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Overview... 

Topics: 

• Subdivision Surfaces 

• Implicit Functions 

• Variational Modeling 

• Point-Based Modeling 
 Introduction 

 3D Acquisition Techniques 

 Data Processing Pipeline 

 Point Cloud Registration Algorithms 

 Moving-Least Squares Techniques 

 Point-Based Modeling 



Point-Based Modeling 
Introduction 
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 Parametric Models Primitive Meshes 

 

 

 Implicit Models Particle Models 

Modeling Zoo 
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3D Scanning 

3D Scanning Devices: 

• Typically based on point-wise distance measurement 

• Almost all scanners output point clouds 

• We need further processing to create a useful model 

• 3D scanning is one of the main driving forces for “point-
based modeling” research 

 Topology agnostic multi-resolution modeling is probably the 
other important one (e.g., rendering complex scenes like forests 
in real-time). 
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Problems 

Point cloud (3D scanner data) related problems: 

• Give a set of points, how does this define a continuous 
surface? 

 Surface reconstruction 

• How to assemble partial scans to a full model? 

 Surface registration 

• How to estimate normals, curvature, etc.? 

 Patch fitting, MLS 

• How to deal with noise & outliers? 

 Surface smoothing, outlier detection 

• Can we do modeling just with points? 



Acquiring Point Clouds 
3D Scanners 
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Types of 3D Scanners 

Scanning Techniques: 

• Time-of-flight 

 Time-of-flight laser scanner 

 Time-of-flight depth cameras (dynamic) 

• Triangulation 

 Laser line sweep 

 Structured light 

• Stereo / computer vision 

 Passive stereo 

 Active stereo / space time stereo 

 Other techniques 
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Time of Flight Laser Scanner 

Measurement Principle: 
• Send out laser beam 

 Modulated at about 3-30 Mhz (phase length 10-100m) 

• Measure phase difference with a photosensor (PLL) 
 Can resolve distances up to (modulo) phase length 

 Measures distance to a single point 

• Application: Outdoor scanning, buildings,  
drive-by / fly-by scanning 

laser 

photosensor 
object 
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Example Scans (Similar System) 

[data set: University of Hannover] 
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Example Scans (Similar System) 

[data set: University of Hannover] 
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Acquisition Systems 

Acquisition Systems: 

• Rotating scanner head 

 Rotating mirror for vertical scanning (calibrated) 

 Rotating scanning head (incl. rot. mirror) for horizontal scanning 

 Mode of operation: 

– Position scanner 

– Push a button and wait a few minutes 

– A panoramic depth map is acquired 

• Drive-by systems 

 2D laser scanners (one rotating mirror) 

 Mounted on a vehicle with positioning system 
(GPS, rotation/acceleration sensors, aux. scanners) 
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Drive-by System 

Example: The “Wägele” Laser scanners 
(2D sheets of distance  
measurments) 

[Biber et al. 2005] 

A pull-through measurement 

device – can acquire complete 

buildings in a few hours 
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This is what you get... 

Corridor – CS Building  
University of Tübingen (6.5 GB) 

CS Building outdoors 



Geometric Modeling SoSem 2010  –  Point-Based Modeling 15 / 142 

Time of Flight Depth Cameras 

Real-time depth camera: 

• Sends out modulated light 
(similar frequencies, O(Mhz)) 

• Measures phase in every pixel 

• Acquire moving geometry in 
real-time 

• Quality is much worse than  
static scans (lots of noise) 

[PMD real-time time-of-flight camera] 

photo sensors 
(chip) 

array of charges 
(switching at modulation frequency) 
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Example Scenes 

“Swiss Ranger” Depth Camera 
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Triangulation Scanners 

Measurement Principle (laser sheet scanners): 

• Light the object with a light sheet 

• View with camera from an angle 

• We can compute the depth 

laser 
w/rotating mirror 

video 
camera 

object  

sweep 
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Example Device 
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Structure Light Scanner 

Idea: 

• Replace laser by projector 

• Project log(n) binary stripe codes instead 
of n light sheets 

• Faster acquisition (exponential speedup) 

 Precision: Projector might be harder to focus 

• Coding: Gray code 

 Any single bit error leads  
only to a shift by 1 
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Computer Vision Based Techniques 

Stereo Matching 

• Match points by similar color / shading 

• Very general technique 

• But: An inherently ill-posed problem 

 Typically bad reconstruction quality 

video 
camera #2 

video 
camera #1 

object 
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Stereo Data 

multi view matching (6 cameras) 
(photo-consistent space carving) 

 
[Data set: Christan Theobald, MPII] 

multi view matching (8 cameras) 
(piecewise smooth variational surface 

on presegmented images 
solved with Bayesian belief propagation) 

 

[Data set: Zitnick et al., 
Microsoft Research, Siggraph 2004] 
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Improvement: Active Illumination 

Stereo with active illumination: 

• Project random pattern on the object 

• Improves matching performance (more edges to match) 

• “Space-Time Stereo” 

 Project a new random pattern each frame 

 Capture with two or more cameras 

 Gives good results, fully dynamic (animations) 
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Space Time Stereo 

[Data set: James Davis, University of Santa Cruz] 

[Davis et al. 2003] 
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Other Techniques 

Other acquisition techniques: 

• Computer vision: 

 Shape from shading 

 Shape from defocus 

 Shape from contours 

 Fluorescent fluid immersion scan 
(reflective / transparent objects) 

• Other techniques: 

 Mechanical sampling 

 Radar (planes, satellites) 



3D Scanner Point Cloud Processing 
Data Processing Pipeline 
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Processing Pipeline 

We get: 

• A big cloud of sample points 

 Position, probably also color / laser intensity values 

• Typically: A set of depth images 

What we want in the end: 

• A “nice” surface representation 

• Typically: Triangle mesh 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Automatic Outlier Removal 
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Automatic Outlier Removal 
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Algorithm 

Very simple outlier removal algorithm: 

• For each point compute its 20 nearest neighbors 

• Compute the principal component analysis  
(plane fit with total least squares) 

• If the third eigenvalue (normal direction) is larger than 
1/(1+ ) times the second eigenvalue, delete the point as 
an outlier 
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PCA Plane Fitting (Recap) 

Reminder: 

• PCA can be interpreted as fitting a Gaussian distribution 
and computing the main axes 
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PCA Plane Fitting (Recap) 

Plane Fitting in 3: 

• Sample mean and the two 
directions of maximum eigenvalues 

• Smallest eigenvalue 

 Eigenvector points in normal direction 

 Aspect ratio (3 / 2) is a measure of “flatness” 
(quality of fit) 

• Total least squares optimal  
normal direction (up to sign) 
given by eigenvector with smallest 
eigenvalue 
 

x0 

(2 / 1) small 

(2 / 1) larger 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Surface Registration 

[Implementation: Martin Bokeloh (Diploma thesis)] 

more details on this later... 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Geometry Smoothing 

Smoothing: 

• This example: Bilateral geometry filter 

• Removes noise while preserving sharp features 

• More details on this later (MLS surface reconstruction)... 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Normals for the Bunny... 

original point cloud PCA normals 
(k=20 nearest neighbors) 

unified normals 
(region growing) 

final shading 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Surface Reconstruction 

Reconstructing Triangle Meshes: 

• Implicit methods 

 Fit an implicit surface 

 Use marching cubes 

 Postprocessing: Mesh simplification 

• “Moving least squares (MLS)” 

 Special case of implicit surface fitting 

 more on this later... 

• Voronoi methods 

 Compute Delaunay tetrahedrization  

 Filter out surface triangles (pole analysis) 
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Direct Point Splatting 

points normals 

tangential frames elliptic splats  
w/shading 



Surface Registration 
Point Cloud Matching 
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Point Cloud Matching 

Two problems: 

• Local matching 

 The individual scans are 
already roughly aligned 

 Need to optimize the 
alignment (“snap in”) 

 Non-linear optimization 

• Global matching 

 No initial alignment is known 

 We need to solve the problem 
globally (unconditional 
convergence) 
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Point Cloud Matching 

Two problems: 

• Often two steps:  

 Global matching yields only a rough alignment 

 Followed by local alignment to compute accurate solution 
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Local Matching Algorithms 

Local Matching Algorithms 

• The standard algorithm: Iterated Closest Points (ICP) 

 Standard algorithm is easy to understand 

 Not too hard to implement (need some data structures) 

 Many variants to improve convergence speed and reliability 

• Deformable ICP: 

 Allows deformations during matching 

 Compensate scanner calibration errors 

 Deformable matching 

– Tracking real-time animation scans (correspondences) 

• Other techniques: for example NDT (normal distribution 
transform, useful for real-time applications) 
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Iterated Closest Points (ICP) 

The main idea: 

• Pairwise matching technique 

 Registers two scans 

 Multi-part matching is a different story (more on this later) 

• We want to minimize the distance between the two parts 

 We set up a variational problem 

 Minimize distance “energy” by rigid motion of one part 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 
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Iterated Closest Points (ICP) 

Problem: 

• How to compute the distance 

• This is simple if we know the corresponding points. 

 Of course, we have in general no idea of what corresponds... 

• ICP-idea: set closest point as corresponding point 

• Full algorithm: 

 Compute closest point points 

 Minimize distance to these closest points by a rigid motion 

 Recompute new closest points and iterate 
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Closest Points 

Distances: 

 

 

Closest points distances: 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 
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Iteration 

Part A 

Part B 

Part A 

Part B 

Part A 

Part B 

final result 
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Variational Formulation 

Variational Formulation: 
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Numerical Solution 

Question: How to minimize this energy? 

• The energy is quadratic 

• There is only one problem... 

 Constraint optimization 

 We have to use an  
orthogonal matrix... 

• This problem can (still) be solved exactly. 
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Solution 

First step: computing the translation 

• Easy to see: average translation is optimal 
(c.f. total least squares) 

•   

• This is independent of the rotation 

Second step: compute the rotation 

• (2a) Compute optimal linear map 

• (2b) Orthogonalize 
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Optimal Linear Map 

First: 

• Subtract translation from points pi
(A) = pi

(A) – t 

• Then: Solve an unconstrained least-squares problem 

 

 

 

 

 

• Finally: compute the orthogonal matrix R that is 
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Least-Squares Optimal Rotation 

How to compute a least-squares (Frobenius norm) 
orthogonal matrix that fits a general matrix: 

• Compute the SVD: M = UDVT 

• The least-squares orthogonal fit is: R = UVT 

(just set all singular values to one) 

• We can compute this in one step: 

 Solve the least-squares matrix fitting problem using SVD 

 Omit the diagonal matrix straight ahead 
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Generalizations 

Convergence speed: 

• Convergence of basic “point-to-point” ICP is not so great 

 Typically: 20-50 iterations for simple examples 

 Problem: Zero-th order method 
(flip point correspondences in each step) 

• Improvement: “point-to-plane” ICP 

 First order approximation 

 Match points to tangential planes rather than points 

 Converges much faster (3-5 iterations for similar examples) 
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Implementation 

Part A 

Part B 
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Implementation 

Implementation: 

• We need normals for each point (unoriented)  kNN+PCA 

• Compute closest point, project distance vector to its 
normal 

• Minimize the sum of all such distances: 

Part A 

Part B 
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Comparison 

 Point-to-point: 19 iterations 

Point-to-plane: 3 iterations 
(accuracy problems) 

(much more 
accurate result) 
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Implementation 

Problem: 

• No closed form solution for the optimal rotation with 
point-to-plane correspondences 

Solution: 

• Numerical solution 

• Setup non-linear optimization problem (rotation, 
translation = 6 parameters) 

• Use non-linear optimization technique 

• Remaining problem: Parametrization of the rotations 

 Trouble with singularities (spherical topology) 
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Local Linearization 

Standard technique: local linearization 

• Transformation: T(x) = Rx + t 

• Linearize rotations: 
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Local Linearization 

Standard technique: local linearization 

• Numerical solution: iterative solver 

• We have a current rotation R(i – 1)  from the last iteration: 

• Taylor expension at R(i – 1): 

 

 

 

• Solve for t, , ,   (linear expressison  quadratic opt.) 
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Local Linearization 

Then: 

• Project R(i) back on the manifold of orthogonal matrices. 
(for example using the SVD-based algorithm discussed 
before) 

• Then iterate, until convergence. 

Why does this work? 

• The parametrization is non-degenerate 

 For large , , , the norm of the matrix increases arbitrarily 
(i.e.: the object size increases, away from the data) 

 Therefore, the least-squares optimization will perform a number 
of small steps rather than collapse. 
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More Tricks & Tweaks 

ICP Problems: 

• Partial matching might lead to distortions / bias 

 Remove outliers (M-estimator, delete “far away points”, e.g. 
20% percentile in point-to-point distance) 

 Remove normal outliers  
(if connection direction deviates from normal direction) 

• Sampling problems 

 Problem: for example flat surface with engraved letters 

 No convergence in that case 

 Improvement: Sample correspondence points with distribution 
to cover unit sphere of normal directions as uniformly as 
possible 
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Normal Distribution Transform 

Idea: 

• Regular grid on data 

• Compute normal distribution of points in each grid cell 

• Matching a second point cloud: 

 Maximize likelihood (sum of log-likelihoods) of all data points 

 Use M-estimator (truncated quadrics) 

 Overlapping grid / blending to avoid discontinuities 

Advantages: 

• Very fast – direct grid cell access per point 

• Used in robotics (self localization and mapping “SLAM”) 
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Deformable ICP 

Deformable ICP: 

• Scanners are not perfectly calibrated 

• Some deformation might be necessary in order to match 
objects 

• Related problem: acquiring deformable shapes 
(e.g. humans in different poses) 
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Deformable ICP 

Solution: 

• Use a variational deformation model in combination with 
point-to-point or point-to-plane (preferable) constraints 

• Regularization term:  f: 3  3 

 

 

• Data matching term: 
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Example 

Example: 

• Two frames 

• Stereo vision scan 
of a ballet dancer 
(8 cameras) 

• Deformable shape 
matching: 

 A to B and 

 B to A 

 (repeating) 

[data from Zitnick et al.,  
Microsoft Research, 2004] 
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Global Matching 

How to assemble the bunny (globally)? 

Pipeline (rough sketch): 

• Feature detection 

• Feature descriptors 

• Spectral validation 
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Feature Detection 

Feature points (keypoints) 

• Regions that can be identified locally 

• “Bumps”, i.e. points with maximum principal curvatures 

 Fitting a quadratic heightfield to point cloud data (MLS) to 
compute curvatures 

 “SIFT” features – compute bumps at multiple scales: 

– Radius of geometry used for the fit as an additional 
parameter 

– Search for maxima in 3D surface-scale space 

 Output: list of keypoints 
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Descriptors 

Feature descriptors: 

• Rotation invariant description of local neighborhood 
(within scale of the feature point) 

 Translation already fixed by feature point 

• In the bunny-case: histograms of principal curvature 
values 

• Used to find match candidates 

• Not 100% reliable (typically 3x – 5x outlier ratio) 
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Spectral Correspondence Validation 

We have: 

• Candidate matches 

• But every keypoint matches 
5 others on average 

• At most one of these 
is correct 

Validation Criterion: 

• Euclidian distance should be preserved 
(Deformable models: preserve geodesic distance) 
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Spectral Validation 

Find largest set of correspondences that are all 
compatible: 

• Form a vector with one entry for each correspondence 
(connecting two features) 

• Build a matrix: 

 Write descriptor matching score  [0..1] on diagonal 
(1 = perfect match, 0 = unlikely) 

 Write pairwise compatibility  [0..1] on off-diagonals 

– Score decreases if correspondences do not preserve 
distances 

• Compute largest eigenvalue of this matrix 

• Approximation for largest consistent cluster 
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Consistency Check 

inconsistent 
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Quantization 

Final Quantization: 

• Set largest eigenvector entry to one 

• Set all others to zero that are not compatible (fixed 
threshold) 

• Repeat until all entries are quantized 

Reference: M. Leordeanu, M. Hebert, A Spectral Technique 
for Correspondence Problems Using Pairwise Constraints, 
ICCV 2005. 
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Deformable Global Matching 

This technique also works for deformable matching: 

• Replace Euclidian distance 
by geodesic (intrinsic, 
on-the-surface) distance 

• Computed by Dijkstra 
algorithm on nearest 
neighbor graph of 
point samples. 

[Data set: Christian Theobald,  
 Implementation: Martin Bokeloh] 



Surface Reconstruction 
Moving Least Squares Techniques 
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Moving Least Squares 

Motivation: 

• Point sets sample the object they describe only sparsely. 

• There is an infinite amount of emptiness in between the 
finite sample set. 

• How can we fill in surface points? 

Goals: 

• Compute surface representations locally. 

• We do not want to solve a global variational problem. 

• Create smooth surfaces. 

• Determine differential properties. 



Geometric Modeling SoSem 2010  –  Point-Based Modeling 79 / 142 

Moving Least Squares 

Moving least squares (MLS): 

• MLS is a standard technique for scattered data 
interpolation. 

• We will consider three variations: 

 The standard interpolation scheme. 

 How to build MLS basis functions for finite elements. 

 How to define surface projection operators. 
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Weighted Least-Squares 

Least Squares Approximation: 

target values basis functions 

B1 B2 B3 

least squares fit 

pi = (xi, yi) 

(x) 

weighting functions 
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Least-Squares 

Least Squares Approximation: 
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Least-Squares 

Notation: 

 

   yWBλBWB 22 TT Normal Equations: 

  yWBBWBλ 212 TT 
Solution: 

  yWBBWBbλb 2T12TT)(),()(~ 
 xxxyEvaluation: 

MLS approximation 
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Moving Least-Squares 

Moving Least Squares Approximation: 

target values 

move basis and weighting function, 
recompute approximation y(x) ~ 
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Moving Least-Squares 

Moving Least Squares Approximation: 

target values 

approximation 
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moment matrix 

Summary: MLS 

Standard MLS approximation: 

• Choose set of basis functions 

 Typically monomials of degree 0,1,2 

• Choose weighting function 

 Typicall choices: Gaussian, Wendland function, B-Splines 

 Solution will have the same continuity as the weighting function. 

• Solve a weighted least squares problem at each point: 

 

 

• Need to invert the “moment matrix” at each evaluation. 

• Use SVD if sampling requirements are not guaranteed. 

  yWBBWBb 2T12TT )()()()()()()(~ xxxxxxxy



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Defining FE Basis Functions 

Meshless finite elements: 

• Alternative to meshing 
(define basis functions on regular grid or triangle mesh) 

• Easy to obtain arbitrary consistency orders 

• Main drawback: need to invert moment matrices in basis 
function evaluations (efficiency problem) 

Here is the main idea: 

• Given n points in space 

• Form radial basis functions by an MLS interpolation 

• For each basis function assign a “1” to one of the points 
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Meshless MLS-FE Basis 

Constructing the basis: 

1 

0 
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MLS Basis Functions 

Properties: 

• The basis is smooth (smoothness corresponding to the 
windowing function). 

• The functions form a partition of unity (sum to one at 
each point). 

• The consistency order is the same as that of the basis 
functions (for example: quadratic basis leads to quadratic 
precision, reproduces 2nd order functions exactly) 



Geometric Modeling SoSem 2010  –  Point-Based Modeling 89 / 142 

MLS Basis Functions 

Main advantage: 

• Just need to place points to form a discretization 

• Multi-resolution / adaptive / dynamic sampling much 
easier than with standard FE tools 

• Used frequently in dynamic simulations (fluids, free 
boundaries, fracturing and crack propagation) 

Main disadvantage: 

• Function evaluation needs moment matrix inversion. 

• Slower than fixed basis functions. 

• Computing FE integrals (numerically) is more expensive. 
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FE Integration (recap) 

Discretizing a variational problem: 
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Surface Definition 

Question: How to define surfaces via MLS? 

• Two alternatives (as examples) 

 Implicit function definition for points with oriented normals. 

 Surface fitting for points without normals 

• Many more variants known in literature... 
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Implicit Function Definition 

Basic Idea: 

x 

 (x, xi) 
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Projection Operator 

Problem: 

• We want to insert additional points in the proximity of 
other points 

• Define a “projection operator”: 

 Compute implicit function 

 Add a new point somewhere 

 Move (gradient decent, or Newton’s method) point onto zero-
level set 

 Move in normal direction  
(i.e. gradient of approximated implicit function) 

 The operation that maps a point to the local zero level set by 
following the gradient (stationary point of an ODE) is called the 
“projection operator”. 
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Implicit Function Definition 

Projection: 

x 

 (x, xi) 

x1 

x2 

x3 

n1 

n2 

n3 

f1 

f2 

f3 
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Unoriented Point Sets 

Problem: 

• This requires normals with consistent orientation. 

• Hard to get, in particular locally. 

• For the general case, there is another MLS scheme that 
does not construct a signed implicit function. 
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Point Set Surfaces 

Point Set Surfaces: 

• Discussed here: a variant of [Alexa et al. 2001]. 

• Start with just points in space. 

• Again use a weighting function. 

• Then perform three steps: 

 First, compute a coordinate system 

 Second, compute a weighted least squares fit for higher order 
consistency. 

 Third, project point on the computed function fit. 
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1. Coordinate system 

Establishing an MLS coordinates frame 

x 

 (x, xi) 

x1 

x2 

x3 

Implementation: 
• This can be done using weighted total least squares (PCA) 

• The original paper uses a non-linear optimization 
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2. Basis Function Fit 

Weighted least-squares fit to a moving basis system:  

x 

 (x, xi) 

x1 

x2 

x3 

Implementation: 
• Ordinary weighted least squares. 

• Use the same spatial windowing function   for continuity. 
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3. Projection 

Projection Step: 

• Project evaluation point on surface 

x 

 (x, xi) 

x1 

x2 

x3 
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Continuity Control 

Approximation / Interpolation: 

• Weighting function shape & support determine tightness 
of fit. 

• Special case: Integrable, singular weighting functions 
allow for interpolation 

• Example: Fitting an MLS surface to a polynomial surface 
[Shen et al., Siggraph 2004] 
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Weighting Function 

Weighting Function: 

 

 

 

 

Vary   to adjust tightness of fit. 
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Polygonal Constraints 
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Polygonal Constraints: 

(just integrate over all polygon points) 



Point-Based Modeling 
Direct Point-Based Modeling Techniques 
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Direct Point-Based Modeling 

Example papers: 

• Mark Pauly, Markus Gross: 
Spectral Processing of Point-Sampled Geometry 
Siggraph 2001. 

• Mark Pauly, Richard Keiser, Leif Kobbelt, Markus Gross: 
Shape Modeling with Point-Sampled Geometry 
Siggraph 2003. 


