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Implicit Functions 

Basic Idea: 

• We describe an object S d by an implicit equation: 

 S = {x  d | f (x) = 0} 

 The function f describes the shape of the object. 

• Applications: 

 In general, we could describe arbitrary objects 

 Most common case: Surfaces in 3. 

 This means, f is zero on an infinitesimally thin sheet only. 
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The Implicit Function Theorem 

Implicit Function Theorem: 

• Given a differentiable function 
 

 f : n  D  ,                     , 
  

• Within an  -neighborhood of x(0) we can represent the 
zero level set of f completely as a heightfield function g 

     g : n-1         such that for  x – x(0) <   we have: 

     f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and  

     f(x1,..., xn)  0 everywhere else. 

• The heightfield is a differentiable (n – 1)-manifold and its 
surface normal is the colinear to the gradient of f. 
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This means 

If we want to model surfaces, we are on the safe side if: 

• We use a smooth (differentiable) function f in 3. 

• The gradient of f does not vanish. 

This gives us the following guarantees: 

• The zero-level set is actually a surface: 

 We obtained a closed 2-manifold without boundary. 

 We have a well defined interior / exterior. 

Sufficient: 

• We need smoothness / non-vanishing gradient only close 
to the zero-crossing. 
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Implicit Function Types 

Function types: 

• General case 
 Non-zero gradient at zero crossing 

 Otherwise arbitrary 

• Signed implicit function: 
 sign(f): negative inside and positive outside the object 

(or the other way round, but we assume this orientation here) 

• Signed distance field 
 |f| = distance to the surface 

 sign(f): negative inside, positive outside 

• Squared distance function 
 f = (distance to the surface)2 
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Implicit Function Types 

Use depends on application: 

• Signed implicit function 
 Solid modeling 

 Interior well defined 

• Signed distance function 
 Most frequently used representation 

 Constant gradient  numerically stable surface definition 

 Availability of distance values useful for many applications 

• Squared distance function 
 This representation is useful for statistical optimization 

 Minimize sum of squared distances  least squares optimization 

 Useful for surfaces defined up to some insecurity / noise. 

 Direct surface extraction more difficult (gradient vanishes!). 

signed distance 
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Squared Distance Function 

Example: Surface from random samples 

1. Determine sample point (uniform) 

2. Add noise (Gaussian) 

sampling Gaussian noise many samples distribution 
(in space) 
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Squared Distance Function 

Squared Distance Function: 

• Sampling a surface with uniform sampling and Gaussian 
noise: 

 Probability density is a convolution of the object with a 
Gaussian kernel 

• Smooth surfaces: The log-likelihood can be approximated 
by a squared distance function 
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Smoothness 

Smoothness of signed distance function: 

• Any distance function (signed, unsigned, squared) in 
general cannot be globally smooth 

• The distance function is  
non-differentiable at the medial axis 

 Medial axis = set of points that 
have the same distance to two 
or more different surface points 

 For sharp corners, the medial 
axis touches the surfaces 

 This means: f non-differentiable 
on the surface itself 

 Usually, this is no problem in practice. 
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Differential Properties 

Some useful differential properties: 

• We look at a surface point x, i.e. f (x) = 0. 

• We assumef (x)  0. 

• The unit normal of the implicit surface is given by: 

 

 

 For signed functions, the normal is pointing outward. 

 For signed distance functions, this simplifies to n(x) = f (x). 
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Differential Properties 

Some useful differential properties: 

• The mean curvature of the surface is proportional to the 
divergence of the unit normal: 

 

 

 

 

• For a signed distance function, the formula simplifies to: 
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Mean Curvature Formula 

Proof (sketch): 

• We assume that the normal is in z-direction, i.e., x, y are 
tangent to the surface (divergence is invariant under 
rotation). The surface normal is given by: 
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Computing Volume Integrals 

Computing volume integrals: 

• Heavyside function: 

 

 

• Volume integral over interior volume f of 
some function g(x) (assuming negative interior values): 
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Computing Surface Integrals 

Computing surface integrals: 

• Dirac delta function: 

 Idealized function (distribution) 

 Zero everywhere ((x) = 0),  
except at x = 0, where it is positive, inifinitely large. 

 The integral of (x) over x is one. 

• Dirac delta function on the surface: directional derivative 
of step(x) in normal direction: 
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Surface Integral 

Computing surface integrals: 

• Surface integral over the surface  f = {x | f (x) = 0} 
of some function g(x): 

 

 

• This looks nice, but is numerically intractable. 

• We can fix this using smothed out Dirac/Heavyside 
functions... 
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Smoothed Functions 

Smooth-step function 
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Representing Implicit Functions 

Representation: Two basic techniques 

• Discretization on grids 

 Simple finite differencing (FD) grids 

 Grids of basis functions (finite elements FE) 

 Hierarchical / adaptive grids (FE) 

• Discretization with radial basis functions 
(particle FE methods) 
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Discretization 

Discretization examples 

• In the following, we will look at 2D examples 

• The 3D (d-dimensional) case is similar 
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Regular Grids 

Discretization: 

• Regular grid of values fi,j 

• Grid spacing h 

• Differential properties can 
be approximated by finite 
differences: 

 For example: 
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Regular Grids 

Variant: 

• Use only cells near the surface 

• Saves storage & computation time 

• However: We need to know an 
estimate on where the surface is 
located to setup the 
representation 

• Propagate to the rest of the 
volume (if necessary): 
fast marching method 
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Fast Marching Method 

Problem statement: 

• Assume we are given the surface and signed distance 
value in a narrow band. 

• Now we want to compute distance values everywhere on 
the grid. 

Three solutions: 

• Nearest neighbor queries 

• Eikonal equation 

• Fast marching 
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Nearest Neighbors 

Algorithm: 

• For each grid cell: 

 Compute nearest point on 
the surface 

 Enter distance 

• Approximate nearest neighbor 
computation: 

 Look for nearest grid cell with 
zero crossing first 

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance) 

• Costs: O(n) kNN queries (n empty cells) 
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Eikonal Equation 

Eikonal Equation 

• Place variables in empty cells 

• Fixed values in known cells 

• Then solve the following PDE: 

 

 

 

• This is a (non-linear) boundary value problem. 
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Fast Marching 

Solving the Equation: 

• The Eikonal equation can be solved efficiently by a region 
growing algorithm: 

 Start with the initial known values 

 Compute new distances at immediate neighbors solving a local 
Eikonal equation (*) 

 The smallest of these values must be correct (similar to Dijkstra’s 
algorithm) 

 Fix this value and update the neighbors again 

 Growing front, O(n log n) time. 
 

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge 
University Press 1996. 
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Regular Grids of Basis Functions 

Discretization (2D): 

• Place a basis function in each 
grid cell: bi,j = b(x – i, y – j) 

• Typical choices: 

 Bivariate uniform cubic B-splines 
(tensor product) 

 b(x, y) = exp[-(x2 + y2)] 

• The implicit function is then 
represented as: 

 
 

• The i,j describe different f. 
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Regular Grids of Basis Functions 

Differential Properties: 

• Derivatives: 

 

 

 

 

• Derivatives are linear 
combinations of the derivatives 
of the basis function. 

• In particular: We again get a 
linear expression in the i,j. 
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Adaptive Grids 

Adaptive / hierarchical grid: 

• Perform a quadtree /octree 
tessellation of the domain 
(or any other partition into 
elements) 

• Refine where more precision is 
necessary (near surface, maybe 
curvature dependent) 

• Associate basis functions with 
each cell (constant or higher 
order) 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Place a set of “particles” in space 
at positions xi. 

• Associate each with a radial basis 
function b(x – xi). 

• The discretization is then given 
by: 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Obviously, derivatives are again 
linear in i: 

 

 

• The radial basis functions can also 
have different size (support) for 
adaptive refinement 

• Placement: near the expected 
surface 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Where should we place the radial 
basis functions? 

 If we have an initial guess for 
the surface shape: 

– put some on the surface 

– and some in +/- normal direction. 

 Otherwise: 

– Uniform placement in lowres 

– Solve for surface 

– Refine near lowres-surface, iterate. 
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Types of Radial Basis Functions 

Typical choices for radial basis functions: 

• (Quasi-) compactly supported functions: 

 Exponentials / normal distribution densities: exp(- x2) 

 Uniform (cubic) tensor product B-Splines 

 Moving-least squares finite element basis functions 
(will be discussed later) 

• Globally supported functions: 

 Thin plate spline basis functions: 

 

 These functions guarantee minimal integral second derivatives. 
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Pros & Cons 

Why use globally supported basis functions? 

• They come with smoothness guarantees 
(details in the next lecture) 

• However: Computations might become expensive 
(we will see later how to device efficient algorithms for 
globally supported radial basis functions) 

Locally supported functions: 

• Easy to use 

• Additional regularization might become necessary to 
compute a “nice” surface. 



Implicit Surfaces 
Level Set Extraction 
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Iso-Surface Extraction 

New task: 

• Assume we have defined an implicit function 

• Now we want to extract the surface. 

• I.e. convert it to an explicit, piecewise parametric 
representation, typically a triangle mesh. 

• For this we need an iso-surface extraction algorithm 

 a.k.a. level set extraction 

 a.k.a. contouring 
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Algorithms 

Algorithms: 

• Marching Cubes 

 This is the standard technique. 

 We will also discuss some problems / modifications. 

• Particle methods 

 Just to show an alternative 

 Not used that frequently in practice 
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Marching Cubes 

Marching Cubes: 

• The most frequently used iso surface extraction algorithm 

 Creates a triangle mesh from an iso-value surface of a scalar 
volume 

 The algorithm is also used frequently to visualize CT scanner 
data and other volume data 

• Simple idea: 

 Define and solve a fixed complexity, local problem. 

 Compute a full solution by solving many such local problems 
incrementally. 
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Marching Cubes 

Marching Cubes: 

• Here is the local problem: 

 We have a cube with 8 vertices 

 Each vertex is either inside or 
outside the volume 
(i.e. f (x) < 0 or f (x)  0) 

 How should we triangulate this cube? 

 How should we place the vertices? 
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Triangulation 

Triangulation: 

• We have 256 different cases – each of the 8 vertices can 
be in or out. 

• By symmetry, this can be reduced to 15 cases 

 Symmetry: reflection, rotation, and bit inversion 

• This means, we can compute the topology of the mesh 

[source: Wikipedia] 
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Vertex Placement 

How to place the vertices? 

• Zero-th order accuracy: Place vertices at edge midpoints 

• First order accuracy: Linearly interpolate vertices along 
edges. 

• Example: for scalar values f(x) = -0.1 and f(y) = 0.2,  
place the vertex at ratio 1:2 between x and y. 

[source: Wikipedia] 
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Outer Loop 

Outer Loop: 

• Compute a bounding box of the 
domain of the implicit function. 

• Divide it into cubes of the same 
size (regular cube grid) 

• Execute “marching cube” 
algorithm in each subcube 

• Output the union of all triangles 
generated 

• Optionally: Use a vertex hash table 
to make the mesh consistent 
(remove double vertices) 
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Marching Squares 

Marching Squares: 

• There is also a 2D version of the algorithm, called 
marching squares. 

• Same idea, but fewer cases. 
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Ambiguities 

There is a (minor) technical problem remaining: 

• The triangulation can be ambiguous 

• In some cases, different topologies are possible which are 
all locally plausible: 

 

 

 

• This is an undersampling artifact. At a sufficiently high 
resolution, this cannot occur. 

• Problem: Inconsistent application can lead to holes in the 
surface (non-manifold solutions) 
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Ambiguities 

Solution: 

• Always use the same solution pattern in ambiguous 
situations 

• For example: Always connect diagonally. 

 This might yield topologically wrong results. 

 But the surface is guaranteed to be a triangulated 2-manifold 
without holes and with well defined interior / exterior 

• Better solution: 

 Use higher resolution sampling (if possible) 

• All of this (problem and solutions) also applies to the 3D 
case. 
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MC Variations 

Empty space skipping: 

• Marching cube uses an n3 voxel grid, which can become 
pretty expensive. 

• The surface intersects typically only O(n2) voxels. 

• If we roughly know where the surface might appear, we 
can restrict the execution of the algorithm (and the 
evaluations of f at the corners) to a narrow band around 
the surface. 

• Example: Particle methods – only extract within the 
support of the radial basis functions. 
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MC Variations 

Hierarchical marching cubes algorithm: 

• One can use a hierarchical version of the marching cubes 
algorithm using a balanced octree instead of a regular grid 

  We need some refinement criterion to judge on where to 
subdivide 

 This is application dependent (depends on the definition of f ). 

• However, we obtain many more cases to consider (which 
is painful to derive) 

Simple solution (common in practice): 

• Extract high-resolution triangle mesh 

• Then run mesh simplification (slower, but better quality) 
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Particle-Based Extraction 

Particle-based method: 

• This technique creates a set of points as output, which 
cover the iso-surface. 

• Algorithm: 

 Start with a random point cloud (n points in a bounding volume) 

 Now define forces that attract particles to the zero-level set. 

 Also add some (weak) tangential repulsion to make them 
distribute uniformly 
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Forces 

Attraction “force”: 

 

Tangential repulsion force: 
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Solution 

Solution: 

• We obtain a system of ordinary differential equations 

• The ODE can be solved numerically 

• Simplest technique: gradient decent (explicit Euler) 

 Move every point by a fraction of the force vector 

 Recalculate forces 

 Iterate 

• We have the solution if the system reaches a steady state 
(nothing moves anymore, numerically) 



Implicit Surfaces 
Solid Modeling 
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Solid Modeling 

We want to: 

• Form basic volumetric primitives (spheres, cubes, 
cylinders) as implicit functions (this is easy, no details). 

• Compute Boolean combinations of these primitives: 
Intersection, union, etc... 

• Derive an implicit function from these operations 
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Boolean Operations 

Actually, Boolean operations with implicit functions 
are simple: 

• Given two signed implicit functions (negative inside) fA, fB 
for objects A, B. 

• The boolean combinations are given by: 

 Union A B: fA  B = min(fA, fB) 

 Intersection A  B: fA  B = max(fA, fB) 

 Complement  A:   fA = – fA 

 Difference A \ B:  fA \ B = max(fA, – fB) 

-   - 
+ 

+ 
-   - 

 + 
- 

-   - 
+ 
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Hierarchical Modeling 

This can be models as a CSG tree (constructive solid 
geometry): 

• Leaf nodes are signed  
distance functions 

• Inner nodes are Boolean 
operations 

• Evaluation translates to 
an arithmetic expression 

• Other operations: 

 Deformation (apply vector field) 

 Blending (combine surfaces smoothly) 

 

  

- + - + - + - + 
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Hierarchical Modeling 

Rendering CSG hierarchies: 

• Rendering is simple 

• We get one compound 
signed implicit function 

• We can extract the surface 
using marching cubes 

• We can raytrace the surface 
using a numerical root 
finding algorithm 

 For example: 
Newton scheme with voxel-based intialization 

 

  

- + - + - + - + 
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Constructing Implicit Surfaces 

Question: How to construct implicit surfaces? 

• Basic primitives: Spheres, boxes etc... are (almost) trivial. 

• We can construct implicit spline schemes by using 3D 
tensor product (or tetrahedral) constructions of 3D Bezier 
or B-Spline functions 

• Another option: Variational modeling (next lecture) 

• In this chapter of this lecture: Fitting to data 
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Data Fitting 

Data Fitting Problem: 

• We are given a set of points 

• We want to find an implicit surface that interpolates or 
approximates these points 

• This problem is ill-defined 

• We need additional assumptions to make it well-defined 

• We will look at three variants: 

 Hoppe’s method / plane blending 

 Thin-plate spline data matching 

 MPU Implicits (multi-level partition of unity implicits) 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 

 

unoriented normals: 
total least squares plane fit (PCA) 

in a k-nearest neighbors neighborhood 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 

 

consistent orientation:  
region growing, flip normals if angle > 180°,  
pick most similar normal next in each step 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 

consistent orientation:  
blend between signed distance functions of  

planes associated with each point 



Geometric Modeling SoSem 2010  –  Implicit Functions 65 / 80 

Plane Blending Method 

Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 

signed distance function:  
plane blending (next slide) 
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• Each point defines an oriented plane and a signed distance 
function 

• To obtain a composite distance field in space: 
Blend these distance functions with weights from a kernel 
function (Gaussian, or uniform B-Spline) 

Normal Constraints 

Basic Idea: 

x 

w(x, xi) 
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Normal Constraints 

Basic Idea: 

x 

w(x, xi) 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 
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Thin-Plate Spline Data Matching 

Agenda: 

• Use radial basis functions 

• Use a globally supported basis 
that guarantees smoothness 

• Place radial basis functions 
at the input points 

• Place two more in normal and  
negative normal direction 

• Prescribe values +1,0,-1 

• Solve a linear system to meet  
these constraints 

-1 
-1 

-1 -1 

+1 
+1 

+1 +1 
0 

0 
0 0 
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Types of Radial Basis Functions 

Typical choices for radial basis functions: 

• Globally supported functions: 

 Thin splate spline basis functions: 

 

 These functions guarantee minimal integral second derivatives. 

• Problem: evaluation 

 Every basis function interacts with each other one 

 This creates a dense n n linear system 

 One can use a fast multi pole method that clusters far away 
nodes in bigger octree boxes 

 This gives O(log n) interactions per particle, overall O(n log n) 
interactions. 

0
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0 ln xxxx 
3

0xx (2D), (3D). 
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Alternative 

Alternative: 

• Use locally supported basis functions (e.g. B-Splines) 

• Employ an additional regularization term to make the 
solution smooth. 

• Optimize the energy function 

 

 

 

 
 

• The crictical point is the solution to a linear system 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Hierarchical implicit function 
approximation 

 Given: data points with normals 

 Computes: hierarchical  
approximation of the signed 
distance function 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Octree decomposition of space 

• In each octree cell, fit an implicit 
quadratic function to points 

 f (xi) = 0 at data points 

 Additional normal constraints 

• Stopping criterion: 

 Sufficient approximation accuracy 
(evaluate f at data points to 
calulate distance) 

 At least 15 points per cell. 



Geometric Modeling SoSem 2010  –  Implicit Functions 76 / 80 

MPU Implicits 

Multi-level partition of unity implicits: 

• This gives an adaptive grid of 
local implicit function  
approximations. 

• Problem: How to define a global 
implicit function? 

• Idea: Just blend between local 
approximants using a windowing 
function 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Windowing function: 

 Use smooth windowing function w 

– B-splines / normal distribution 

– original formulation: quadratic  
tensor product B-spline function, 
support = 1.5 cell diagonal 

 Renormalize to form partition 
of unity: 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Sharp features:  

 If a leaf cell with a few points has strongly varying normals, this 
might be a sharp feature. 

 Multiple functions can be fitted to parts of the data 

 Boolean operations to obtain composite distance field 

 

 


