
Geometric Modeling
Summer Semester 2010

Implicit Functions
Mathematical Background · Level Set Extraction · Solid Modeling

Geometric Modeling SoSem 2010 – Implicit Functions 2 / 80

Overview...

Topics:

• Spline Surfaces

• Triangle Meshes & Multi-Resolution Representations

• Subdivision Surfaces

• Implicit Functions
 Introduction / Mathematical Background

 Numerical Discretization

 Level Set Extraction Algorithms

 Solid Modeling

 Data Fitting

Implicit Surfaces
Introduction

Geometric Modeling SoSem 2010 – Implicit Functions 4 / 80

 Parametric Models Primitive Meshes

 Implicit Models Particle Models

Modeling Zoo

Geometric Modeling SoSem 2010 – Implicit Functions 5 / 80

Implicit Functions

Basic Idea:

• We describe an object S d by an implicit equation:

 S = {x  d | f (x) = 0}

 The function f describes the shape of the object.

• Applications:

 In general, we could describe arbitrary objects

 Most common case: Surfaces in 3.

 This means, f is zero on an infinitesimally thin sheet only.

Geometric Modeling SoSem 2010 – Implicit Functions 6 / 80

The Implicit Function Theorem

Implicit Function Theorem:

• Given a differentiable function

 f : n  D  , ,

• Within an  -neighborhood of x(0) we can represent the
zero level set of f completely as a heightfield function g

 g : n-1   such that for x – x(0) <  we have:

 f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and

 f(x1,..., xn)  0 everywhere else.

• The heightfield is a differentiable (n – 1)-manifold and its
surface normal is the colinear to the gradient of f.

0),...,()()0()0(
1

)0(








n

nn

xxf
x

f
x

x0)()0(xf

Geometric Modeling SoSem 2010 – Implicit Functions 7 / 80

This means

If we want to model surfaces, we are on the safe side if:

• We use a smooth (differentiable) function f in 3.

• The gradient of f does not vanish.

This gives us the following guarantees:

• The zero-level set is actually a surface:

 We obtained a closed 2-manifold without boundary.

 We have a well defined interior / exterior.

Sufficient:

• We need smoothness / non-vanishing gradient only close
to the zero-crossing.

Geometric Modeling SoSem 2010 – Implicit Functions 8 / 80

Implicit Function Types

Function types:

• General case
 Non-zero gradient at zero crossing

 Otherwise arbitrary

• Signed implicit function:
 sign(f): negative inside and positive outside the object

(or the other way round, but we assume this orientation here)

• Signed distance field
 |f| = distance to the surface

 sign(f): negative inside, positive outside

• Squared distance function
 f = (distance to the surface)2

Geometric Modeling SoSem 2010 – Implicit Functions 9 / 80

Implicit Function Types

Use depends on application:

• Signed implicit function
 Solid modeling

 Interior well defined

• Signed distance function
 Most frequently used representation

 Constant gradient  numerically stable surface definition

 Availability of distance values useful for many applications

• Squared distance function
 This representation is useful for statistical optimization

 Minimize sum of squared distances  least squares optimization

 Useful for surfaces defined up to some insecurity / noise.

 Direct surface extraction more difficult (gradient vanishes!).

signed distance

Geometric Modeling SoSem 2010 – Implicit Functions 10 / 80

Squared Distance Function

Example: Surface from random samples

1. Determine sample point (uniform)

2. Add noise (Gaussian)

sampling Gaussian noise many samples distribution
(in space)

 
   








  μxΣμx

Σ
xΣμ

1T

2/12/,
2

1
exp

||π2

1
)(

d
p

Geometric Modeling SoSem 2010 – Implicit Functions 11 / 80

Squared Distance Function

Squared Distance Function:

• Sampling a surface with uniform sampling and Gaussian
noise:

 Probability density is a convolution of the object with a
Gaussian kernel

• Smooth surfaces: The log-likelihood can be approximated
by a squared distance function

Geometric Modeling SoSem 2010 – Implicit Functions 12 / 80

Smoothness

Smoothness of signed distance function:

• Any distance function (signed, unsigned, squared) in
general cannot be globally smooth

• The distance function is
non-differentiable at the medial axis

 Medial axis = set of points that
have the same distance to two
or more different surface points

 For sharp corners, the medial
axis touches the surfaces

 This means: f non-differentiable
on the surface itself

 Usually, this is no problem in practice.

Geometric Modeling SoSem 2010 – Implicit Functions 13 / 80

Differential Properties

Some useful differential properties:

• We look at a surface point x, i.e. f (x) = 0.

• We assumef (x)  0.

• The unit normal of the implicit surface is given by:

 For signed functions, the normal is pointing outward.

 For signed distance functions, this simplifies to n(x) = f (x).

)(

)(
)(

x

x
xn

f

f






Geometric Modeling SoSem 2010 – Implicit Functions 14 / 80

Differential Properties

Some useful differential properties:

• The mean curvature of the surface is proportional to the
divergence of the unit normal:

• For a signed distance function, the formula simplifies to:

)(

)(

)()()(

)()(2

x

x

xxx

xnx

f

f

n
z

n
y

n
x

H

zyx























)(

)()()()()(2
2

2

2

2

2

2

x

xxxxx

f

f
z

f
y

f
x

fH


















Geometric Modeling SoSem 2010 – Implicit Functions 15 / 80

Mean Curvature Formula

Proof (sketch):

• We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

z

x, y








































1

),(

),(

1

0

0

),(yxs

yxs

yx y

x

n

),(2

),(),(

),(),(

1),(),(),(

2

22

2

2

2

2

2

2

2

yxH

yxs
y

yxs
yx

yxs
yx

yxs
x

trace

z
yxs

y
yxs

x
yx




















































 n

 







)(tr

2

1
)(00 xSH x

Geometric Modeling SoSem 2010 – Implicit Functions 16 / 80

Computing Volume Integrals

Computing volume integrals:

• Heavyside function:

• Volume integral over interior volume f of
some function g(x) (assuming negative interior values):










0 if1

0 if0
)step(

x

x
x

  




f

dxfgdg


xxxx))(step(1)()(

Geometric Modeling SoSem 2010 – Implicit Functions 17 / 80

Computing Surface Integrals

Computing surface integrals:

• Dirac delta function:

 Idealized function (distribution)

 Zero everywhere ((x) = 0),
except at x = 0, where it is positive, inifinitely large.

 The integral of (x) over x is one.

• Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

   

)())((

)(

)(
)())((step)())(step(ˆ

xx

x

x
xxxnx

ff

f

f
fff












(x)

x

Geometric Modeling SoSem 2010 – Implicit Functions 18 / 80

Surface Integral

Computing surface integrals:

• Surface integral over the surface  f = {x | f (x) = 0}
of some function g(x):

• This looks nice, but is numerically intractable.

• We can fix this using smothed out Dirac/Heavyside
functions...

 




f

dffgdg


xxxxxx |)(|))(()()(

Geometric Modeling SoSem 2010 – Implicit Functions 19 / 80

Smoothed Functions

Smooth-step function


























x

x
xx

x

x








1

π
sin

π2

1

22

1
0

)p(smooth_ste

Smoothed Dirac delta function

































x

x
x

x

x

0

π
cos

2

1

2

1
0

)ta(smooth_del

Implicit Surfaces
Numerical Discretization

Geometric Modeling SoSem 2010 – Implicit Functions 21 / 80

Representing Implicit Functions

Representation: Two basic techniques

• Discretization on grids

 Simple finite differencing (FD) grids

 Grids of basis functions (finite elements FE)

 Hierarchical / adaptive grids (FE)

• Discretization with radial basis functions
(particle FE methods)

Geometric Modeling SoSem 2010 – Implicit Functions 22 / 80

Discretization

Discretization examples

• In the following, we will look at 2D examples

• The 3D (d-dimensional) case is similar

Geometric Modeling SoSem 2010 – Implicit Functions 23 / 80

Regular Grids

Discretization:

• Regular grid of values fi,j

• Grid spacing h

• Differential properties can
be approximated by finite
differences:

 For example:

 )(
1

)()(,1)()(),(hOff
h

f jiji

x





 xxxxx

 )(
2

1
)(2

)(,1)()(,1)(hOff
h

f jiji

x





 xxxxx

Geometric Modeling SoSem 2010 – Implicit Functions 24 / 80

Regular Grids

Variant:

• Use only cells near the surface

• Saves storage & computation time

• However: We need to know an
estimate on where the surface is
located to setup the
representation

• Propagate to the rest of the
volume (if necessary):
fast marching method

Geometric Modeling SoSem 2010 – Implicit Functions 25 / 80

Fast Marching Method

Problem statement:

• Assume we are given the surface and signed distance
value in a narrow band.

• Now we want to compute distance values everywhere on
the grid.

Three solutions:

• Nearest neighbor queries

• Eikonal equation

• Fast marching

Geometric Modeling SoSem 2010 – Implicit Functions 26 / 80

Nearest Neighbors

Algorithm:

• For each grid cell:

 Compute nearest point on
the surface

 Enter distance

• Approximate nearest neighbor
computation:

 Look for nearest grid cell with
zero crossing first

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

• Costs: O(n) kNN queries (n empty cells)

Geometric Modeling SoSem 2010 – Implicit Functions 27 / 80

Eikonal Equation

Eikonal Equation

• Place variables in empty cells

• Fixed values in known cells

• Then solve the following PDE:

• This is a (non-linear) boundary value problem.

known

known

A

ff

f







x

xx

 area known the on

)()(to subject

1

Geometric Modeling SoSem 2010 – Implicit Functions 28 / 80

Fast Marching

Solving the Equation:

• The Eikonal equation can be solved efficiently by a region
growing algorithm:

 Start with the initial known values

 Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

 The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

 Fix this value and update the neighbors again

 Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

Geometric Modeling SoSem 2010 – Implicit Functions 29 / 80

Regular Grids of Basis Functions

Discretization (2D):

• Place a basis function in each
grid cell: bi,j = b(x – i, y – j)

• Typical choices:

 Bivariate uniform cubic B-splines
(tensor product)

 b(x, y) = exp[-(x2 + y2)]

• The implicit function is then
represented as:

• The i,j describe different f.

b2,3

b3,3

 


i jn

i

n

j
jiji yxbyxf

0 0
,,),(),(

Geometric Modeling SoSem 2010 – Implicit Functions 30 / 80

Regular Grids of Basis Functions

Differential Properties:

• Derivatives:

• Derivatives are linear
combinations of the derivatives
of the basis function.

• In particular: We again get a
linear expression in the i,j.

b2,3

b3,3


 
























i jn

i

n

j mkk

ji

mkk

yxb
xx

yxf
xx

0 0 1

,

1

),(
...

),(
...



Geometric Modeling SoSem 2010 – Implicit Functions 31 / 80

Adaptive Grids

Adaptive / hierarchical grid:

• Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements)

• Refine where more precision is
necessary (near surface, maybe
curvature dependent)

• Associate basis functions with
each cell (constant or higher
order)

Geometric Modeling SoSem 2010 – Implicit Functions 32 / 80

Particle Methods

Particle methods /
radial basis functions:

• Place a set of “particles” in space
at positions xi.

• Associate each with a radial basis
function b(x – xi).

• The discretization is then given
by:

• The i encode f.





n

i
iibf

0

)()(xxx 

Geometric Modeling SoSem 2010 – Implicit Functions 33 / 80

Particle Methods

Particle methods /
radial basis functions:

• Obviously, derivatives are again
linear in i:

• The radial basis functions can also
have different size (support) for
adaptive refinement

• Placement: near the expected
surface












 n

i
i

mkk

i

mkk

b
xx

f
xx 0 11

)(
...

)(
...

xxx 

Geometric Modeling SoSem 2010 – Implicit Functions 34 / 80

Particle Methods

Particle methods /
radial basis functions:

• Where should we place the radial
basis functions?

 If we have an initial guess for
the surface shape:

– put some on the surface

– and some in +/- normal direction.

 Otherwise:

– Uniform placement in lowres

– Solve for surface

– Refine near lowres-surface, iterate.

Geometric Modeling SoSem 2010 – Implicit Functions 35 / 80

Types of Radial Basis Functions

Typical choices for radial basis functions:

• (Quasi-) compactly supported functions:

 Exponentials / normal distribution densities: exp(- x2)

 Uniform (cubic) tensor product B-Splines

 Moving-least squares finite element basis functions
(will be discussed later)

• Globally supported functions:

 Thin plate spline basis functions:

 These functions guarantee minimal integral second derivatives.

0

2

0 ln xxxx 
3

0xx (2D), (3D).

Geometric Modeling SoSem 2010 – Implicit Functions 36 / 80

Pros & Cons

Why use globally supported basis functions?

• They come with smoothness guarantees
(details in the next lecture)

• However: Computations might become expensive
(we will see later how to device efficient algorithms for
globally supported radial basis functions)

Locally supported functions:

• Easy to use

• Additional regularization might become necessary to
compute a “nice” surface.

Implicit Surfaces
Level Set Extraction

Geometric Modeling SoSem 2010 – Implicit Functions 38 / 80

Iso-Surface Extraction

New task:

• Assume we have defined an implicit function

• Now we want to extract the surface.

• I.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

• For this we need an iso-surface extraction algorithm

 a.k.a. level set extraction

 a.k.a. contouring

Geometric Modeling SoSem 2010 – Implicit Functions 39 / 80

Algorithms

Algorithms:

• Marching Cubes

 This is the standard technique.

 We will also discuss some problems / modifications.

• Particle methods

 Just to show an alternative

 Not used that frequently in practice

Geometric Modeling SoSem 2010 – Implicit Functions 40 / 80

Marching Cubes

Marching Cubes:

• The most frequently used iso surface extraction algorithm

 Creates a triangle mesh from an iso-value surface of a scalar
volume

 The algorithm is also used frequently to visualize CT scanner
data and other volume data

• Simple idea:

 Define and solve a fixed complexity, local problem.

 Compute a full solution by solving many such local problems
incrementally.

Geometric Modeling SoSem 2010 – Implicit Functions 41 / 80

Marching Cubes

Marching Cubes:

• Here is the local problem:

 We have a cube with 8 vertices

 Each vertex is either inside or
outside the volume
(i.e. f (x) < 0 or f (x)  0)

 How should we triangulate this cube?

 How should we place the vertices?

Geometric Modeling SoSem 2010 – Implicit Functions 42 / 80

Triangulation

Triangulation:

• We have 256 different cases – each of the 8 vertices can
be in or out.

• By symmetry, this can be reduced to 15 cases

 Symmetry: reflection, rotation, and bit inversion

• This means, we can compute the topology of the mesh

[source: Wikipedia]

Geometric Modeling SoSem 2010 – Implicit Functions 43 / 80

Vertex Placement

How to place the vertices?

• Zero-th order accuracy: Place vertices at edge midpoints

• First order accuracy: Linearly interpolate vertices along
edges.

• Example: for scalar values f(x) = -0.1 and f(y) = 0.2,
place the vertex at ratio 1:2 between x and y.

[source: Wikipedia]

Geometric Modeling SoSem 2010 – Implicit Functions 44 / 80

Outer Loop

Outer Loop:

• Compute a bounding box of the
domain of the implicit function.

• Divide it into cubes of the same
size (regular cube grid)

• Execute “marching cube”
algorithm in each subcube

• Output the union of all triangles
generated

• Optionally: Use a vertex hash table
to make the mesh consistent
(remove double vertices)

Geometric Modeling SoSem 2010 – Implicit Functions 45 / 80

Marching Squares

Marching Squares:

• There is also a 2D version of the algorithm, called
marching squares.

• Same idea, but fewer cases.

Geometric Modeling SoSem 2010 – Implicit Functions 46 / 80

Ambiguities

There is a (minor) technical problem remaining:

• The triangulation can be ambiguous

• In some cases, different topologies are possible which are
all locally plausible:

• This is an undersampling artifact. At a sufficiently high
resolution, this cannot occur.

• Problem: Inconsistent application can lead to holes in the
surface (non-manifold solutions)

in

in out

out

?

Geometric Modeling SoSem 2010 – Implicit Functions 47 / 80

Ambiguities

Solution:

• Always use the same solution pattern in ambiguous
situations

• For example: Always connect diagonally.

 This might yield topologically wrong results.

 But the surface is guaranteed to be a triangulated 2-manifold
without holes and with well defined interior / exterior

• Better solution:

 Use higher resolution sampling (if possible)

• All of this (problem and solutions) also applies to the 3D
case.

Geometric Modeling SoSem 2010 – Implicit Functions 48 / 80

MC Variations

Empty space skipping:

• Marching cube uses an n3 voxel grid, which can become
pretty expensive.

• The surface intersects typically only O(n2) voxels.

• If we roughly know where the surface might appear, we
can restrict the execution of the algorithm (and the
evaluations of f at the corners) to a narrow band around
the surface.

• Example: Particle methods – only extract within the
support of the radial basis functions.

Geometric Modeling SoSem 2010 – Implicit Functions 49 / 80

MC Variations

Hierarchical marching cubes algorithm:

• One can use a hierarchical version of the marching cubes
algorithm using a balanced octree instead of a regular grid

 We need some refinement criterion to judge on where to
subdivide

 This is application dependent (depends on the definition of f).

• However, we obtain many more cases to consider (which
is painful to derive)

Simple solution (common in practice):

• Extract high-resolution triangle mesh

• Then run mesh simplification (slower, but better quality)

Geometric Modeling SoSem 2010 – Implicit Functions 50 / 80

Particle-Based Extraction

Particle-based method:

• This technique creates a set of points as output, which
cover the iso-surface.

• Algorithm:

 Start with a random point cloud (n points in a bounding volume)

 Now define forces that attract particles to the zero-level set.

 Also add some (weak) tangential repulsion to make them
distribute uniformly

Geometric Modeling SoSem 2010 – Implicit Functions 51 / 80

Forces

Attraction “force”:

Tangential repulsion force:

2)1()()(iii fmxF x



































































 



T

i

i

i

i

ij
ji

ji

jii
f

f

f

f
kF

)(

)(

)(

)(
),()(

2

)2(

x

x

x

x
I

xx

xx
xxx

F(1)(xi)

F(2)(xi)

Geometric Modeling SoSem 2010 – Implicit Functions 52 / 80

Solution

Solution:

• We obtain a system of ordinary differential equations

• The ODE can be solved numerically

• Simplest technique: gradient decent (explicit Euler)

 Move every point by a fraction of the force vector

 Recalculate forces

 Iterate

• We have the solution if the system reaches a steady state
(nothing moves anymore, numerically)

Implicit Surfaces
Solid Modeling

Geometric Modeling SoSem 2010 – Implicit Functions 54 / 80

Solid Modeling

We want to:

• Form basic volumetric primitives (spheres, cubes,
cylinders) as implicit functions (this is easy, no details).

• Compute Boolean combinations of these primitives:
Intersection, union, etc...

• Derive an implicit function from these operations

Geometric Modeling SoSem 2010 – Implicit Functions 55 / 80

Boolean Operations

Actually, Boolean operations with implicit functions
are simple:

• Given two signed implicit functions (negative inside) fA, fB
for objects A, B.

• The boolean combinations are given by:

 Union A B: fA  B = min(fA, fB)

 Intersection A  B: fA  B = max(fA, fB)

 Complement  A: fA = – fA

 Difference A \ B: fA \ B = max(fA, – fB)

- -
+

+
- -

 +
-

- -
+

Geometric Modeling SoSem 2010 – Implicit Functions 56 / 80

Hierarchical Modeling

This can be models as a CSG tree (constructive solid
geometry):

• Leaf nodes are signed
distance functions

• Inner nodes are Boolean
operations

• Evaluation translates to
an arithmetic expression

• Other operations:

 Deformation (apply vector field)

 Blending (combine surfaces smoothly)



 

- + - + - + - +

Geometric Modeling SoSem 2010 – Implicit Functions 57 / 80

Hierarchical Modeling

Rendering CSG hierarchies:

• Rendering is simple

• We get one compound
signed implicit function

• We can extract the surface
using marching cubes

• We can raytrace the surface
using a numerical root
finding algorithm

 For example:
Newton scheme with voxel-based intialization



 

- + - + - + - +

Implicit Surfaces
Data Fitting

Geometric Modeling SoSem 2010 – Implicit Functions 59 / 80

Constructing Implicit Surfaces

Question: How to construct implicit surfaces?

• Basic primitives: Spheres, boxes etc... are (almost) trivial.

• We can construct implicit spline schemes by using 3D
tensor product (or tetrahedral) constructions of 3D Bezier
or B-Spline functions

• Another option: Variational modeling (next lecture)

• In this chapter of this lecture: Fitting to data

Geometric Modeling SoSem 2010 – Implicit Functions 60 / 80

Data Fitting

Data Fitting Problem:

• We are given a set of points

• We want to find an implicit surface that interpolates or
approximates these points

• This problem is ill-defined

• We need additional assumptions to make it well-defined

• We will look at three variants:

 Hoppe’s method / plane blending

 Thin-plate spline data matching

 MPU Implicits (multi-level partition of unity implicits)

Geometric Modeling SoSem 2010 – Implicit Functions 61 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 – Implicit Functions 62 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

unoriented normals:
total least squares plane fit (PCA)

in a k-nearest neighbors neighborhood

Geometric Modeling SoSem 2010 – Implicit Functions 63 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

consistent orientation:
region growing, flip normals if angle > 180°,
pick most similar normal next in each step

Geometric Modeling SoSem 2010 – Implicit Functions 64 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

consistent orientation:
blend between signed distance functions of

planes associated with each point

Geometric Modeling SoSem 2010 – Implicit Functions 65 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

signed distance function:
plane blending (next slide)

Geometric Modeling SoSem 2010 – Implicit Functions 66 / 80

• Each point defines an oriented plane and a signed distance
function

• To obtain a composite distance field in space:
Blend these distance functions with weights from a kernel
function (Gaussian, or uniform B-Spline)

Normal Constraints

Basic Idea:

x

w(x, xi)

Geometric Modeling SoSem 2010 – Implicit Functions 67 / 80

Normal Constraints

Basic Idea:

x

w(x, xi)

 

 












n

i
i

n

i
iii

w

w

f

1

1

,

)(

xx

xxxxn

x (partition of unity weights)

x1

x2

x3

n1

n2

n3

Geometric Modeling SoSem 2010 – Implicit Functions 68 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 – Implicit Functions 69 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 – Implicit Functions 70 / 80

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Geometric Modeling SoSem 2010 – Implicit Functions 71 / 80

Thin-Plate Spline Data Matching

Agenda:

• Use radial basis functions

• Use a globally supported basis
that guarantees smoothness

• Place radial basis functions
at the input points

• Place two more in normal and
negative normal direction

• Prescribe values +1,0,-1

• Solve a linear system to meet
these constraints

-1
-1

-1 -1

+1
+1

+1 +1
0

0
0 0

Geometric Modeling SoSem 2010 – Implicit Functions 72 / 80

Types of Radial Basis Functions

Typical choices for radial basis functions:

• Globally supported functions:

 Thin splate spline basis functions:

 These functions guarantee minimal integral second derivatives.

• Problem: evaluation

 Every basis function interacts with each other one

 This creates a dense n n linear system

 One can use a fast multi pole method that clusters far away
nodes in bigger octree boxes

 This gives O(log n) interactions per particle, overall O(n log n)
interactions.

0

2

0 ln xxxx 
3

0xx (2D), (3D).

Geometric Modeling SoSem 2010 – Implicit Functions 73 / 80

Alternative

Alternative:

• Use locally supported basis functions (e.g. B-Splines)

• Employ an additional regularization term to make the
solution smooth.

• Optimize the energy function

• The crictical point is the solution to a linear system



 



 























































m

j
jj

n

i
i

bf

df
zxzyyxzyx

fE

1

1

2
222222

2

)()(

with

)(
222

)()(

xxx

xxxλ





Geometric Modeling SoSem 2010 – Implicit Functions 74 / 80

MPU Implicits

Multi-level partition of unity implicits:

• Hierarchical implicit function
approximation

 Given: data points with normals

 Computes: hierarchical
approximation of the signed
distance function

Geometric Modeling SoSem 2010 – Implicit Functions 75 / 80

MPU Implicits

Multi-level partition of unity implicits:

• Octree decomposition of space

• In each octree cell, fit an implicit
quadratic function to points

 f (xi) = 0 at data points

 Additional normal constraints

• Stopping criterion:

 Sufficient approximation accuracy
(evaluate f at data points to
calulate distance)

 At least 15 points per cell.

Geometric Modeling SoSem 2010 – Implicit Functions 76 / 80

MPU Implicits

Multi-level partition of unity implicits:

• This gives an adaptive grid of
local implicit function
approximations.

• Problem: How to define a global
implicit function?

• Idea: Just blend between local
approximants using a windowing
function

Geometric Modeling SoSem 2010 – Implicit Functions 77 / 80

MPU Implicits

Multi-level partition of unity implicits:

• Windowing function:

 Use smooth windowing function w

– B-splines / normal distribution

– original formulation: quadratic
tensor product B-spline function,
support = 1.5 cell diagonal

 Renormalize to form partition
of unity:














n

i
i

n

i
ii

w

fw

f

1

1

)(

)()(

)(

xx

xxx

x

Geometric Modeling SoSem 2010 – Implicit Functions 78 / 80

MPU Implicits

Multi-level partition of unity implicits:

• Sharp features:

 If a leaf cell with a few points has strongly varying normals, this
might be a sharp feature.

 Multiple functions can be fitted to parts of the data

 Boolean operations to obtain composite distance field

