Geometric Modeling
Summer Semester 2010

Subdivision Surfaces
B-Spline Subdivision · Spectral Analysis · Example Schemes
Overview...

Topics:

- Rational Spline Curves
- Spline Surfaces
- Triangle Meshes & Multi-Resolution Representations
- Subdivision Surfaces
 - Introduction
 - B-Spline Subdivision Curves
 - Spectral Analysis
 - B-Spline Subdivision Surfaces
 - Other Subdivision Schemes
 - Connection to Wavelets
 - Stochastic Subdivision
Subdivision Surfaces

Introduction
Subdivision Surfaces

Problems with Spline Patches:

- A continuous tensor product spline surface is only defined on a regular grid of quads as parametrization domain
- Thus, the topology of the object is restricted
- Assembling multiple parameter domains to a single surface is tedious, hard to get continuity guarantees
- Handling trimming curves is not that straightforward

Question: Can we do better?
Subdivision Surfaces

Simple Idea:

- Use a triangle mesh / quad mesh itself as a parametrization domain ("base mesh")
- Use 1:4 splits to refine the base mesh (subdivision connectivity meshes)
- Find an interpolation rule to create a smooth surface

This basic idea leads to subdivision surfaces.
Basic Scheme

Subdivision Curves & Surface: Three Steps

1. Subdivide current mesh
2. Insert linearly interpolated points (*splitting*)
3. Move points: Local weighted average (*averaging*)
 - To all points – approximating scheme
 - To new points only – interpolating scheme
Basic Scheme

Subdivision Curves & Surface: Three Steps

1. Subdivide current mesh
2. Insert linearly interpolated points (*splitting*)
3. Move points: Local weighted average (*averaging*)
 - To all points – approximating scheme
 - To new points only – interpolating scheme

1. **splitting**
2. **averaging**
3. **subdivision**
Subdivision Surfaces

The main question is:

- How should we place the new points to create a smooth surface? (interpolating scheme)
- Respectively: How should we alter the points in each subdivision step to create a smooth surface? (approximating scheme)
Subdivision Schemes

More precisely:

- What are good *averaging masks*?
- The averaging mask determines the weights by which the new point positions are computed

Interesting observation:

- Most averaging schemes do not converge (in particular interpolating schemes – try this at home).
- We need to be very careful to design a good averaging mask.
- How can we guarantee C^1, C^2 surfaces?
Example: Corner Cutting

Corner Cutting Splines [Chaikin 1974]:

- Simple idea: Replace every point by the average of two neighbors (after splitting)
- Converges to quadratic B-Spline curve
Matrix Notation

Curve subdivision in matrix notation:

- Control points at level l: $p_i^{(l)}$

- “Splitted” points at level $l+1$: $\tilde{p}_i^{(l+1)}$

- “Averaged” control points at level $l+1$: $p_i^{(l+1)}$
Matrix Notation

Splitting in matrix notation:

\[
\begin{pmatrix}
\vdots \\
\tilde{X}^{(l+1)}_{2i} \\
X^{(l+1)}_{2i+1} \\
\vdots
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
1/2 & 1/2 \\
1/2 & 1/2 \\
\ddots & \ddots \\
\end{pmatrix}
\begin{pmatrix}
\vdots \\
X^{(l)}_i \\
X^{(l)}_{i+1} \\
\vdots
\end{pmatrix}
\]

Averaging in matrix notation:

\[
\begin{pmatrix}
\vdots \\
X^{(l+1)}_{2i} \\
X^{(l+1)}_{2i+1} \\
\vdots
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
1 & 1 \\
1 & 1 \\
\ddots & \ddots \\
\end{pmatrix}
\begin{pmatrix}
\vdots \\
\tilde{X}^{(l+1)}_{2i} \\
\tilde{X}^{(l+1)}_{2i+1} \\
\vdots
\end{pmatrix}
\]
B-Spline Subdivision Schemes
(Regular Subdivision)
B-Spline Subdivision

![Graph showing uniform cubic B-spline basis function and dilated functions.](image)

uniform cubic B-spline basis function $b(t)$

gray: *dilated* functions $b(2t + i)$

expressed as sum of dilated functions $b(t) = \sum_i c_i b(2t + i)$
B-Spline Subdivision

Subdivision Formula:

• Uniform B-spline functions \(b(t+i) \) span the space \(V^{(0)} \) of piecewise polynomials of degree \(d \), piecewise in intervals \(t \in [i, i+1) \)

• Dilated uniform B-spline functions \(b(2t+i) \) span the space \(V^{(1)} \) of piecewise polynomials of degree \(d \), piecewise in intervals \(t \in [i/2, i/2+0.5) \)

• Obviously \(V^{(0)} \subset V^{(1)} \)

• This means: We can express the larger functions as linear combinations of smaller ones.
Subdivision masks

Question: What are the coefficients for the linear combination?

Standard answer:

• Solve a linear system (underdetermined)

Direct derivation (arbitrary degree):

• We look at the definition of higher order basis functions by repeated convolution.

• By analyzing the effect of each further convolution, we get a subdivision formula by induction.
Repeated Convolution

Defining B-splines by repeated convolution (recap):

- We start with 0th degree basis functions
- Increase smoothness by convolution

Degree-zero B-spline:
\[b^{(0)}(t) = \begin{cases}
1, & \text{if } t \in [0...1) \\
0, & \text{otherwise}
\end{cases} \]

General-degree B-spline:
\[b^{(i+1)}(t) = b^{(i)}(t) \otimes b^{(0)}(t) = \int_{-\infty}^{\infty} b^{(i)}(x)b^{(0)}(x-t)dx \]
Repeated Convolution

Convolution:

- Weighted average of functions
- Definition:

\[f(t) \otimes g(t) = \int_{-\infty}^{\infty} f(x)g(x - t)dx \]

Example:
Illustration
Illustration

Result:

- Piecewise linear B-spline basis function
- Each convolution with b_0 increases the continuity by 1.
Illustration
Properties of Convolution

Linearity:
\[f(t) \otimes (g(t) + h(t)) = f(t) \otimes g(t) + f(t) \otimes h(t) \]

Time Shift:
\[f(t + x) \otimes g(t + y) = (f \otimes g)(t + x + y) \]

Time Scaling:
\[f(2t) \otimes g(2t) = \frac{1}{2} (f \otimes g)(2t) \]
Subdivision Formula

Subdivision formula for linear B-splines:

\[
b^{(1)}(t) = b^{(0)}(t) \otimes b^{(0)}(t)
\]

\[
= \left[b^{(0)}(2t) + b^{(0)}(2t - 1) \right] \otimes \left[b^{(0)}(2t) + b^{(0)}(2t - 1) \right]
\]

\[
= b^{(0)}(2t) \otimes b^{(0)}(2t) + b^{(0)}(2t - 1) \otimes b^{(0)}(2t)
\]

\[
+ b^{(0)}(2t) \otimes b^{(0)}(2t - 1) + b^{(0)}(2t - 1) \otimes b^{(0)}(2t - 1)
\]

\[
= \frac{1}{2} b^{(1)}(2t) + b^{(1)}(2t - 1) + \frac{1}{2} b^{(1)}(2t - 2)
\]

\[
= \frac{1}{2} \left(\sum_{i=0}^{2} \binom{2}{i} b^{(1)}(2t - i) \right)
\]

Linearity:

\[f(t) \otimes (g(t) + h(t)) = f(t) \otimes g(t) + f(t) \otimes h(t) \]

Time Shift:

\[f(t + x) \otimes g(t + y) = (f \otimes g)(t + x + y) \]

Time Scaling:

\[f(2t) \otimes g(2t) = \frac{1}{2} (f \otimes g)(2t) \]
Subdivision Formula

Analogously (induction) for general degrees:

\[
b^{(d)}(t) = b^{(0)}(t) \otimes b^{(0)}(t) \otimes \cdots \otimes b^{(0)}(t) \\
= \frac{1}{2^d} \left(\sum_{i=0}^{d+1} \binom{d+1}{i} b^{(d)}(2t - i) \right)
\]
This means....

Going from basis $b(t+i)$ to basis $b(2t+i)$ we get:

$$b^{(d)}(t + j) = \frac{1}{2^d} \left(\sum_{i=0}^{d+1} \binom{d+1}{i} b^{(d)}(2(t + j) - i) \right)$$
Example

Cubic case:

\[
b^{(3)}(t) = \frac{1}{8} b^{(3)}(2t) + \frac{4}{8} b^{(3)}(2t - 1) + \frac{6}{8} b^{(3)}(2t - 2) + \frac{4}{8} b^{(3)}(2t - 3) + \frac{1}{8} b^{(3)}(2t - 4)
\]
In Terms of Control Points:

even:

odd:
In Terms of Control Points:

even:

odd:
Subdivision Matrix

In terms of control points:

\[
\begin{pmatrix}
\vdots \\
\frac{1}{8} \\
\frac{1}{2} \\
1 \\
1 \\
\vdots
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\frac{1}{2} & \frac{1}{2} \\
1 & 3 & 1 \\
\frac{1}{8} & \frac{1}{4} & \frac{1}{8} \\
\frac{1}{2} & \frac{1}{2} & \ldots
\end{pmatrix}
\begin{pmatrix}
\vdots \\
p_{2i}^{[l+1]} \\
p_{2i+1}^{[l+1]} \\
p_{i}^{[l]} \\
p_{i+1}^{[l]} \\
\vdots
\end{pmatrix}
\]
Splitting and Averaging

So far:

- Splitting & averaging in one step

\[
\begin{pmatrix}
\vdots & \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\vdots & \frac{1}{2} & \frac{1}{2} & \vdots \\
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} & \vdots \\
\frac{1}{2} & \frac{1}{2} & \vdots & \\
\vdots & \frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\end{pmatrix} =
\begin{pmatrix}
\vdots \\
\frac{p_{2i}^{[l+1]}}{p_{2i+1}^{[l+1]}} \\
\frac{p_{2i}^{[l+1]}}{p_{2i+1}^{[l+1]}} \\
\frac{p_{2i}^{[l+1]}}{p_{2i+1}^{[l+1]}} \\
\vdots \\
\end{pmatrix}
\]
Separate Splitting Step

Using a separate splitting matrix:

\[
\begin{pmatrix}
\vdots \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & 2 & 4 \\
\frac{1}{4} & 2 & 4 \\
\vdots \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\end{pmatrix}
\cdot
\begin{pmatrix}
\vdots \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & 2 & 4 \\
\frac{1}{4} & 2 & 4 \\
\vdots \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\end{pmatrix} =
\begin{pmatrix}
\vdots \\
1 \\
\vdots \\
1 \\
\vdots \\
1 \\
\end{pmatrix}
\]

\(2n \times 2n\) averaging

\(n \times 2n\) splitting
Separate Splitting Step

Using a separate splitting matrix:

\[
\begin{pmatrix}
\vdots & \vdots & \vdots \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\vdots & \vdots & \vdots \\
\end{pmatrix} \quad \begin{pmatrix}
\vdots & \vdots & \vdots \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\vdots & \vdots & \vdots \\
\end{pmatrix} \quad \begin{pmatrix}
\vdots & \vdots & \vdots \\
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\frac{1}{8} & \frac{3}{4} & \frac{1}{8} \\
\vdots & \vdots & \vdots \\
\end{pmatrix}
\]

\[
p_{2i}^{[l+1]} = \frac{1}{4} n \left(\frac{1}{2} p_i^{[l]} + \frac{1}{2} p_{i+1}^{[l]}\right) + \frac{1}{8} p_i^{[l]} = \frac{1}{2} p_i^{[l]} + \frac{1}{2} p_{i+1}^{[l]}
\]

\[
p_{2i+1}^{[l+1]} = \frac{1}{4} n \left(\frac{1}{2} p_i^{[l]} + \frac{1}{2} p_{i+1}^{[l]}\right) + \frac{1}{8} p_{i+1}^{[l]} + \frac{1}{8} p_{i+2}^{[l]} = \frac{1}{8} p_i^{[l]} + \frac{6}{8} p_{i+1}^{[l]} + \frac{1}{8} p_{i+2}^{[l]}
\]
General Formula:

B-spline curve subdivision:

- Splitting step as usual (insert midpoints on lines)
- Averaging mask is stationary (constant everywhere):

\[
\frac{1}{2^{d-1}} \begin{pmatrix}
 (d-1) & (d-1) & \cdots & (d-1) \\
 0 & 1 & \cdots & (d-1)
\end{pmatrix}
\]

for B-splines of degree \(d \).

Approximating the curve:

- Infinite subdivision will create a dense point set that converges to the curve
Spectral Convergence Analysis
The Spectral Limit Trick

Problem:

• We need to subdivide several times to obtain a good approximation
• This might yield more control points than necessary (think of adaptive rendering with low level of detail)
• Can we directly compute the limit position for a control point?
Computing the Limit

Observations:

- Every curve point is influence only by a fixed number of control points
- Even stronger: Every point $p^{[l+1]}$ is only influence by a small neighborhood of points in $p^{[l]}$.
- To each neighborhood, the same subdivision matrix is applied (splitting & averaging)
The Local Subdivision Matrix

Invariant Neighborhood:

- Example: Cubic B-splines
 - A single point lies in one of two adjacent spline segments.
 - So at most 5 control points are influencing each point on the curve.
 - A closer look at the subdivision rule reveals that limit properties can actually be computed from 3 points (two direct neighbors).
Local Subdivision Matrix

Local subdivision matrix:
- Transforms a neighborhood of points

Example: Cubic B-Spline
- Only the two direct neighbors influence the point in the next level
- The local subdivision matrix is:

\[
\begin{pmatrix}
 x_{[-1]}^{[l+1]} \\
 x_0^{[l+1]} \\
 x_1^{[l+1]} \\
 x_2^{[l+1]}
\end{pmatrix}
= \begin{pmatrix}
 1 & 1 & 0 \\
 2 & 2 & 0 \\
 8 & 4 & 0 \\
 1 & 1 & 2
\end{pmatrix}
\begin{pmatrix}
x_{[-1]}^{[l]} \\
 x_0^{[l]} \\
 x_1^{[l]} \\
 x_2^{[l]}
\end{pmatrix}
= M_{\text{subdiv}}
\]

- \(x_\) = left neighbor
- \(x_0 = \) point (x/y/z-coordinate)
- \(x_+ = \) right neighbor
To the Limit...

This means:

- At any recursion depth of the subdivision, we can send a point to the limit by evaluating:

\[
\begin{pmatrix}
 x_{-}^{[\infty]} \\
 x_{-}^{[\infty]} \\
 x_{+}^{[\infty]}
\end{pmatrix}
= \lim_{k \to \infty} M_{subdiv}^k
\begin{pmatrix}
 x_{-}^{[l]} \\
 x_{-}^{[l]} \\
 x_{+}^{[l]}
\end{pmatrix}
= \lim_{k \to \infty}
\begin{pmatrix}
 \frac{1}{2} & \frac{1}{2} & 0 \\
 1 & 3 & 1 \\
 0 & 1 & 1
\end{pmatrix}^k
\begin{pmatrix}
 x_{-}^{[l]} \\
 x_{-}^{[l]} \\
 x_{+}^{[l]}
\end{pmatrix}
\]
To the Limit...

Spectral power:

- Assuming the matrix M_{subdiv} is diagonizable, we get:

$$
\begin{pmatrix}
x_{-}^{[\infty]} \\
x_{-}^{[\infty]} \\
x_{+}^{[\infty]}
\end{pmatrix} = \lim_{k \to \infty} U D^{k} U^{-1}
\begin{pmatrix}
x_{-}^{[l]} \\
x_{-}^{[l]} \\
x_{+}^{[l]}
\end{pmatrix} = U \left(\lim_{k \to \infty} D^{k} \right) U^{-1}
\begin{pmatrix}
x_{-}^{[l]} \\
x_{-}^{[l]} \\
x_{+}^{[l]}
\end{pmatrix}
$$

$$
\begin{pmatrix}
1 & -1 & -2 \\
1 & 0 & 1 \\
1 & 1 & -2
\end{pmatrix} = \lim_{k \to \infty}
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}^{k}
\begin{pmatrix}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{6} & \frac{3}{6} & \frac{1}{6}
\end{pmatrix}
\begin{pmatrix}
x_{-}^{[l]} \\
x_{-}^{[l]} \\
x_{+}^{[l]}
\end{pmatrix}
$$
To the Limit...

Spectral power:

- For cubic B-splines:

\[
\begin{bmatrix}
X_{-}^{[\infty]} \\
X^{[\infty]} \\
X_{+}^{[\infty]}
\end{bmatrix}
=
\begin{bmatrix}
1 & -1 & -2 \\
1 & 0 & 1 \\
1 & 1 & -2
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{6} & \frac{1}{3} & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
X_{-}^{[I]} \\
X^{[I]} \\
X_{+}^{[I]}
\end{bmatrix}
=
\begin{bmatrix}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
X_{-}^{[I]} \\
X^{[I]} \\
X_{+}^{[I]}
\end{bmatrix}
\]

- and hence:

\[
X^{[\infty]} = \begin{bmatrix}
\frac{1}{6} & \frac{2}{3} & \frac{1}{6} \\
\frac{1}{6} & \frac{2}{3} & \frac{1}{6}
\end{bmatrix}
\begin{bmatrix}
X_{-}^{[I]} \\
X^{[I]} \\
X_{+}^{[I]}
\end{bmatrix}
\]
To the Limit, in General

In general:

- The dominant eigenvalue / eigenvector of the subdivision scheme determines the limit mask.
Necessary Condition

Necessary condition for convergence:

- 1 must be the largest eigenvalue (in absolute value)
- Otherwise, the subdivision either explodes (>1) or shrinks to the origin (<1)

\[
\begin{bmatrix}
X_{-n}^{[l+k]} \\
\vdots \\
X_{0}^{[l+k]} \\
\vdots \\
X_{+n}^{[l+k]}
\end{bmatrix}
= M_{subdiv}^{k}
\begin{bmatrix}
X_{-n}^{[l]} \\
\vdots \\
X_{0}^{[l]} \\
\vdots \\
X_{+n}^{[l]}
\end{bmatrix}
= UD^{k}U^{-1}
\begin{bmatrix}
X_{-n}^{[l]} \\
\vdots \\
X_{0}^{[l]} \\
\vdots \\
X_{+n}^{[l]}
\end{bmatrix}
\]
Affine Invariance:

- The limit curve should be independent of the choice of a coordinate system.
- We get this, if the intermediate subdivision points are all affine invariant.
- For this, the rows of the (local) subdivision matrix must sum to one:

\[
\begin{pmatrix}
1 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{8} & \frac{6}{8} & \frac{1}{8} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\]
Affine Invariance

Affine Invariance:

- The rows of the (local) subdivision matrix must sum to one:
 \[
 \begin{bmatrix}
 1 & 1 & 0 \\
 2 & 2 & 0 \\
 1 & 6 & 1 \\
 8 & 8 & 8 \\
 0 & 1 & 1 \\
 2 & 2
 \end{bmatrix}
 \]

- This means: The one-vector \(\mathbf{1} \) must be an eigenvector with eigenvalue 1:

 - \(M_{\text{subdiv}} \mathbf{1} = \mathbf{1} \)

 - This must also be the largest eigenvalue/vector pair

 - One can show: it must be the only eigenvector with eigenvalue 1, otherwise the scheme does not converge
One can show:

- The tangent vectors are related to the second largest eigenvalue.
- Intuition:
 - Difference to neighboring points is zero for first eigenvalue/eigenvector in the limit.
 - Second largest shrinks faster, spreads the tangent direction.
- For a C^1 continuous curve, the second largest eigenvalue must be unique (only one eigenvector). This is a necessary condition.
Summary

For a reasonable subdivision scheme, we need at least:

- 1 must be an eigenvector with eigenvalue 1.
- This must be the largest eigenvalue.
- The second eigenvalue should be smaller than 1.
- All other eigenvalues should be smaller than the second one.

(This is assuming a diagonalizable subdivision matrix.)

B-Spline Subdivision Surfaces
B-Spline Subdivision Surfaces

- We can apply the tensor product construction to obtain subdivision surfaces:
B-Spline Subdivision Surfaces

Tensor Product B-Spline Subdivision Surfaces:

• Start with a regular quad mesh (will be relaxed later)

• In each subdivision step:
 ▪ Divide each quad in four (quadtree subdivision)
 ▪ Place linearly interpolated vertices
 ▪ Apply 2-dimensional averaging mask
Subdivision and Averaging Masks

What is the subdivision mask?

- Can be derived from tensor product construction:

Face Midpoint (odd/odd)

\[
\begin{pmatrix}
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix}
\cdot
\begin{bmatrix}
1 & 1 \\
2 & 2
\end{bmatrix}
\]

Edge Midpoint (even/odd)

\[
\begin{pmatrix}
\frac{1}{2} \\
\frac{1}{2}
\end{pmatrix}
\cdot
\begin{bmatrix}
1 & 3 & 1 \\
8 & 4 & 8
\end{bmatrix}
\]

Original Vertex (even/even)

\[
\begin{pmatrix}
\frac{1}{8} \\
\frac{3}{4}
\end{pmatrix}
\cdot
\begin{bmatrix}
1 & 3 & 1 \\
8 & 4 & 8
\end{bmatrix}
\]
Subdivision and Averaging Masks

What is the averaging mask?

- Can be derived from tensor product construction, too:

\[
\begin{bmatrix}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{8} \\
\frac{1}{16}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{8} \\
\frac{1}{16}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{8} \\
\frac{1}{16}
\end{bmatrix}
\]

any (split) vertex
Generalizations:

- General degree B-spline tensor product surface subdivision rules can be derived in the same way.
- Just use the 1-dimensional subdivision / averaging masks and form a tensor product mask.
- Guaranteed to converge to a C^{d-1}-smooth surface.
- Ok, but something is missing...
Remaining Problems:

- The derived rules work only in the interior or a regular quad mesh.
- We did not really gain any flexibility over the standard B-spline construction.
- We still need to figure out, how to:
 - ...handle quad meshes of arbitrary topology.
 - ...handle boundary regions.
 - Placing boundaries in the interior of objects will allow us to model sharp C^0 creases.
 - So we also have some continuity control (despite the uniform B-Spline scheme).
Here is the answer...

Answer: Catmull-Clark subdivision scheme at extraordinary vertices

Observation:

- The recursive subdivision rule always creates regular grids
- Problems can only occur at “extraordinary” vertices
 - These are vertices where the base mesh has degree > 4
 - Extraordinary vertices are maintained by quadtree-like-subdivision
 - All new vertices are ordinary
Answer: Catmull-Clark subdivision scheme at extraordinary vertices

Subdivision mask at extraordinary vertex:

- Vertex degree k
- The surface is C^1 at extraordinary vertices
Here is the answer...

Averaging mask:

- Use after bilinear splitting
Boundary Rules

Subdivision mask at boundaries / sharp creases:

- Just use the normal spline curve rules
- This gives visually good results
- However, the surface is not strictly C^1 at the boundary
- There is a modified weighting scheme that creates half-sided C^1-continuous surfaces at the boundary curves
Other Subdivision Schemes

Loop, Butterfly, ...
Subdivision Zoo

A large number of subdivision schemes exists. The most popular are:

- Catmull-Clark subdivision
 \((quad-mesh, \text{approximating, } C^2 \text{ surfaces, } C^1 \text{ at extraordinary vertices})\)

- Loop subdivision
 \((triangular, \text{approximating, } C^2 \text{ surfaces, } C^1 \text{ at extraordinary vertices})\)

- Butterfly subdivision
 \((triangular, \text{interpolation, } C^1 \text{ surfaces, } C^1 \text{ at extraordinary vertices})\)

Examples of other schemes:

- \(\sqrt{3}\) – subdivision (level of detail increases more slowly)
- Circular subdivision (used e.g. for surfaces of revolution)
Triangular Subdivision:

- Uses 1:4 triangle splits
 - Extraordinary vertices: valence \(\neq 6 \)
- Again:
 - Splitting with linear interpolation
 - Then apply averaging mask

1. Splitting
2. Averaging
Loop Subdivision

\[\alpha(k) = \frac{k(1 - \beta(k))}{\beta(k)} \]

\[\beta(k) = \frac{5}{4} - \frac{(3 + 2\cos(2\pi/k))^2}{32} \]

evaluation (limit) mask

\[\varepsilon(k) = \frac{3k}{4\beta(k)} \]

averaging mask

boundary / sharp crease mask
Loop Subdivision

\[\tau_i = \cos\left(\frac{2\pi i}{k}\right) \]
Butterfly Scheme

Butterfly scheme:
- Original points remain unmodified (interpolating scheme)
- New points averaged as shown on the right
- C^1, except from extraordinary vertices
- Can be modified to be C^1 everywhere

$t \in [0...1/8]$
$0 \triangleq polyhedral$, $1/8 \triangleq smooth$
Connection to Wavelet
Nested Function Spaces and Wavelet Bases
Wavelets:

- Wavelet bases are an interesting tool that is very useful in computer graphics (and many other fields)
- Main idea:
 - Define a basis for a function space
 - Separate large scale from fine scale information
 - “Level-of-detail” basis
 - This allows for compression, scale-dependent processing and often leads to numerical more efficient and stable algorithms (e.g. wavelet preconditioning)
Nested Function Space

Starting Point:

- We consider a set of nested function spaces:
 \[V_0 \subset V_1 \subset \ldots \subset V_i \subset \ldots \]

- This means: with increasing index, a larger number of functions can be represented.

- We can find a basis \(B_i \) for \(V_i \) and \(B_{i+1} \) for \(V_{i+1} \) such that \(B_i \subset B_{i+1} \).
Special Spaces

We consider a special case:

- The basis functions in B_i are dilates of one and the same “mother” basis function $\phi(t)$:

 $$\phi_{i,j} = \phi(2^{j}t - i)$$

 $$B_j = \{\phi_{i,j}\}_i$$

- The $\phi_{i,j}(t)$ are called scaling functions.
- With increasing j, the scaling functions should provide a more detailed representation of the same function.
- In order to achieve this, we need an additional property...
Subdivision Property

Nested Spaces:

- We want to have $\text{span}(B_j) \subset \text{span}(B_{j+1})$.
- For this, we need to be able to reproduce the ϕ_i^j by linear combinations of functions ϕ_i^{j+1}.
- This is the same condition we need for our geometric subdivision schemes.
- This means: Each subdivision scheme creates a corresponding nested scaling space (and vice versa).
Wavelet Bases

What we get so far:

- The span of the set \(B_0 \cup B_1 \cup ... \cup B_n \) can describe functions at various level of detail.
- Problem:
 - This is not a basis. The set is still redundant.
 - The finest resolution set would be sufficient.
- Solution:
 - Remove redundant functions
 - Store only differences
Wavelet Bases

Constructing a wavelet basis:

- Start with $V_0 = \text{span}(B_0)$. Add all $\{\phi_i^0\}_i$ to the wavelet basis.
- Then add wavelet basis functions $\{\psi_i^1\}_i$ that form a basis of $V_1 \setminus V_0$ to this set.
- Continue with the next level of wavelets $\{\psi_i^1\}_i$ that form a basis of $V_2 \setminus V_1$.
- And so on.

Same structure:

- We again want a dilation property: $\psi_i^j = \psi(2^jt - i)$
- $\psi(t)$ is called the “mother wavelet”
Wavelet Basis

We get:

- Scaling functions for the coarsest level function space.
- Wavelets for the missing details at level 1, 2, 3, ..., n.

\[
\begin{align*}
V_0 &\rightarrow \{\phi_i^0\} \\
V_1 \setminus V_0 &\rightarrow \{\psi_i^2\}_i \\
V_2 \setminus V_1 &\rightarrow \{\psi_i^3\}_i \\
&\vdots \\
V_n \setminus V_{n-1} &\rightarrow \{\psi_i^n\}_i
\end{align*}
\]
Wavelet Basis Construction

How to choose the wavelet basis?

- Assume we are given the scaling functions.
- We (usually) still have a lot of freedom for choosing the wavelet basis.
- Desirable properties:
 - Small support (efficiency)
 - Orthogonality (good for compression)
 - Symmetry (useful for signal processing)
 - High order of smoothness (depends on scaling function)
- Not all can be obtained at the same time
- Various compromises have been proposed in literature
Example: Haar basis

Haar Basis:

- Corresponds to zero-order subdivision curves (piecewise constant)

\[
V_0 \rightarrow \{\phi_i^0\}
\]

\[
V_1 \setminus V_0 \rightarrow \{\psi_i^2\}_i
\]

\[
V_2 \setminus V_1 \rightarrow \{\psi_i^3\}_i
\]

\[
V_3 \setminus V_2 \rightarrow \{\psi_i^n\}_i
\]
Function compression recipe:

- Transform to a wavelet basis
- Make sure the basis functions have unit norm (integral square norm)
- Keep the only the largest wavelet coefficients and the top level scaling function coefficient(s)
- If you do this with a smooth wavelet basis (such as higher order B-spline subdivision based wavelets), combined with arithmetic encoding of the coefficients, you basically get JPEG 2000.
Image Compression Example

Haar basis wavelet compression:

• This is 10 lines of code...
Stochastic Subdivision
Nice Fractal Landscapes & the Similar
Fractal Brownian Motion

Modeling rough surfaces:

- Can be modeled as “Fractal Brownian Motion” (FBM).
- The signal f is a noise signal with known power spectrum.
- In the Fourier domain, we have:
 $$|F(w)| \sim w^{-h},$$
 i.e.: the energy in the spectrum decays with frequency.
- The phase is purely random.
- The speed of decay h (typ. $h \in [1..2]$) controls the roughness (“fractal exponent”).
Stochastic Subdivision

Modeling rough surfaces with subdivision:

- A coarse base mesh models the shape.
- Then apply a smooth subdivision scheme (e.g., Catmull-Clark)
- At each subdivision level, add random noise to the new control points, with amplitude proportional to 2^{-hl}.
- Idea:
 - The large subdivision steps (small l) control the low frequency bands, the small scale steps control the higher frequencies.
 - Create an FBM spectrum function incrementally.
Stochastic Subdivision

- coarse model
- smooth interpolation
- add noise

iterate

iterations

noise $\sim w^{-h}$
Example Application:

- Creating “nice looking” landscapes with “multi-channel fractals”.
- This is rather art than science...
Multi-Channel Fractals

Modeling Primitive: Regular Patch

- Represent geometry as regularly sampled patches
- Multiple attributes per point
Modeling by Subdivision:

- User defined initial patch
- Double resolution (iteratively)
- New values depend on local neighborhood
Final Mapping before Rendering:

- Convert point attributes to rendering attributes
- Transform from “semantic” to “visual” representation
Fractal Modeling

Multi-Channel Fractals:

- Channels for *height, roughness, vegetation*, etc.
- Each channel is a fractal “heightfield”
- Mutual influence of channels during subdivision
 - roughness → noise decay
 - height → roughness
 - vegetation → roughness
 - height → vegetation
Example

- smoothing
- noise
- non-stationary

- grass
- snow
- water