
Using the GeoX Framework

1. Introduction
GeoX is a collection of C++ libraries for experimenting with geometric modeling techniques (GeoX =

geometry experiments). It consists of three major parts that help working with geometric problems. The

first part is an object oriented library for structural reflection that allows for rapid application

prototyping. The second part is a library that provides basic mathematical tools such as vectors, matrices

and solvers for linear systems. The third part is a system to conduct geometric experiment that provides

viewers classes for 2D and 3D geometry. GeoX is based on the open source XGRT system (http://

www.gris.uni-tuebingen.de/xgrt.html).

2. Object-oriented base system and structural reflection
The main feature of the system is a system for structural reflection (also called introspection). Structural

reflection means that the runtime system of a program knows structural information about how the

program has been structured internally. In our context, this refers to classes, their inheritance hierarchy

and class members such as variables and methods. The GeoX system provides such a mechanism, which is

usually not available to C++ programs (other languages such as Java or .net-compatible languages provide

structural reflection as part of the standard system libraries). Using structural reflection, the system can in

particular perform two important tasks:

 Automatically create a simple user interface for editing instances of classes

 Load and safe objects from/to disk

In both cases, the system inspects the class for its properties (member variables), and either displays an

editor for each property or read/writes the property for file storage. In order to use this mechanism, three

steps are necessary:

(1) Declare a class as a GeoX-class

(2) Register all relevant members

(3) Register the class with the system

An example with detailed comments can be found in folder experiments/ExampleExperiment.h,

experiments/ExampleExperiment.cpp. To declare a class as GeoX-class, an additional macro has to

be added to the class declaration. The header file will look like this:

#include "Persistent.h"

class Example : public Persistent {

 GEOX_CLASS(Example)

 private:

 // private members

 public:

 // public members

}

The class must be directly or indirectly derived from “Object”; for storage on disc, it must be derived

(directly or indirectly) from “Persistent”. The “Experiment”-class (see section 4) is a descendant of

Persistent. Hint: If your class is abstract, use the macro “GEOX_ABSTRACT_CLASS(Example)”.

The CPP-file then has to contain another macro:

#include "Example.h"

IMPLEMENT_GEOX_CLASS(Example, 0)

{

 BEGIN_CLASS_INIT(Example);

}

The number “0” refers to the class version, starting at zero. If properties are added later, this number has

to be increase (along with the version numbers of the newly introduced properties) so that old files can

still be read1. Again, if you are defining an abstract class, use IMPLEMENT_GEOX_ABSTRACT_CLASS.

In order to add properties, you have to add one line with a macro to your cpp file for each property. Here

is an example. Let’s assume the example class has the following members:

#include "Persistent.h"

class Example : public Persistent {

 GEOX_CLASS(Example)

 private:

 int32 a;

 card32 b;

 Vector3f c;

 void doSomething();

}

The types (int32, card32) are defined in PTypes.h; these are aliases to standard C++ types that have a

well defined meaning across different platforms (win32, win64, linux32, linux64). Vector3f is a math

type discussed below. To register the properties, add the following macros to your cpp file:

#include "Example.h"

IMPLEMENT_GEOX_CLASS(Example, 0)

{

 BEGIN_CLASS_INIT(Example);

 ADD_INT32_PROP(a, 0)

 ADD_CARD32_PROP(b, 0)

 ADD_VECTOR3F_PROP(c, 0)

}

The following properties types can be registered:

 Numerical values (see NumericalClassProperty.h): int8, int16, in32, int64, card8,

card16, card32, card64 (unsigned ints), float32, float64.

 Vector and matrix types: Vector2f, Vector3f, Vector4f, Matrix2f, Matrix3f, … (see

FixedArrayClassProperty.h)

 Strings: see StringClassProperty.h

 Pointers to GeoX objects: ADD_OBJECT_PROP(name, version, BaseClass::getClass(),

owner). name is the name of the variable, version is the version number, BaseClass is the

name of the class the registered pointer’s class is derived from, owner is true if the current class

owns the pointer (i.e. deletes it in its destructor), false otherwise.

 A few more (see “properties” directory in “system”)

 experiments/ExampleExperiment.h shows an example.

1 Removing files is more complicated and involves redefining the read and write methods; this is not discussed here.

In addition, it is also possible to register methods. Methods are limited to those that do not have

parameters and do not return anything. Such methods will appear as buttons that can be clicked by the

user in order to call the method. In order to register a method, use the macro “ADD_NOARGS_METHOD()”.

As parameter to the macro, specify the (fully qualified) name of the method, so for example

“Example::doSomething”.

Class registration: Finally, after declaring a new GeoX class, you need to let the system know that it exists.

For this purpose, the file system/basics/InitGeoX.cpp is used: In this file, all classes have to be

registered. There are two functions, init() and shutdown(); one is called when the system starts, the

other when the system is shutting down. Register your class in three steps:

 Add an #include directive to provide the header of your new class.

 In function init(), call YourClass::init(BaseClass::getClass()) to register the class.

Make sure to specify the correct base class so that the introspection mechanism will find your

class at the correct place.

 In function shutdown(), call YourClass::shutdown()

3. Math tools
GeoX comes with a set of mathematical tools in the “math” directory. For vectors and matrices of small,

fixed dimension, the module LinearAlgebra.h can be used (in case you use this, do not forget to include

“LinearAlgebra.hpp” in your cpp files; this file contains all the inline and template code. Most C++

compilers need to have this implementation at hand when compiling template/inline code). The library

provides the classes StaticVector<FloatType, dim> and StaticMatrix<FloatType, dim>, which

provide vectors and matrices of fixed size and of any floating point type (both are template parameters).

There are predefined types Vector3f for three dimensional float vectors, Vector2i for two-dimensional int

vectors and Vector4d for four dimensional double vectors, and all similar types as well. The library also

defines Matrix2f, 3f, 2d,3d,4d … and so on. Operator overloading is used to provide all familiar matrix and

vector operations; the function “invertMatrix()” computes inverse matrices using Gaussian

elimination.

A similar library exists with the name DynamicLinearAlgebra.h|hpp|cpp. This library provides the

same functionality, but the dimension of the matrices and vectors can be specified at runtime (not a

template argument).

The library “SparseLinearAlgebra.h|hpp|cpp” provides sparse matrices. Please note that these

matrices are stored row-wise, while all other matrices are stored column wise. This is necessary to

support efficient multiplications of columns vectors with sparse matrices. Efficient solvers for sparse

linear systems (including eigenvector computations) are located in “IterativeSolvers.h”

4. Experiments

The main GeoX application shows an experiment and a viewer. You can change to different experiments

using the drop-down box at the top-right. This drop down box shows (by introspection) all classes derived

from “Experiment”. Make sure to derive a new experiment from this base class so that it appears in the

box. The area on the right will then show all methods and properties of your experiment, and the area on

the left will show a viewer.

To specify a viewer, override the method createViewer() (see experiments/Experiment.h). This

method is called whenever switching to a different experiment to create a new viewer. The method should

maintain a copy of a pointer to the viewer for future reference. Through this pointer, you will be able to

draw different geometric objects in the viewer.

Currently, only two viewers are available: A simple viewer that just shows a logo (not really helpful), and

another viewer that shows 2D curves. A 3D viewer will be provided later for a later problem set. The 2D

viewer can be found in viewers/widgets/GLGeometryViewer.h. The methods are self-explanatory –

you can basically add points and lines with different colors.

In addition to the viewer, you can at any time output text to the console at the lower bottom of the

window using the “output” object (include GeoXOutput.h from system/gui). It uses the familiar <<-

notation similar to the standard C++ library.

For a complete example of an experiment with and without viewers, please refer to the example code in

experiments/ExampleExperiment.h and experiments/ExampleExperiment2DGraphics.h.

