only if... 

 ...you need to have an important reason for not being able to 
take the first exam (for example, collision with another exam on 
the same day) 

 ...you need to notify us (by email) at least one week before the 
first exam. 


