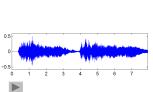
Advanced Course Computer Science

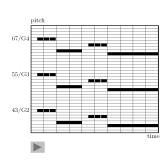
Music Processing

Summer Term 2010

Meinard Müller

Saarland University and MPI Informatik meinard@mpi-inf.mpg.de


Music Representations



Music Representations

0

Music Representations

- Score representation: symbolic description
- MIDI representation: hybrid description (models note events explicitely but may also encode agogic and dynamic subtleties)
- Audio representation: physical description (encodes a sound wave)

Score Representation

Musical score / sheet music:

- Graphical / textual encoding of musical parameters (note onsets, pitches, durations, tempo, measure, dynamics, instrumentation)
- Guide for performing music
- Leaves freedom for various interpretations

4

Score Representation

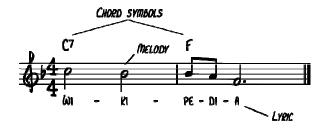
Score Representation

Types of score:

- Full score: shows music for all instruments and voices; used by conductors
- Piano (reduction) score: transcription for piano
 Example: Liszt transcription of Beethoven symphonies
- Short score: reduction of a work for many instruments to just a fews staves
- Lead sheet: specifies only melody, lyrics and harmonies (chord symbols); used for popular music to capture essential elements of a song

5

Score Representation



Score Representation

0

Score Representation

Score Representation

- Scanned image
- Various symbolic data formats
 - Lilypond
 - MusicXML
- Optical Music Recognition (OMR)
- Music notation software
 - Finale
 - Sibelius

0

Score Representation

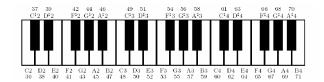
MusicXML

MIDI Representation

- Musical Instrument Digital Interface (MIDI)
- Standard protocol for controlling and synchronizing digital instruments
- Standard MIDI File (SMF) is used for collecting and storing MIDI messages
- SMF file is often called MIDI file

11

MIDI Representation


MIDI parameters:

MIDI note number (pitch) [0:127]

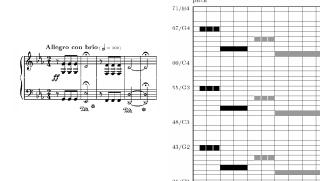
 $p = 21, ..., 108 ext{ } ext{\triangle "piano keys"}$ $p = 69 ext{ } ext{$\triangle$ concert pitch A } (440Hz)$

- Tempo measured in clock pulses or ticks (each MIDI event has a timestamp)
- Absolute tempo specified by
 - ticks per quarter note (musical time)
 - micro-seconds per tick (physical time)

MIDI Representation

14

MIDI Representation

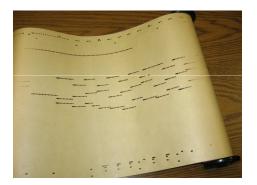


	Mess	age	Ch.	MNN	Vel
60	NOTE	ON	- 1	67	100
0	NOTE	ON	2	55	100
- 0	NOTE	ON	2	43	100
55	NOTE	OFF	1	67	0
0	NOTE	OFF	2	55	0
0	NOTE	OFF	2	43	0
5	NOTE	ON	1	67	100
0	NOTE	ON	2	55	100
0	NOTE	ON	2	43	100L
55	NOTE	OFF	Ī	67	0
0	NOTE	OFF	2	55	o
0	NOTE	OFF	2	43	0
5	NOTE	ON	1	67	100
l ő	NOTE	ON	$\tilde{2}$	55	100
Ŏ	NOTE	ON	5	43	100
	NOTE	OFF	l ĩ	67	0
0	NOTE	OFF	2	55	ŏ
ŏ	NOTE	OFF	$-\frac{5}{2}$	43	ŏ
	NOTE	ON	1	63	100L
ŏ	NOTE	ON	22 11 22 22 12 22 12 22 12 22 12 22 22 2	51	100
	NOTE	ON	5	39	100
240		OFF	Ιí	63	0
	NOTE	OFF	5	51	ő
Ιŏ	NOTE	OFF	5	39	ő
1 0	MOTE	Off		- 39	0

15

13

MIDI Representation


16

MIDI Representation

Piano roll representation:

- Piano roll: music storage medium used to operate a player piano
- Perforated paper rolls
- Holes in the paper encode the note parameters onset, duration, and pitch
- First pianola: 1895

MIDI Representation

18

MIDI Representation

Audio Representation

Various interpretations - Beethoven's Fifth

Bernstein	
Karajan	>
Scherbakov (piano)	
MIDI (piano)	

Audio Representation

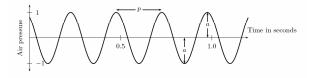
- Audio signal encodes change of air pressure at a certain location generated by a vibrating object (e.g. string, vocal cords, membrane)
- Waveform (pressure-time plot) is graphical representation of audio signal
- Parameters: amplitude, frequency / period

Audio Representation

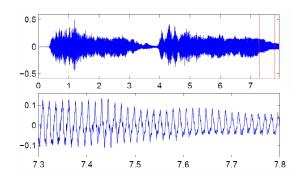
Pure tone (harmonic sound):

- Sinusoidal wavefrom
- Prototype of an acoustic realization of a musical note

Parameters:

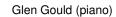

- Period p: time between to successive high pressure points
- Frequency $f = \frac{1}{p}$ (measured in Hz)
- Amplitude a: air pressure at high pressure points

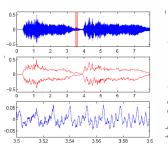
21

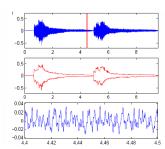

19

Audio Representation

Waveform




Audio Representation



Audio Representation

Bernstein (orchestra)

25

Audio Representation

- Sound: superposition of sinusoidals
- When realizing musical notes in an instrument one obtains a complex superposition of pure tones (and other noise-like components)
- Harmonics: integer multiples of fundamental frequency

 - 2. Harmonic ≙ first overtone

(e.g. 880 Hz)

3. Harmonic ≙ second overtone

(e.g. 1320 Hz)

Audio Representation

Pitch

- Property that correlates to the perceived frequency (\(\rightarrow\) fundamental frequency)

27

Audio Representation

Equal-tempered scale: a system of tuning in which every pair of adjacent notes has an identical frequency ratio

Western music: 12-tone equal-tempered scale

- Each octave is devided up into 12 logarithmically equal parts
- Notes correspond to piano keys p = 21 (A0) to p = 108 (C8)
- Referenz: standard pitch $p = 69 \text{ (A4)} \triangleq 440 \text{ Hz}$
- Frequency of a note with MIDI pitch p

$$f_{\text{MIDI}}(p) = 2^{\frac{p-69}{12}} \cdot 440$$

Audio Representation

Timbre

- Quality of musical sound that distinguishes different types of sound production such as voices or instruments
- Tone quality
- Tone color

Dynamics

- Intensity of a sound
- Energy of the sound per time and area
- Loudness: subjective (psychoacoustic) perception of intensity (depends on frequency, timbre, duration)

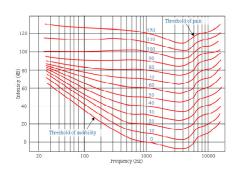
Audio Representation

• intensity =
$$\frac{energy}{time \cdot area} = \frac{power}{area}$$
 $\left(\frac{W}{m^2}\right)$

- Decibel (dB): logarithmic unit to measure intensity relative to a reference level
- Reference level: threshold of hearing (THO) $P_0 = 1.10^{-12} \frac{W}{m^2}$
- Intensity P_1 measured in dB: $dB(P_1) = 10 \cdot \log_{10} \left(\frac{P_1}{P_0} \right)$
- Examples:

$$P_1 = 10 \cdot P_0 \rightarrow P_1$$
 has a sound level of $10 dB$

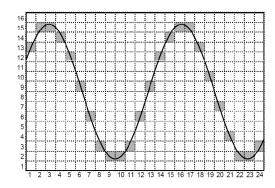
$$P_2 = 100 \cdot P_0 \rightarrow P_2$$
 has a sound level of $20 dB$


Audio Representation

Source	Intensity	Intensity level	# Times TOH
Threshold of hearing (TOH)	10-12	0 dB	0
Whisper	10-10	20 dB	10 ²
Pianissimo	10 ⁻⁹	30 dB	10 ³
Normal conversation	10 ⁻⁶	60 dB	10 ⁶
Fortissimo	10-2	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

31

Audio Representation


Equal-loudness contours (phone)

(from en.wikibooks.org/wiki/Physics Study Guide/Sound)

Audio Representation

Discretization

Audio Representation

Discretization / digitization:

- Convertion of continuous-time (analog) signal into a discrete signal
- Sampling (discretization of time axis)
- Quantization (discretization of amplitudes)

Examples:

Audio CD: 44100 Hz sampling rate

16 bits (65536 values) used for quantization

• Telephone: 8000 Hz sampling rate

8 bits (256 values) used for quantization

33