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Motivation 

This lecture covers two related areas: 

• Classic geometric modeling 

• Geometry processing 

Common techniques (math, models, terminology), 
but different goals 



Geometric Modeling 

Geometric Modeling: 

• You start with a blank screen, design a geometric model 

• Typical techniques: 

 Triangle meshes 

 Constructive Solid Geometry (CSG) 

 Spline curves & surfaces 

 Subdivision surfaces 

• Goal is interactive modeling 

• Mathematical tools are designed with the user in mind 

 



Geometry Processing 

Geometry Processing 

• You already have a geometric model 
 Typically: 3D scanner (read: not nice) 

 You need to process & edit the geometry 

 Complex, unstructured data 

• Typical problems 

 Noise removal, filtering 

 Surface reconstruction 

 Registration 

 Statistical analysis (features, symmetry, hole-filling etc...) 

 Structure retrieval / data interpretation 



Two fields 

Goals 

• Geometric modeling 

 Create nice images 

 Build stuff 

 Long term goal: model anything 

 

• Geometry processing 

 Data processing (think “Photoshop”) 

 Reverse engineering 

 Long term goal: shape understanding 
machines make sense 
of the world 



Examples: 

Geometric Modeling 



The Modern World... 
designed on a computer 

(the building) 

designed on a computer as well 
(the cars) 

fortunately, not (yet) designed 
on a computer 

(the trees) 

[c.f. Danny Hillis, Siggraph 2001 keynote] 



Impact of Geometric Modeling 

We live in a world designed using CAD 

• Almost any man-made structure designed w/computers 

 Architecture 

 Commodities 

 Your car (bikes as well) 

 Spline curves invented in automotive industry 

 Typesetting 

•  <advertising> Our abilities in geometric modeling shapes 
the world we live in each day. </advertising> 



Different Modeling Tasks 

CAD / CAM 

• Precision Guarantees 

• Handle geometric constraints 
exactly (e.g. exact circles) 

• Modeling guided by rules 
and constraints 



Different Modeling Tasks 

Photorealistic Rendering 

• Has to “look” good 

• Ad-hoc techniques are ok 

• Using textures & shaders 
to “fake” details 

• More complexity, but 
less rigorous 



Examples: 

Geometry Processing 



Geometry Processing 

A rather new area 

• Motivation: 3D scanning 

 3D scanners 

 Clouds of millions of measurement points 

• Sources of spatial data: 

 Science: CT, [F]MRI, ET, Cryo-EM, ... 

 3D movie making 

 Game / movie industry:  
Servers with GBs of “polygon soup” 

 Crawl the internet 

• Need to process the geometry further 



Photoshopping Geometry 

Geometry Processing: 

• Cleanup:  

 Remove inconsistencies 

 Make watertight (well defined inside/outside, for 3D printers) 

 Simplify – keep only the main “structure” 

 Remove noise, small holes, etc... 

• Touch-up /Edit: 

 Texturing, painting, carving 

 Deformation 

 Stitch together pieces 

• Lots of other stuff – similar to image processing 



Scan Registration 

[data set: Stanford 3D Scanning Repository] 



Feature Tracking 

Fully Automatic: 

[Implementation: Martin Bokeloh (Diploma thesis)] 



Example 

Example: The Stanford “Digital Michelangelo Project” 
[Levoy et al.: The Digital Michelangelo Project, Siggraph 2000] 



Scanning the World.... 

Example: The “Wägele” Laser scanners 
(2D sheets of distance  
measurments) 

[Biber et al. 2005] 

A pull-through measurement 

device – can acquire complete 

buildings in a few hours 



This is what you get... 

Corridor – CS Building  
University of Tübingen (6.5 GB) 

...lots of artifacts  
(the scanner does not really like windows) 

CS Building, Outside  
(nicer colors...) 



Automatic Processing 

Example: Automatic Outlier Removal 



Think Big 

More Problems: 

• Occluded areas, shiny / transparent objects 
 holes (lots of holes, actually) 

• Huge amounts of data (really huge) 

City Scanning 

• There are big companies trying to scan large areas 

• Think Google Earth in full resolution 

• How about a virtual online walk through 
New York, Tokyo, Saarbrücken? 

• Lots of open research problems to get there 



[data set: Institute for Cartography, Leibnitz University Hannover] 



HUGE Data Sets 

The Largest Data Set Currently I have On My Hard-Drive... 

Data set: Outdoor Scan (structure from video) of a part of the UNC campus 
(2.2·109 pts / 63.5 GB), courtesy of J.-M. Frahm, University of North Carolina 



Geometry Processing 

Examples of Our 
Own Research 



Symmetry Detection 

[data sets: C. Brenner, IKG, Universität Hannover] 



Symmetry Detection 

[data sets: C. Brenner, IKG, Universität Hannover] 



Reconstruction by Symmetry 

overlay of 

16 parts 
[data sets: C. Brenner, IKG, Universität Hannover] 



Results 



Results 



Regularity Aware Deformation 



Algebraic Resizing 



Scanning Moving Geometry 

Real-time 3D scanners: 

• Acquire geometry at video rates 

• Capture 3D movies: “performance capture” 

• Not done yet – highly active research area 



Kinect Example Data 



Animation Reconstruction 

Problems 

• Noisy data 

• Incomplete data (acquisition holes) 

• No correspondences 

• Just point clouds 

noise 

holes 

missing correspondences 



Animation Reconstruction 

Remove noise, outliers 

Fill-in holes 
(from all frames) 

Dense correspondences 







Lecture Overview 
Topics 



Geometric Modeling 2012 

Mathematical Background 

• Function spaces 

• Differential geometry 

Geometric Modeling 

• Smooth curves: polynomial interpolation & 
approximation, Bezier curves, B-Splines, NURBS 

• Smooth surfaces: spline surfaces, implicit functions, 
variational modeling 

• Meshes: meshes, multi-resolution, subdivision 



Geometric Modeling 2012 

Geometry Processing 

• 3D Scanner data 

• Registration 

• Surface reconstruction 

• Point cloud processing 

Preliminary List: 

• Subject to change & reordering 

 



Overview 

Modeling Techniques 



Geometric Modeling 

What do we want to do? 

empty space 
(typically 3) 

geometric object 

B 3 

B 

d 



Fundamental Problem 

The Problem: 

B 

d 

infinite number of points my computer: 4GB of memory 

We need to encode a continuous model with a finite 
amount of information 



Modeling Approaches 

Two Basic Approaches 

• Discrete representations 

 “Pixels” 

 Fixed discrete bins 

• “Continuous” representations 

 “Vector graphics” 

 Mathematical description 

 Evaluate continuously 



Discrete Representations 

Discrete represenations 

• Fixed Grid of values: 

 (i1, ..., ids
)  ds  (x1, ..., xdt

)  dt 

• Typical scenarios: 

 ds = 2, dt = 3:  Bitmap images 

 ds = 3, dt = 1:  Volume data 

 ds = 2, dt = 1:  Depth maps 

• PDEs / Numerics 
“Finite Differences” models 



Modeling Approaches 

Two Basic Approaches 

• Discrete representations 

 “Pixels” 

 Fixed discrete bins 

• “Continuous” representations 

 “Vector graphics” 

 Mathematical description 

 Evaluate continuously Designing 
Functions 



Continuous Models 

Basic principle: procedural modeling 

finite set of 
Shape Parameters 

 determines the object shape 

Algorithm(s) 

determines the  
class of objects that can  

be represented 

Query Parameters 
(a finite set of numbers from 

 a continuous set)  

Answer  

𝑓 

𝐩 

𝐱 

𝑓𝐩(𝐱) 



Example: Continuous Model 

Example: Sphere 

• Shape Parameters: center, radius (4 numbers) 

• Algorithms: 

 Ray Intersection (e.g. for display) 
– Input: Ray (angle, position: 5 numbers) 
– Output: {true, false} 

 Inside/outside test (e.g. for rasterization) 
– Input: Position (3 numbers) 
– Output: {true, false} 

 Parametrization (e.g. for display) 
– Input: longitude, latitude (, ) 
– Output: position (3 numbers) 

 







Example: Continuous Model 

Example: Sphere 

• Shape Parameters: center, radius (4 numbers) 
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– Input: Ray (angle, position: 5 numbers) 
– Output: {true, false} 

 Inside/outside test (e.g. for rasterization) 
– Input: Position (3 numbers) 
– Output: {true, false} 

 Parametrization (e.g. for display) 
– Input: longitude, latitude (, ) 
– Output: position (3 numbers) 

 





𝑓:ℝ5 → [0,1] 

𝑓:ℝ3 → [0,1] 

𝑓:ℝ2 → ℝ3 



So Many Questions... 

Several algorithms for the same representation: 
• Parametrization – compute surface points according to 

continuous parameters 

• (Signed) distance computation – distance to surface of points 
in space, inside/outside test 

• Intersection – with rays (rendering), other objects (collision 
detection) 

• Conversion – into other representations. 

• Many more... 

And: algorithms to construct and alter models 



Continuous, Procedural Models 

“Continuous” representations 
• Algorithm (math: function) describes the shape 

 Definition: finite number of continuous parameters 

 Query: finite number of continuous parameters 

• Characteristics: 
 More involved (have to ask for information) 

 Potentially “infinite” resolution (continuous model) 

• Structural complexity limited by algorithm 

This lecture: focus on these represenations 

• Mathematically, we study function design 

• Mostly linear design approaches 

 Just find a basis to a linear vector space, that’s all the magic 



Classes of Models 

(Main) classes of models in this lecture: 

• Primitive meshes 

• Parametric models 

• Implicit models 

• Particle / point-based models 

Remarks 

• Most models are hybrid (combine several of these) 

• Representations can be converted (may be approximate) 

• Some questions are much easier to answer for certain 
representations 



Modeling Zoo 
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Parametric Models 

Parametric Models 

• Function f maps from parameter domain  to target space 

• Evaluation of f gives one point on the model 

u 

v 

(u, v) 

f (u, v) f 

  ds S  dt 
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Primitive Meshes 

Primitive Meshes 

• Collection of geometric primitives 

 Triangles 

 Quadrilaterals 

 More general primitives 
(spline patches) 

• Typically, the primitives are  
parametric surfaces 

• Composite model: 

 Mesh encodes topology, rough shape 

 Primitive parameter encode local geometry 

• Triangle meshes rule the world (“triangle soup”) 



Primitive Meshes 

Complex Topology for Parametric Models 

• Mesh of parameter domains attached in a mesh 

• Domain can have complex shape (“trimmed patches”) 

• Separate mapping function f for each part 
(typically of the same class) 

1 

2 

3 



Meshes are Great 

Advantages of mesh-based modeling: 

• Compact representation (usually) 

• Can represent arbitrary topology 

• Important objects can be represented exactly 

 When using the right parametric parts 

 E.g. NURBS: circles, cylinders, spheres  CAD/CAM 



Meshes are not so great 

Problem with Meshes: 

• Need to specify a mesh first, then edit geometry 

• Problems for larger changes 

 Mesh structure and shape need to be adjusted 

 Mesh encodes object topology 
 Changing object topology is painful 

• Sometimes difficult to use 

 Rule of thumb:  
drastic topology changes ⇒ meshes are hard to use 

 Extreme example: fluid simulation (splashing water) 



Modeling Zoo 
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Implicit Modeling 

General Formulation: 

• Curve / Surface S = {x | f (x) = 0} 

• x  d (d = 2,3), f (x)   

• S is (usually) a d-1 dimensional object 

This means...: 

• Surface = set of points where f vanishes ( f (x) = 0) 

• Also known as “level-set methods” 

• Alternative notation: S = f 
-1(0) 

 



Implicit Modeling 

Example: 

• Circle: x2 + y2 = r2  
       fr(x,y) = x2 + y2 - r2 = 0 

• Sphere:  x2 + y2 + z2 = r2  

Special Case: 

• Signed distance field 

• Function value is signed distance to surface 

 

• Negative means inside, positive means outside 

x2 

y2 
r2 

||)(),( 222222 ryxryxyx  signf



Implicit Modeling: Pros & Cons 

Advantages: 

• More general than parametric techniques 

• Topology can be changed easily 

• Standard technique for simulations with free boundaries. 

 Example: Fluid simulation (evolving water-air interface) 

 Geometric modeling: Surface reconstruction, “blobby surfaces” 



Implicit Modeling: Pros & Cons 

Disadvantages: 

• Need to solve inversion: S = f 
-1(0) 

• Many algorithms more difficult 

 Difficult: display, surface sampling, conversion 
(larger run-time costs as well) 

 Easy: inside/outside, Boolean operations 

• Memory: Often more costly 

 In particular: sharp boundaries, flat surfaces 
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Particle Representations 

Particle / Point-based Representations 

• Geometry is represented as a set of points / particles 

• Irregular sample of geometry 

• Need additional information to deal with 
“the empty space around the particles” 

 Reconstruction for processing 

 Also a type of implicit representation 

additional 
assumptions 



Particle Representations 

Helpful Information 

• Each particle may carries a set of attributes 

 Must have: position 

 Additional: 

– Particle density (sample spacing) 

– Surface normals 

– Color 

– physical quantities (mass, pressure, temperature), ... 

• Additional information might facilitate reconstruction 



The Wrath of Khan 

Why Star Trek is at fault... 

• Particle methods first used in computer graphics to 
represent fuzzy phenomena (fire, clouds, smoke) 

• “Particle Systems—a Technique for Modeling a Class of 
Fuzzy Objects” [Reeves 1984] 

• Probably most well-known example: Genesis sequence  



Genesis Sequence [Reeves 1983] 



Non-Fire Objects 

Particle Traces for Modeling Plants 
(also from [Reeves 1983]) 



Geometric Modeling 

How became the geometric modeling crowd 
interested in this? 

3D Scanners 

• 3D scanners yield point clouds 

• Have to deal with the problem anyway 

• Need algorithms to directly work on “point clouds” 

 (this is the geometry name for particle system) 



Geometric Modeling 

How became the geometric modeling crowd 
interested in this? 

Other Reasons: 

• Similar advantages as implicit techniques 

• Topology does not matter (for the good and for the bad) 

 Topology is easy to change 

 Topology might be hard to determine 

 Multi-scale representations are easy to do 
(more details on multi-resolution techniques later) 

• Often easier to use than implicit or parametric techniques 



Multi-Scale Geometry w/Points 



Summary 

Summary 

• Lots of different 
representations 

• No silver bullet 

• In theory, everything always 
works, but might be just too 
complicated/expensive 

• Best choice depends on the application 

• We will look on all of this... 

 Focus on parametric techniques though 

 Most common approach 


