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Overview...

Topics:
e Triangle Meshes & Multi-Resolution Representations
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e Implicit Functions

= Introduction

Variational Framework

= Variational Function Fitting Toolkit

Euler & Lagrange — Some More Mathematical Background
Surface Modeling

Other Applications
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Variational Modeling
Introduction



Motivation

Surface modeling techniques we have seen so far:

e Bivariate polynomial spline patches
= Quad (tensor product) patches
= Triangular patches

e Subdivision surfaces
e Implicit functions
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Motivation

Problems:
e Bivariate polynomial spline patches

= General topologies are hard to handle

= Need to adapt base mesh to user constraints (control points,
boundaries etc)

e Subdivision surfaces
= More flexible than spline patches
= Problems:
— Continuity at extraordinary vertices
— Still need to build a base mesh

e Implicit functions
= Nice tool — but how do we construct actual surfaces?
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Variational Modeling

Variational Modeling:

e Different approach:

= We formulate smoothness properties in terms of a penalty
function

= Set additional constraints (handle points, normals, etc)
= Then solve for the “optimal function”

e No direct manipulation of control points...

= We use B-Splines or implicit functions as tool for the numerical
representation, no direct user interaction.

= “Meta tool”: compute control points automatically
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Two Views:

In this lecture:

e Narrow view:

= Use variational techniques for modeling shapes

e General view:

= Short introduction / overview to variational calculus and practical
techniques.

= Application examples in geometry processing.

Applications beyond geometric modeling are important:

e Variational approaches are ubiquitous in computer
graphics and computer vision
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Variational Modeling
Basic Techniques



Calculus of Variation

Basic Idea:
e We look at a set of functionsf: S— D
e We define an “energy functional” E: (S— D) > R

= A functional assigns real numbers to functions
= Each function gets a “score”
= “Energy” means: the smaller the better
e We set up additional requirements (“constraints”) on f.
= Soft constraints — violation increases energy.

= Hard constraints — violation not allowed.

e We then compute the function(s) f that minimize E.
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Calculus of Variation

Very general framework:

e Alot of problems can be directly formulated as variational
problems.
e Example 1:
= We are looking for a curve.

= |t should be as smooth as possible (energy = non-smoothness).
= |t should go through a number of points (hard constraints).

PNDNVAYWY
Ma A AN VVT’V
\VARAVAL’ \7*%
E large
‘C%ZM AQ\
AaYiviv \J“\)\)A[\v‘vw

constraints

E small
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Calculus of Variation

Another example:
e Problem: We want to go to the moon.
e Given:

= Orbits of moons, planets and star(s).
= Flight conditions (athmosphere, gravitation of stellar bodies)
e Unknowns:

= Throttle (magnitude, direction) from rocket motors (vector
function)

e Energy function:
= Usage of rocket fuel (the fewer the better)
= Perhaps: Overall travel time (maybe not longer than a week)
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Calculus of Variation

To the moon:

e Constraints:

= We want to start in Cape Canaveral (upright trajectory) and end
up on the moon.

= We do not want to hit moons or planets on our way.

= We want to approach the moon at no more than 20 km/h
relative speed upon touchdown.

= The rocket motor has a limited range of forces it can create (not
more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional.
(ok, this is slightly simplified)
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A Simple Example

Simple example: variational splines
e Energy:

= We want smooth curves
= Smooth translates to minimum curvature
= Quadratic penalty:

E(f)= j | curvature . (¢)|” dt

curve

D]
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A Simple Example

Simple example: variational splines
e Energy:

= Problem: curvature is non-linear
= Easier to minimize: second derivatives

= Equivalent in case of a unit-speed parametrization
(which is tricky to enforce)
- 2

E(f)= | |-5f®)] dt

curve L
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A Simple Example

Simple example: variational splines
e Constraints:

= Hard constraints: we are given parameter values t,, ..., t,
at which we should meet control points p,, ..., p,.

E(f)= j {;—Hf(t)} dt

= We already know the solution to this problem: Piecewise cubic
interpolating spline.
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A Simple Example

Simple example: variational splines
e More interesting: soft constraints

= We are given parameter values t,,...,t, at which we should
approximately meet control points p,, ..., p,,.

E(f)= | szf(t)} dtMZ(f(t) p,)

= /A controls the smoothness of the result. Large values reduce
smoothness to meet the control points more precisely.
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A Simple Example

Simple example: variational splines
e Soft constraints

= We are given parameter values t,,...,t, at which we should
approximately meet control points p,, ..., p,, up to a specific
accuracy for each point.

= We can specify the accuracy by error quadrics Qg, ..., Q,.

B(H= | {%f(t)} de+ Y (6(e,)-p, ) Q(fC¢,) -, )

Geometric Modeling SoSem 2010 — Variational Modeling 17 / 86



Rank-Deficient Quadrics

The rank deficient error quadric trick:
e A rank-1 matrix constraints the curve in one direction only

e Useful for point-to-surface constraints (minimize normal
direction deviation, tangential motion is free)
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Numerical Treatment

Numerical computation:
e No closed form solution
e |Instead:

= Discretize (finite dimensional function space)
= Solve for coefficients (coordinate vector in this function space)
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Finite Differences

FD solution:

e Represent curve as array of k values:

t 0 0.1 0.2 7.4 | 7.5
y Yo Y. \ g Y. | V55
e Unknowns are the curve pointsy;,, ..., y,
Y«

Y1

Y2
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Discretized Energy Function

Discretized Energy Function:

e Energy is a squared linear expression — quadratic
discrete objective function

e Constraints are quadratic by construction

e We obtain a quadratic energy function that can be solved
by a linear system

B(A= | Lj’tzf(t)} de + Y(6(e,)-p, ' Q (FCe,)- )

t=t;

2 n
E(discr) (f) _ i|:Yi1 _ZYi + Yi } 4+ Z(Yindex(t,') —pi)TQi<y,-ndeX(ti) _pi)
: i=1

(neglected here: handling boundary values)
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Summary

Summary:
e Variational approaches look like this:

compute argminE( f),
feF

E(f) _ E(data)(f) + E(regularizer) (f) ,

feF={f|f satifieshard constraints}

e Connection to statistics:

= Bayesian maximum a posteriori estimation
= Eldata) js the data likelihood (log space)
= [lregularizer) jg 3 prior distribution (log space)

Geometric Modeling SoSem 2010 — Variational Modeling

22/86



Variational Toolbox
Data Fitting, Regularizer Functionals,
Discretizations



Toolbox

In the following:

 We will discuss...
= ...useful standard functionals.
= ...how to model soft constraints.
= ...how to model hard constraints.
= ...how to discretize the model.

e Then snap & click your favorite custom variational
modeling scheme.

e (Click & snap means: add together to a composite energy)
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Functionals



Functionals

Standard Functional #1: Function norm
e Given a functionf: R"o>Q — R”
e Minimize:

E(zero) (f) _ If(x)z dx

e Means: the function values should not become too large

e This is often useful to include to avoid numerical
problems.

= If you have a SPD quadratic functional and add AE(¢/ the
smallest eigenvalue of the discretization matrix of cannot
become smaller than A (— condition number).

= The system is then always solvable.
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Functionals

Standard Functional #2: Harmonic energy
e Given a functionf: R">Q — R"
e Minimize:
E(harmonic)(f) _ I(Vf(x))z dx
Q

e Objective: make the differences to neighboring points as
small as possible

e This energy appears all the time in physics & engineering.

= But not really what we want for smooth curves...
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Harmonic Energy

Example: Heat equation
e Given a metal plate
e Hard constraints:

= A heat source
= A heat sink

e What is the final heat distribution?

= Heat flow tends to equalize temperature.

heat sink heat source

— Stronger heat flow for larger temperature gradients.
= Gradients become as small as possible.
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Harmonic Energy

Example: Harmonic energy

e Curves that minimize the harmonic energy:
= Shortest path, a.k.a. polygons

TN

e Two-dimensional parametric surface:

e Useful in parametrization (conformal mappings are
harmonic)

Geometric Modeling SoSem 2010 — Variational Modeling 29 / 86



Functionals

Standard Functional #3: Thin plate spline energy
e Given a functionf: R">Q — R"
e Minimize:

E(TSS) (f) _ Iii 52 f(X) Jx

e Objective: minimize integral second derivatives
(approx. curvature)

e This energy is used all over the place in geometric
modeling and geometry processing

= Yields smooth curves & surfaces
= A true curvature based energy is rarely used (non-quadratic)
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Energies for Vector Fields

Vector fields:

e The following energies are useful for mappings from
R" — R" (e.g.: space deformations).

e Think of an object moving (over time).
e f(x) describes its deformation.
e f(x,t) describes its motion over time.

f: R"—> R"

i
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Functionals

Standard Functional #4: Green’s deformation tensor

e Givenafunctionf:R">0Q — R”
e Minimize:

ECrm™ (£)= [[MvE"vE 1| dx
Q

e Objective: minimize metric distortion (non-identity first
fundamental form)

e Basis for physically-based deformation modeling:
= The energy is invariant under rigid transformations.
= Bending, scaling, shearing is penalized.
= This energy is non-quadratic (non-linear optimization required).
= Matrix M encodes material properties (often M =1I).
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Functionals

Standard Functional #5: Volume preservation
e Given a functionf:R">Q — R”
e Minimize:
EUtm)(£) = [[det(VE) 1] dx
Q

e Objective: minimize local volume changes
e This energy tries to preserve the volume at any point.
= Physics: Incompressible materials (for example fluids)
= The energy is invariant under rigid transformations.
= This energy is non-quadratic (non-linear optimization required).
= Often used in conjunction with deformation models.
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Functionals

Standard Functional #6: Infinitesimal volume preservation
e Given a functionv: R">Q — R”

e Minimize: ,
(volume) o
(v)= j divv(x)) dx = j —v(x)+ A+ —V(X)
1 aXn
e Objective: minimize local volume changes in a velocity
field

e Difference to the previous case:

= The vectors are instantaneous motions (v(x) = d/dt f(x,t))

= A divergence free (time dependent) vector field will not
introduce volume changes

= This functional is linear, but does not work for large (rotational)
displacements.
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Functionals

Standard Functionals #7 & #8: Velocity & acceleration
e Given a functionv: (R"xR) o Q — R”
e Minimize: 2

EU(f) = [ (f(x t)jzdxdt ECI(f) =] ( —f(x, t)] dxdt

e Objective: minimize velocity / acceleration
e Models air resistance, inertia.
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Soft Constraints



Soft Constraints

Penalty functions
e Uniform
e General quadrics
e Differential constraints

Types of soft constraints
e Point-wise constraints
e Line / area constraints

Constraint functions
e Least-squares
e M-estimators
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Uniform Soft Constraints

Uniform, point-wise soft constraints:
e Given a functionf: R">Q — R"
e Minimize:

=Sl )

constraint weights (certainty)

prescribed values (x,y).
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Uniform Soft Constraints

General quadratic, point-wise soft constraints:
e Given a functionf: R"> Q) — R”
e Minimize:
EC™(f)=(fx)-y,) Q(f(x,)-y,)

constraint weights (general quadratic form, non-negative)

prescribed values (x,y).
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Uniform Soft Constraints

Differential constraints:
e Given a functionf: R">Q — R”
e Minimize:
gl (f)= Z(Df(xi )— (DY)i )T Q, (Df(xi )— (DY)i )

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy).

11" Iy 1

Differential operator: b=

OX; .0X,

This is still a quadratic constraints (— linear system).
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Examples

Examples of differential constraints:

e Prescribe normal orientation of a surface
-0, ’

f:R> >R?, E“")(f)=q|| -0, f-n
1

e Prescribe rotation of a deformation field
f:R* >R®, EC™(f)=q|Vf-R|,
e Prescribe velocity or acceleration of a particle trajectory

£:R® xR >R f(x,t)=pos, EC"(f)=q(x,t)f(x,t)-a(x.t)f
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Line / Area Soft Constraints

Line and area constraints:
e Given a functionf: R">Q — R”
e Minimize:

E ()= [(F)-y(x)' Q(f(x) - y(x)

AcQ)

quadric error weights (may be position dependent)
prescribed values y(x) (function of position x)

area A < Q on which the constraint is placed (line, area, volume...)

e A.k.a: “Transfinite Constraints”
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Constraint Functions

Constraint Functions:

e Typically, we use quadratic constraints (E(x) = f(x)?)
= They are easy to optimize (linear system)
= They have a well-defined critical point (gradient vanishes)
= However, they are very sensitive to noise
e |f constraints come from measured data (e.g. 3D scanner
data) instead of user interaction, quadratic constraints
may case trouble

e Alternatives:

= L,-norm constraints (E(x) = |f(x)|) — more robust and still convex,
i.e. can be optimized

= Non-convex truncated constraints: yet more robust, but finding
a global optimum can be problematic (c.f. least-squares chapter)
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Discretization



Finite Element Discretization

Finite-element discretization:

e Choose a finite dimensional function space spanned by
basis functions

e Compute optimum in that space only

e Finite differences (FD) is a special case for a grid of
piecewise constant basis functions

e General approach:

argminE(f)— argminE(E)
f A

E(x){zib,-(x)

Geometric Modeling SoSem 2010 — Variational Modeling 45 / 86



Finite Element Discretization

Derive a discrete equation:
e Just plugin the discretef.
e Then minimize the it over the A.
e For a differentiable energy function, we compute the
critical point(s):

E(E (X))—) min

= Vi=1.k: %E(E (x)): 0

1

e For quadratic functionals, this leads to a linear system.

e For non-linear functionals, we can apply Newton-
optimization.
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Example

(Abstract) example:

e We minimize the square integral of a differential
operator.

e We have quadratic differential constraints.

e Then we obtain a quadratic optimization problem in the
coefficients:

Geometric Modeling SoSem 2010 — Variational Modeling 47 / 86



Example

(Abstract) example (cont):
E()= [0V fC0f dx+ iy (0 fx) -y, |

E(x)iz,-bi(x)

E(?;t) :j D(l)zk:/libi(x)j dx"‘ﬂzn:(D(Z)Zk:;tibi(X)_yz'j

O i=1 i=1

2,[DDp, kx)] dx + yZ(Zz D®p (x)- y,j

=1\ i=1

>

> 4,2, [[DVb, [x)[D®b, [x)dx + yi(iz,.n(z)bi (x)- yiT

=1\ i=1

!
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Numerical Aspects



How to solve the problems?

Solving the discretized variational problem:

e Quadratic energy and quadratic constraints:
= The discretization is a quadratic function as well.
= The gradient is a linear expression.
= The matrix in this expression is symmetric.

= |f the problem is well-defined, the matrix is semi-positive
definite.

= |t is usually very sparse (coefficients of basis functions only
interact with their neighbors, as far as their support overlaps).

= We can use iterative sparse system solvers:

— Most frequently used: conjugate gradients (needs SPD
matrix). CG is available in GeoX.
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How to solve the problems?

Solving the discretized variational problem:

e Non linear energy functions:

= |f the function is convex, we can get to a critical point that is the
global minimum.

= |n general, we can only find a local optimum (or critical point).
= Frequently used techniques are:

— Newton optimization: Iteratively compute 2nd order Taylor
expansions (Hessian matrix, gradient) and solve linear
problems. Typically, Hessian matrices are sparse. Use
conjugate gradients to solve for critical points.

— Non-linear conjugate gradients with line search (faster than
simple gradient decent).

— In any case, we need a good initialization.
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Hard Constraints



Hard Constraints

Hard Constraints:

e Sometimes, we want some properties of the solution to
be met exactly rather than approximately.
= Interpolation vs. approximation
= Includes complex constraints (area constraints, differential
properties etc.)
e Three options to implement hard constraints:
= Strong soft constraints (easy, but not exact)
= Variable elimination (exact, but limited)
= Lagrange multipliers (most complex method)
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Hard Soft Constraints

Simplest Implementation:
e Use soft constraints with a large weight
E(f) _ E(regularizer) (f)+lE(ConStmints) (f); Wlth /1V€I‘y large (Say 106)

e This is simple to implement. But there are a few serious
problems:

= The technique is not exact (for some applications this might be
not acceptable).

= The stronger the constraints, the larger the weight. This means:

— The condition number of the quadric matrix (condition of
the Hessian in the non-linear case) becomes worse.

— At some point, no solution is possible anymore.
— lterative solvers are slowed down (e.g. conjugate gradients)
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Variable Elimination

Idea: Variable elimination
e We just replace variables by fixed numbers.
e Then solve the remaining system.

Example:

4.5
4.0

V1 v, Ve

s 1V, ye 2.5 Ve /7
f’(Xo) = h_l(yl —4.0)

f’(X3) = h_l(y4 — y3)
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Variable Elimination

Advantages:
e Exact constraints
e Conceptually simple

Problems:

e Only works for simple constraints (variable = value)

 Need to augment system (not so easy to implement
generically)

e Does not work for FE methods (general basis functions)
= Values at any point are a sum of scaled basis functions

e Does not work for complex constraints (area/integral
constraints, differential constraints etc.)
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Lagrange Multipliers

Most general technique: Lagrange multipliers
e This method works for complex, composite constraints

e No problems with general basis functions (not restricted
to finite difference discretizations)

e The technique is exact.
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Lagrange Multipliers

Here is the idea:

e Assume we want to optimize E(x,, ..., x,) subject to an

implicitly formulated constraint g(x,, ..., x,) = 0.

e This looks like this:

3 “al '\ v\
¥ , N '\ N v\
/ N
l AN
l N pY
N Za
VE Vg VE =AVg, g(x)=0

Geometric Modeling SoSem 2010 — Variational Modeling

58 /86



Lagrange Multipliers

Formally:

e Optimize E(x,, ..., x,) subject to g(x, ..., x,) = 0.

e Formally, we want:
VE(x)=AVg(x) and g(x)=0

e We get a local optimum for:
LG(x)=E(x)+ Ag(X)
V,,LG(x)=0
ie.:(0, .0, ,0, LG(x)=0

e A critical point of this equation

satisfies both VE(x) = 1Vg(x)
and g(x)=0.

Xl JLLL)

VE

VE = AVg
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Example

Example: Optimizing a quadric subject to a linear
equality constraint
« We want to optimize: E(x)=x'Ax+bx
e Subjectto: g(x)=mx+n=0

We obtain:
o LG(x)=E(x)+Ag(x)=x"Ax+bx + A(mx +n)
V_ (LG(x))=2Ax+b+/ m
V,(LG(x))=mx+n

: 2A m\ x —b
e Linear system: =
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Multiple Constraints

Multiple Constraints:
e Similaridea
e Introduce multiple “Lagrange multipliers” A.
E(x)— min
subjectto: Vi=1..k:g.(x)=0

Lagrangian objective function:
k
LG(x)=E(x)+ Zﬂ“igi (%)
i=1
V., LG(x)=0
ie.:(0, vy 0, @, JLGX)=0

Xl JLLLY
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Multiple Constraints

Example: Linear subspace constraints
e E(x)=x"Ax+bx subjectto g(x)=Mx+n=0

*LG(x)=E(x)+ Zn:iig,.(x) =X AX+bx+ ZH:/@ (mx+n,)
i1 i=1

e Linear system: =
M 0 \A —n

e Remark: M must have full rank for this to work.
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What can we do with this?

Multiple linear equality constraints:

e Constraint multiple function values, differential
properties, integral values

e Area constraints: Sample at each basis function of the
discretization and prescribe a value

e Need to take care:

= We need to make sure that the constraints are linearly
independent at any time

Inequality constraints:

e There are efficient quadratic programming algorithms.

(Idea: turn on and off the constraints intelligently.)
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The Euler Lagrange Equation
(some more math)



The Euler-Lagrange Equation

Theoretical Result:

e Anintegral energy minimization problem can be reduced
to a differential equation.

 We look at energy functions of a specific form:
f:[la,b] > R

E(f)=[F(x, f(x), f'(x))dx

= fis the unknown function
= Fis the energy at each point x to be integrated

= F depends (at most) on the position x, the function value f(x) and
the first derivative f'(x).
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The Euler-Lagrange Equation

Now we look for a minimum:

e Necessary condition:

. "i"E(f):() (critical point)

df
e In order to compute this:
= Approximate f by a polygon (finite difference approximation)

* FE (b Vi), e (0 7))
= Equally spaced: x;—x,, = h

Y10

Vs Yo
Y3 Va ye ye Vs Vs

Y1
(Can be formalized more precisely
using functional derivatives)
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The Euler-Lagrange Equation

Minimum condition:
E(f)=jF(X,f(X),f (x))dx

Vs y Y10
Yi—= Vi /2 V3 Vg ’
E(f) E(Y) ZF I’yl’ h y4 y5 y6 y7
E=(0, 0,
_ZVYF(xi,yl,y Y 1)
h
_ 0 N
— O F( ”y”y _yl_lj +@31F( ”y”y _yi_lj -1
- 1 h 1
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The Euler-Lagrange Equation

Minimum condition:

V. E=

y

I =
N

ith entry:

~

0, E=0,F

Yi

aZF(Xi'.yi’

Yi—=Via

h

Yi—Via 1 Vi1 = Vi 4
x,y, 2 2l e Flxy ~0,F| x,, v,
[ ir Vi ; j h[ 3 [ 4 ; j 3 ( 4

Letting h — O, we obtain the continuous Euler-Lagrange

differential equation:

|

+831F

X')i;
!

Yi— Vi

h

52F(X,f(X),f'(X))—d%@gF(X;f(X),f'(X)) =0

|

i — Vi

)
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The Euler-Lagrange Equation

f'x)

AN p
52F(X,f(X),f'(X))—EﬁgF(X,f(X),f'(XD =0

(at every point x)

- —f
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Example

Example: Harmonic Energy

E()=| ( f(x)j

F(x, f(x), f'(x))= f'(x)°

0, F (%, f(x), f'(x)) —%@J(XJ(X)J'(X)) =0

0220, (/) =0

<:>O—di2if(x) 0

<:>:—2f(x) 0
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Generalizations

Multi-dimensional version:
fR"2Q0->R

E(f)= [Floty or X4 f(X),0,, f(X), 0, F(X))dx, ..dx,

Necessary condition for extremum:

8f (X) ,Z;‘dx 8f

\fx,. :=aif(x)
Xi

This is a partial differential equation (PDE).
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Example

Example: General Harmonic energy

E(harmonic)(f) _ J'(Vf(x))Z dx

Euler Lagrange equation:

822 f(xX)+..+ o

OX, OX 4

Af(x) =[ 2 f(X)] =0
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Summary

Euler Lagrange Equation:
e Converts integral minimization problem into ODE or PDE.

e Gives a necessary, but not sufficient condition for
extremum (critical “point”, read: function f)
e Application:
= From a numerical point of view, this does not buy us much.

— We can usually directly optimize the integral expression.

— Similarly complex to compute (boundary value problem for a
PDE vs. variational problem).

= Analytical tool
— Helps understanding the minimizer functions.
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Surface Modeling



Applications

Variational Surface Modeling:

Two Examples:

e Parametric surfaces
[Welch & Witkin: “Variational Surface Modeling”, Siggraph 1992]

e Implicit surfaces
[Turk, O'Brien: “Variational Implicit Surfaces.”, TR, Georgia-Tec, 1999]
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Parametric Surfaces

Domain:
e Parametric patch: f: [0,1]> —> R3.
e Representation (discretization):

= Grid of uniform tensor-product B-Splines
= Refine by dilated functions (subdivision) until convergence

e Energy:

= Thin-plate-spline energy
e Constraints:

= Points (soft / hard, langrange multipliers)

= Transfinite constraints (curves, soft constraints only)
e Numerics:

= Quadratic objective — solver sparse linear system
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Implicit Surface

Domain:
o Implicit function: f: [0,1]> > R.
e Representation (discretization):

= Radial basis functions of
fundamental solutions

e Energy:
= Thin-plate-spline energy
Constraints:
= Points with normals (hard, variable elimination)
e Numerics:
= Radial basis functions around points and = normal

= Solve linear system for interpolation problem
= Energy implicitly encoded in fundamental solutions
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Other Applications



Variational Animation Modeling

f(x,t) — deformation field

X — point on urshape S
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Variational Framework

E(f) = Ematch (f) + (Engld + Evolume Eaccel + Evelocity) (f)
H_/ J

constraints deformatlon

E,on(0) =YY dist(d,, ()Y

t=1i=1

Erga®)= [0, "V 80,01 dx

V(s)

—1)de

E orume(f) = vaoz(X)q X

V(S)

Eaccel(f) J.a)acc (X)(if(x t)]

veloczty(f) J‘ eloczty(x)( tf(x,t)j dX

Geometric Modeling SoSem 2010 — Variational Modeling

80/ 86






Data Set:
"Popcorn Tin"

94 frames
data: 53K points/frame
rec: 25K points /frame

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)



