Geometric Modeling

Summer Semester 2010

Implicit Functions

Mathematical Background - Level Set Extraction - Solid Modeling

Mol UNIVERSITAT
il 1

max planck institut
informatik

Overview...

Topics:
e Spline Surfaces
e Triangle Meshes & Multi-Resolution Representations
e Subdivision Surfaces

= |Introduction / Mathematical Background
Numerical Discretization

Level Set Extraction Algorithms

Solid Modeling

Data Fitting

Geometric Modeling SoSem 2010 — Implicit Functions 2/80

Implicit Surfaces
Introduction

Modeling Zoo

N
L__m« 7

Py

\\%\\\ﬂ}ﬂhﬂﬁh\)ﬂ\

2

A

NA va¥
—NE. AV NS

ive Meshes

imi

Pr

Parametric Models

Particle Models

it Models

Implic

4/80

Geometric Modeling SoSem 2010 — Implicit Functions

Implicit Functions

Basic Idea:

e We describe an object S < R by an implicit equation:
- S={xeR/|f(x) =0}
= The function f describes the shape of the object.
e Applications:
= In general, we could describe arbitrary objects
= Most common case: Surfaces in R3.
= This means, fis zero on an infinitesimally thin sheet only.

Geometric Modeling SoSem 2010 — Implicit Functions 5/80

The Implicit Function Theorem

Implicit Function Theorem:
e Given a differentiable function

fiR"o>D—->R, f(x'")=0, f(x“”) = f(xg‘”,..., x")#0

e Within an &-neighborhood of x(O) we can represent the
zero level set of f completely as a heightfield function g

g:R™ —-R such that for x - x(9 < & we have:
JX e X1, 9(X4,00X,,1)) = 0 @Nd
f(x4,- X,) # 0 everywhere else.

e The heightfield is a differentiable (n — 1)-manifold and its
surface normal is the colinear to the gradient of /.

Geometric Modeling SoSem 2010 — Implicit Functions 6/80

This means

If we want to model surfaces, we are on the safe side if:
e We use a smooth (differentiable) function fin R3.
e The gradient of f does not vanish.

This gives us the following guarantees:

e The zero-level set is actually a surface:
= We obtained a closed 2-manifold without boundary.
= We have a well defined interior / exterior.

Sufficient:

e We need smoothness / non-vanishing gradient only close
to the zero-crossing.

Geometric Modeling SoSem 2010 — Implicit Functions 7 /80

Implicit Function Types

Function types:

e General case
= Non-zero gradient at zero crossing
= Otherwise arbitrary

e Signed implicit function:
= sign(f): negative inside and positive outside the object
(or the other way round, but we assume this orientation here)

e Signed distance field
= |f| = distance to the surface
= sign(f): negative inside, positive outside

e Squared distance function
= f=(distance to the surface)?

Geometric Modeling SoSem 2010 — Implicit Functions 8/80

Implicit Function Types

Use depends on application:

e Signed implicit function
= Solid modeling
= Interior well defined

e Signed distance function
= Most frequently used representation

signed distance

= Constant gradient — numerically stable surface definition
= Availability of distance values useful for many applications

e Squared distance function

= This representation is useful for statistical optimization

= Minimize sum of squared distances — least squares optimization
= Useful for surfaces defined up to some insecurity / noise.

= Direct surface extraction more difficult (gradient vanishes!).

Geometric Modeling SoSem 2010 — Implicit Functions

9/80

Squared Distance Function

Example: Surface from random samples
1. Determine sample point (uniform)
2. Add noise (Gaussian)

. _
sampling Gaussian noise many samples distribution

(in space)

Py (x)= any /21 TG expi—%(x—u)Tzl (X—u)j

Geometric Modeling SoSem 2010 — Implicit Functions 10/ 80

Squared Distance Function

Squared Distance Function:

e Sampling a surface with uniform sampling and Gaussian
noise:

— Probability density is a convolution of the object with a
Gaussian kernel

e Smooth surfaces: The log-likelihood can be approximated
by a squared distance function

Geometric Modeling SoSem 2010 — Implicit Functions 11 /80

Smoothness

Smoothness of signed distance function:

e Any distance function (signed, unsigned, squared) in
general cannot be globally smooth

e The distance function is
non-differentiable at the medial axis

= Medial axis = set of points that
have the same distance to two
or more different surface points

= For sharp corners, the medial
axis touches the surfaces

= This means: f non-differentiable
on the surface itself

= Usually, this is no problem in practice.

Geometric Modeling SoSem 2010 — Implicit Functions 12 /80

Differential Properties

Some useful differential properties:
 We look at a surface point x, i.e. f(x) = 0.
e We assume Vf(x) #0.

e The unit normal of the implicit surface is given by:
VI(x)
[V/)|

= For signed functions, the normal is pointing outward.

n(x)=

= For signed distance functions, this simplifies to n(x) = Vf(x).

Geometric Modeling SoSem 2010 — Implicit Functions 13 /80

Differential Properties

Some useful differential properties:

e The mean curvature of the surface is proportional to the
divergence of the unit normal:
—2H(x)=V -n(x)

0 0 0
=—n (X)+—n (X)+—n (X
o) ayy() 5, X

o Y(®)
v/ ()|

e For a signed distance function, the formula simplifies to:

—ZH(X)=V-Vf(X)=§(—2f(X)+§/—2f(X)+§Z—Zf(X)

=Af(x)

Geometric Modeling SoSem 2010 — Implicit Functions 14 /80

Mean Curvature Formula

Proof (sketch):

e We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

0 —-0,5(x,y) V4
n(x,y)=0|=-0,s(x,y)
1 1
52 & 0 X,y
V-nlx,y)l=—s(x,y)———s(x,y)+—1 !
(x,¥) o (x,¥) o (x,¥) .

iS(X) 2 s(x,y)
=trace ox" 5)@(?}/ =—2H(x,y) {H(Xo) = %tr(S(XO))}

82
s(x, —35S(x,
oxdy (x,y) o (x,y)

Geometric Modeling SoSem 2010 — Implicit Functions 15 /80

Computing Volume Integrals

Computing volume integrals:

o Heavy5|de function:
tep(x) =1, O %
Stepl X
P ifx>0

* Volume integral over interior volume (). of
some function g(x) (assuming negative interior values):

J gtxyix = I g(x)(1 - step(f(x)))dx

Qy

Geometric Modeling SoSem 2010 — Implicit Functions 16 / 80

Computing Surface Integrals

Computing surface integrals: 5(%)
e Dirac delta function: A

= |dealized function (distribution)

| >
= Zero everywhere (5(x) = 0), X
except at x = 0, where it is positive, inifinitely large.

= The integral of 6(x) over x is one.

e Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

§ = V[step(£(x))] n(x) = [Vstep)(f(x))- VF(x) L

IV/ ()|

=S5(f(x))-|Vf(x)

Geometric Modeling SoSem 2010 — Implicit Functions 17 /80

Surface Integral

Computing surface integrals:

» Surface integral over the surface 0Q),= {x| f(x) =0}
of some function g(x):

| g(xydx = [g(x)5(f(x))| VF(x)|dx

Q¢

e This looks nice, but is numerically intractable.

e We can fix this using smothed out Dirac/Heavyside
functions...

Geometric Modeling SoSem 2010 — Implicit Functions 18 / 80

Smoothed Functions

Smooth-step function

(

0

1 1
smooth_step(x)=<—+ Xy

2 2& 2T

1

Smoothed Dirac delta function

-

0

28 2¢&
0

smooth_delta(x) =+ ! + ! cos(

.

X<-—=¢&

j —&c<x<¢

Geometric Modeling SoSem 2010 — Implicit Functions

19/80

Implicit Surfaces
Numerical Discretization

Representing Implicit Functions

Representation: Two basic techniques

e Discretization on grids
= Simple finite differencing (FD) grids
= Grids of basis functions (finite elements FE)
= Hierarchical / adaptive grids (FE)
e Discretization with radial basis functions
(particle FE methods)

Geometric Modeling SoSem 2010 — Implicit Functions 21 /80

Discretization

Discretization examples
e In the following, we will look at 2D examples
e The 3D (d-dimensional) case is similar

Geometric Modeling SoSem 2010 — Implicit Functions 22 / 80

Regular Grids

Discretization:
e Regular grid of valuesf,-J.

e Grid spacing h _——

e Differential properties can —
be approximated by finite
differences:

= For example:

o 1
8_ f(X) — Z (fi(x),j(x) - fi(x)—l,j(x))+ O(h)

5005 s = w0+ OC)

Geometric Modeling SoSem 2010 — Implicit Functions 23 /80

Regular Grids

Variant:
e Use only cells near the surface

e Saves storage & computation time ——

e However: We need to know an —
estimate on where the surface is
located to setup the
representation

e Propagate to the rest of the
volume (if necessary):
fast marching method

Geometric Modeling SoSem 2010 — Implicit Functions 24 / 80

Fast Marching Method

Problem statement:

e Assume we are given the surface and signed distance
value in a narrow band.

e Now we want to compute distance values everywhere on
the grid.

Three solutions:
e Nearest neighbor queries
e Eikonal equation
e Fast marching

Geometric Modeling SoSem 2010 — Implicit Functions 25 /80

Nearest Neighbors

Algorithm:
e For each grid cell: \

= Compute nearest point on \
the surface

= Enter distance N

e Approximate nearest neighbor
computation:

= Look for nearest grid cell with
zero crossing first

= Then compute distance curve <> zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

e Costs: O(n) kNN queries (n empty cells)

Geometric Modeling SoSem 2010 — Implicit Functions 26 / 80

Eikonal Equation

Eikonal Equation
e Place variables in empty cells

e Fixed values in known cells —

e Then solve the following PDE: —
[Vfl=1

SUbj eCt tO f(X) — fknown (X)
ontheknownareaxe A

known

e This is a (non-linear) boundary value problem.

Geometric Modeling SoSem 2010 — Implicit Functions 27 / 80

Fast Marching

Solving the Equation:

e The Eikonal equation can be solved efficiently by a region
growing algorithm:
= Start with the initial known values

= Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

= The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

= Fix this value and update the neighbors again
= Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

Geometric Modeling SoSem 2010 — Implicit Functions 28 / 80

Regular Grids of Basis Functions

Discretization (2D):

e Place a basis function in each
gridcell: b, = b(x -1,y -])
e Typical choices:

= Bivariate uniform cubic B-splines
(tensor product)

= b(x,y) = exp[-A(x* + y*)]
e The implicit function is then
represented as:

ni 1 b2’3.
f(X:.V):ZZ;ti,jbi,j(X:.V) b, 5

i=0 j=0

* The 4, describe different f.

Geometric Modeling SoSem 2010 — Implicit Functions

29/80

Regular Grids of Basis Functions

Differential Properties:

e Derivatives:

0
X,
OX o1 OX, Jx.)
o i (X’y)
IZ(;]Z(;][X1 OX), j

e Derivatives are linear
combinations of the derivatives
of the basis function. b,

e In particular: We again get a b 5-=F1

linear expression in the 4, .

Geometric Modeling SoSem 2010 — Implicit Functions

30/80

Adaptive Grids

Adaptive / hierarchical grid:

e Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements) -

e Refine where more precision is
necessary (near surface, maybe
curvature dependent)

e Associate basis functions with
each cell (constant or higher
order)

Geometric Modeling SoSem 2010 — Implicit Functions 31/80

Particle Methods

Particle methods /
radial basis functions:
e Place a set of “particles” in space
at positions x..
e Associate each with a radial basis

function b(x—x).
[
e The discretization is then given
by:

f(X)=Zn‘,/1,-b(X—X,-) /

e The A, encode f.

Geometric Modeling SoSem 2010 — Implicit Functions 32/80

Particle Methods

Particle methods /
radial basis functions:
e Obviously, derivatives are again
linear in A
9,

O =4 b(x—x,)

anlnuanm I:O axkl...aka

e The radial basis functions can also
have different size (support) for

adaptive refinement /-
e Placement: near the expected

surface

Geometric Modeling SoSem 2010 — Implicit Functions 33/80

Particle Methods

Particle methods /
radial basis functions:

e Where should we place the radial
basis functions?

= |f we have an initial guess for
the surface shape:

— put some on the surface
— and some in +/- normal direction.
= Otherwise:

— Uniform placement in lowres /'

— Solve for surface

— Refine near lowres-surface, iterate.

Geometric Modeling SoSem 2010 — Implicit Functions 34 /80

Types of Radial Basis Functions

Typical choices for radial basis functions:

e (Quasi-) compactly supported functions:
= Exponentials / normal distribution densities: exp(-1x?)
= Uniform (cubic) tensor product B-Splines

= Moving-least squares finite element basis functions
(will be discussed later)

e Globally supported functions:

= Thin plate spline basis functions:
= o[Infx =, 2D), [fx—x, " (3D).

= These functions guarantee minimal integral second derivatives.

Geometric Modeling SoSem 2010 — Implicit Functions 35/ 80

Pros & Cons

Why use globally supported basis functions?

e They come with smoothness guarantees
(details in the next lecture)

e However: Computations might become expensive
(we will see later how to device efficient algorithms for
globally supported radial basis functions)

Locally supported functions:
e Easy to use

e Additional regularization might become necessary to
compute a “nice” surface.

Geometric Modeling SoSem 2010 — Implicit Functions 36 / 80

Implicit Surfaces
Level Set Extraction

Iso-Surface Extraction

New task:

e Assume we have defined an implicit function
e Now we want to extract the surface.

e |.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

e For this we need an iso-surface extraction algorithm
= a.k.a. level set extraction
= a.k.a. contouring

Geometric Modeling SoSem 2010 — Implicit Functions 38 /80

Algorithms

Algorithms:

e Marching Cubes

= This is the standard technique.

= We will also discuss some problems / modifications.
 Particle methods

= Just to show an alternative

= Not used that frequently in practice

Geometric Modeling SoSem 2010 — Implicit Functions 39 /80

Marching Cubes

Marching Cubes:
e The most frequently used iso surface extraction algorithm

= Creates a triangle mesh from an iso-value surface of a scalar
volume

= The algorithm is also used frequently to visualize CT scanner
data and other volume data
e Simple idea:
= Define and solve a fixed complexity, local problem.

= Compute a full solution by solving many such local problems
incrementally.

Geometric Modeling SoSem 2010 — Implicit Functions 40 / 80

Marching Cubes

Marching Cubes:

e Here is the local problem:

= We have a cube with 8 vertices

= Each vertex is either inside or
outside the volume

(i.,e. f(x) <0orf(x)=>0)
= How should we triangulate this cube?
= How should we place the vertices?

Geometric Modeling SoSem 2010 — Implicit Functions

41/80

Triangulation

=) @ ©
=L 70 W @

[source: Wikipedia]

‘\
\
\
\

Triangulation:

e We have 256 different cases — each of the 8 vertices can
be in or out.

e By symmetry, this can be reduced to 15 cases

= Symmetry: reflection, rotation, and bit inversion

e This means, we can compute the topology of the mesh

Geometric Modeling SoSem 2010 — Implicit Functions 42 / 80

Vertex Placement

=) @ ©

74 (W (Gl

[source: Wikipedia]

‘\
\
\
\

How to place the vertices?

e Zero-th order accuracy: Place vertices at edge midpoints

e First order accuracy: Linearly interpolate vertices along
edges.

e Example: for scalar values f(x) =-0.1 and f{y) = 0.2,
place the vertex at ratio 1:2 between x and y.

Geometric Modeling SoSem 2010 — Implicit Functions 43 / 80

Outer Loop

Outer Loop:

e Compute a bounding box of the
domain of the implicit function.

 Divide it into cubes of the same i
size (regular cube grid) :

® ® @ @ @ @ @ @
@
[}
@®
@
]
]

e Execute “marching cube”
algorithm in each subcube

e Output the union of all triangles
generated

e Optionally: Use a vertex hash table
to make the mesh consistent
(remove double vertices)

Geometric Modeling SoSem 2010 — Implicit Functions 44 / 80

Marching Squares

NIsIZidIn

Marching Squares:

e There is also a 2D version of the algorithm, called
marching squares.

e Same idea, but fewer cases.

Geometric Modeling SoSem 2010 — Implicit Functions 45 / 80

Ambiguities

There is a (minor) technical problem remaining:
e The triangulation can be ambiguous

e In some cases, different topologies are possible which are
all locally plausible:

out in
L],
in out

e This is an undersampling artifact. At a sufficiently high
resolution, this cannot occur.

e Problem: Inconsistent application can lead to holes in the
surface (non-manifold solutions)

Geometric Modeling SoSem 2010 — Implicit Functions 46 / 80

Ambiguities

Solution:

e Always use the same solution pattern in ambiguous
situations
e For example: Always connect diagonally.

= This might yield topologically wrong results.

= But the surface is guaranteed to be a triangulated 2-manifold
without holes and with well defined interior / exterior

e Better solution:

= Use higher resolution sampling (if possible)

o All of this (problem and solutions) also applies to the 3D
case.

Geometric Modeling SoSem 2010 — Implicit Functions 47 / 80

MC Variations

Empty space skipping:
e Marching cube uses an n3 voxel grid, which can become
pretty expensive.
e The surface intersects typically only O(n?) voxels.

e If we roughly know where the surface might appear, we
can restrict the execution of the algorithm (and the
evaluations of f at the corners) to a narrow band around
the surface.

e Example: Particle methods — only extract within the
support of the radial basis functions.

Geometric Modeling SoSem 2010 — Implicit Functions 48 / 80

MC Variations

Hierarchical marching cubes algorithm:

e One can use a hierarchical version of the marching cubes
algorithm using a balanced octree instead of a regular grid

= We need some refinement criterion to judge on where to
subdivide

= This is application dependent (depends on the definition of f).

e However, we obtain many more cases to consider (which
is painful to derive)

Simple solution (common in practice):
e Extract high-resolution triangle mesh
e Then run mesh simplification (slower, but better quality)

Geometric Modeling SoSem 2010 — Implicit Functions 49 / 80

Particle-Based Extraction

Particle-based method:

e This technique creates a set of points as output, which
cover the iso-surface.

e Algorithm:
= Start with a random point cloud (n points in a bounding volume)
= Now define forces that attract particles to the zero-level set.

= Also add some (weak) tangential repulsion to make them
distribute uniformly

Geometric Modeling SoSem 2010 — Implicit Functions 50/ 80

Forces

Attraction “force”:

FOx)=mV|f(x,)

Tangential repulsion force:

FP(x)= [Zk(x x)

J#1

e F)(x,)

Pl—

Vi)

HX x|

VF(x,)|

[vy }
VFx,)|

Geometric Modeling SoSem 2010 — Implicit Functions

Solution

Solution:
e We obtain a system of ordinary differential equations
e The ODE can be solved numerically

e Simplest technique: gradient decent (explicit Euler)
= Move every point by a fraction of the force vector
= Recalculate forces
= |terate

e We have the solution if the system reaches a steady state
(nothing moves anymore, numerically)

Geometric Modeling SoSem 2010 — Implicit Functions 52 /80

Implicit Surfaces
Solid Modeling

Solid Modeling

We want to:

e Form basic volumetric primitives (spheres, cubes,
cylinders) as implicit functions (this is easy, no details).

e Compute Boolean combinations of these primitives:
Intersection, union, etc...

e Derive an implicit function from these operations

Geometric Modeling SoSem 2010 — Implicit Functions 54 / 80

Boolean Operations

Actually, Boolean operations with implicit functions
are simple:

e Given two signed implicit functions (negative inside) f,, f;
for objects A, B.

e The boolean combinations are given by:

+
= Union AUB: faop = min(f,, f5) @

+
= Intersection ANB: f, -, = max(f,, fz) @
= Complement —A: f , =—f, @

= Difference A\B: f, 5 = max(f,, — f;) @+

Geometric Modeling SoSem 2010 — Implicit Functions 55/ 80

Hierarchical Modeling

This can be models as a CSG tree (constructive solid
geometry):

e Leaf nodes are signed
distance functions

e Inner nodes are Boolean
operations

e Evaluation translates to
an arithmetic expression

e Other operations:
= Deformation (apply vector field)
= Blending (combine surfaces smoothly)

Geometric Modeling SoSem 2010 — Implicit Functions 56 / 80

Hierarchical Modeling

Rendering CSG hierarchies:
e Rendering is simple
e We get one compound
signed implicit function
e We can extract the surface
using marching cubes

e We can raytrace the surface
using a numerical root

.. . CO+H| O+ CO+| O+
finding algorithm
= For example:
Newton scheme with voxel-based intialization
l Geometric Modeling SoSem 2010 — Implicit Functions 57 / 80 '

Implicit Surfaces
Data Fitting

Constructing Implicit Surfaces

Question: How to construct implicit surfaces?
e Basic primitives: Spheres, boxes etc... are (almost) trivial.

e We can construct implicit spline schemes by using 3D
tensor product (or tetrahedral) constructions of 3D Bezier

or B-Spline functions
e Another option: Variational modeling (next lecture)
 In this chapter of this lecture: Fitting to data

Geometric Modeling SoSem 2010 — Implicit Functions 59 / 80

Data Fitting

Data Fitting Problem:
e We are given a set of points

 We want to find an implicit surface that interpolates or
approximates these points

This problem is ill-defined

We need additional assumptions to make it well-defined

We will look at three variants:
= Hoppe’s method / plane blending
= Thin-plate spline data matching
= MPU Implicits (multi-level partition of unity implicits)

Geometric Modeling SoSem 2010 — Implicit Functions 60 / 80

Plane Blending Method

Initial data
@
° ° Estimate normals
. ° Signed distance func.
Marching cubes
®
° Final mesh
¢ []
o

Geometric Modeling SoSem 2010 — Implicit Functions 61 /80

Plane Blending Method

[
\, . /
o
prd ° O
N\
/ . °\
!

unoriented normals:
total least squares plane fit (PCA)
in a k-nearest neighbors neighborhood

Initial data

Estimate normals
Signed distance func.
Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

62/80

Plane Blending Method

[
\, . /
o
prd ° O
N\
/ . °\
!

consistent orientation:
region growing, flip normals if angle > 180°,
pick most similar normal next in each step

Initial data

Estimate normals
Signed distance func.
Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

63/80

Plane Blending Method

E—

consistent orientation:
blend between signed distance functions of
planes associated with each point

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

64 /80

Plane Blending Method

E—

signed distance function:
plane blending (next slide)

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

65 /80

Normal Constraints

Basic Idea: w(X, X))

~
~ .
~ -
~ .
~ .
.
-
~
~
~ -
S e
~ -,
-,

e Each point defines an oriented plane and a signed distance
function

e To obtain a composite distance field in space:
Blend these distance functions with weights from a kernel
function (Gaussian, or uniform B-Spline)

Geometric Modeling SoSem 2010 — Implicit Functions

66 /80

Normal Constraints

Basic Idea:

n

2.(n,x—x, >WQ|X R ”)

f(x)="+ (partition of unity weights)

IZ:WQIX —x,.||)

Geometric Modeling SoSem 2010 — Implicit Functions 67 / 80 I

Plane Blending Method

E—

Initial data
Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

68 /80

Plane Blending Method

——————

-
-
—_— -

Initial data

Estimate normals
Signed distance func.
Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions

69 /80

Plane Blending Method

Initial data

Estimate normals
Signed distance func.
Marching cubes

Final mesh

Geometric Modeling SoSem 2010 — Implicit Functions 70/ 80

Thin-Plate Spline Data Matching

Agenda:

Use radial basis functions

Use a globally supported basis
that guarantees smoothness

Place radial basis functions
at the input points

Place two more in normal and
negative normal direction

Prescribe values +1,0,-1

Solve a linear system to meet
these constraints

Geometric Modeling SoSem 2010 — Implicit Functions

71/ 80

Types of Radial Basis Functions

Typical choices for radial basis functions:
e Globally supported functions:

= Thin splate spline basis functions:
||x—x0||2 ln”x—xO” (2D), ||x—x0||3 (3D).
= These functions guarantee minimal integral second derivatives.

e Problem: evaluation
= Every basis function interacts with each other one

= This creates a dense nxn linear system

= One can use a fast multi pole method that clusters far away
nodes in bigger octree boxes

= This gives O(log n) interactions per particle, overall O(nlog n)
interactions.

Geometric Modeling SoSem 2010 — Implicit Functions 72 / 80

Alternative

Alternative:

e Use locally supported basis functions (e.g. B-Splines)

e Employ an additional regularization term to make the
solution smooth.

e Optimize the energy function

? & & 200 20 2
E(A)= Zf(x) “‘Iﬂ ox oy oz oxoy oyez 8x82}f()J

with
f(x)= i/ljb(x — xj)

e The crictical point is the solution to a linear system

Geometric Modeling SoSem 2010 — Implicit Functions 73 /80

MPU Implicits

Multi-level partition of unity implicits:

e Hierarchical implicit function
approximation

= Given: data points with normals

= Computes: hierarchical =]
approximation of the signed
distance function A

Geometric Modeling SoSem 2010 — Implicit Functions 74 / 80

MPU Implicits

Multi-level partition of unity implicits:
e Octree decomposition of space

e In each octree cell, fit an implicit
qguadratic function to points

= f(x;) = 0 at data points =

= Additional normal constraints

e Stopping criterion:

= Sufficient approximation accuracy
(evaluate f at data points to
calulate distance)

= At least 15 points per cell.

Geometric Modeling SoSem 2010 — Implicit Functions 75/ 80

MPU Implicits

Multi-level partition of unity implicits:

e This gives an adaptive grid of
local implicit function
approximations.

e Problem: How to define a global]
implicit function?

e |dea: Just blend between local
approximants using a windowing
function

Geometric Modeling SoSem 2010 — Implicit Functions 76 / 80

MPU Implicits

Multi-level partition of unity implicits:
e Windowing function:

= Use smooth windowing function w

— B-splines / normal distribution

— original formulation: quadratic
tensor product B-spline function,
support = 1.5x cell diagonal

'g‘m“t t‘A‘t‘A",

= Renormalize to form partition
of unity:

S w(x-x,)f,(x)
flx)=1
ZW(X_Xi)

Geometric Modeling SoSem 2010 — Implicit Functions 77 / 80

MPU Implicits

Multi-level partition of unity implicits:
e Sharp features:

= |f a leaf cell with a few points has strongly varying normals, this
might be a sharp feature.

= Multiple functions can be fitted to parts of the data
= Boolean operations to obtain composite distance field

Geometric Modeling SoSem 2010 — Implicit Functions 78 / 80

