Geometric Modeling

Summer Semester 2012

Linear Algebra & Function Spaces
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Announcement

Room change:
e On Thursday, April 26th, room 024 is occupied.

e The lecture will be moved to room 021, E1 4
(the Tuesday’s lecture room).

e Only on this date.



Today...

Topics:

e Introduction: Geometric Modeling
= Motivation
= Overview: Topics

= Basic modeling techniques

e Mathematical Background

= Function Spaces

L = Differential Geometry

e Interpolation and approximation
e Spline curves



Vector Spaces




Vectors

7

vectors are arrows in space
classically: 2 or 3 dim. Euclidian space



Vector Operations

V+W

“Adding” Vectors:
Concatenation



Vector Operations

Scalar Multiplication:
Scaling vectors (incl. mirroring)



You can combine it...

v 2W + V

Linear Combinations:
This is basically all you can do.

r= Zn:/livi
i=1



Vector Spaces

Vector space:
e Set of vectors V
e Based on field F (we use only F =R)
e Two operations:

= Adding vectorsu=v+w (u,v,w € V)
= Scaling vectorsw=Av (u eV, A € F)

e Vector space axioms:

(@l) vu,v,weV: (u+v)+w=u+(v+w) (s1) ¥veV,LueF: A(uv)=(Auv
(a2) Yu,veV: u+v=v+u (s2) forl,eF:VYveV:1 v=v
(@3) 30, eV:vveV: v+0, =v (s3) VAcF:vv,weV: A(Vv+w)=Av+iw

(a4) YveV:3IweV: v+w=0, (s4) YA, ueFveV:(1+ul=v+uv



Additional Tools

More concepts:
e Subspaces, linear spans, bases

Scalar product
= Angle, length, orthogonality
= Gram-Schmidt orthogonalization
Cross product (R3)
Linear maps
= Matrices
Eigenvalues & eigenvectors

Quadratic forms

(Check your old math books)



Structure

Vector spaces

e Any finite-dim., real vector space is isomorphic to R"
= Arrays of numbers
= Behave like arrows in a flat (Euclidean) geometry

e Proof:
= Construct basis
= Represent as span of basis vectors

Infinite-dimensional spaces

e Require more numbers
= Same principle
= Approximate with finite basis



Example Spaces

Function spaces:
e Space of all functionsf: R —> R
o Space of all smooth CK functions f: R - R
e Space of all functions f: [0..1]> > R8
e etc...

.




Function Spaces

Intuition:
e Start with a finite dimensional vector
e Increase sampling density towards infinity
e Real numbers: uncountable amount of dimensions

[fll 227 9]T [fll 21"'lf18]T f(X)
O g=9 b 0 g-13 b0 gog



Dot Product on Function Spaces

Scalar products

e For square-integrable functions f, g: Q c R" > R,
standard scalar product defined as:

f-g:=| f(x)g(x)dx

e Measures abstract length and “angle”
(not in a geometric sense)

Orthogonal functions:
e No mutual influence in linear combinations

e Adding one to the other does not change the value in the
other ones direction.



Approximation of Function Spaces

Finite dimensional subspaces:

e Function spaces with infinite dimension are hard to
represented on a computer

e For numerical purpose, finite-dimensional subspaces are
used to approximate the larger space

e Two basic approaches



Approximation of Function Spaces

Task:

e Given: Infinite-dimensional function space V.
e Task: Find f € V with a certain property.

Recipe: “Finite Differences”

e Sample function f on discrete grid

e Approximate property discretely
= Derivatives => finite differences :

= Integrals => Finite sums

e Optimization: Find best discrete function



Approximation of Function Spaces
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actual solution function space basis approximate solution

Recipe: “Finite Elements”
e Choose basis functions b, ..., b, € V

e Find f = Y%, A;b; that matches the property best
e f is described by (4,,...,1,)
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“Best Match”

Linear combination matches best

e Solution 1: Least squares minimization
2

f(f(x) —iﬂibi(x)> dx — min
i=1

R

e Solution 2: Galerkin method

n
Vi = 1..n:<f—z/1ibi, bi> ~ 0
=1

e Both are equivalent



Optimality Criterion

Given:
e Subspace W €V
e Anelementv eV

Then we get:

« w € W minimizes the quadratic error (w — v)?
(i.e. the Euclidean distance) if and only if:

e the residual (w — v) is orthogonal to W

Least squares = minimal Euclidean distance



Formal Derivation

Least-squares
2

EU)‘J(]”(X) zlb(x)> dx
R
j( (x)—Zz/lf(x)b(x)+zz/1 b(x)bj(x)> dx

i=1i=1

Setting derivatives to zero:

M, b1) :
VE(f) = —2 + [/11, ...,/1n] ( (bi(x), b](X)> )
An(fi bn)

Result:



Linear Maps




Linear Maps

A Function
e f:V—> W between vector spaces V, W

is linear if and only if:

o Vv,v,eV:  flvy+v,) = flvy) + f(v,)
e YveV, AeF: f(Av) = Af(v)

Constructing linear mappings:

A linear map is uniquely determined if we specify a mapping
value for each basis vector of V.



Matrix Representation

Finite dimensional spaces
e Linear maps can be represented as matrices

e For each basis vector v, of V, we specify the mapped
vector w..

e Then, the map fis given by:

|21

fV)=fl] : ||=v,W; +.+V, W,




Matrix Representation

This can be written as matrix-vector product:

| | vy
)= wy o w, |

| )\

n

The columns are the images of the basis vectors (for which the
coordinates of v are given)



Affine Maps

Intuition
e Linear maps do not permit translations
e Affine map = linear map + translation

Representation
e fi1R" > R™
e f(x) =Mx+t
e Matrix M € R™™™ vectort € R™



Affine Maps

Formal characterization
f is affine if and only if:

Given weights «; with



Geometric Intuition

Weighted averages of points are preserved:

P>
P>

Ps3



Geometric Intuition

Weighted averages of points are preserved:

A\ =
A,




Linear Systems of Equations

Problem: Invert an affine map
e Given: Mx=b
e We know M, b
e Looking for x

Solution

e Set of solutions: always an affine subspace of R",
or the empty set.

= Point, line, plane, hyperplane...

e Innumerous algorithms for solving linear systems



Solvers for Linear Systems

Algorithms for solving linear systems of equations:
e Gaussian elimination: O(n3) operations for nxn matrices

e We can do better, in particular for special cases:

= Band matrices:
constant bandwidth

= Sparse matrices:
constant number of non-zero
entries per row

— Store only non-zero entries

— Instead of (3.5,0,0, 0, 7, 0, 0),
store [(1:3.5), (5:7)]




Solvers for Linear Systems

Algorithms for solving linear systems of n equations:

e Band matrices, O(1) bandwidth:
= Modified O(n) elimination algorithm.

e |terative Gauss-Seidel solver
= Converges for diagonally dominant matrices
= Typically: O(n) iterations, each costs O(n) for a sparse matrix.

e Conjugate Gradient solver
= Only symmetric, positive definite matrices
= Guaranteed: O(n) iterations
= Typically good solution after O(\/E) iterations.

More details on iterative solvers: J. R. Shewchuk: An Introduction to the
Conjugate Gradient Method Without the Agonizing Pain, 1994.



Eigenvectors & Eigenvalues

Definition:
e Linear map M, non-zero vector X with
MXx = AX
e Aaniseigenvalue of M
e X is the corresponding eigenvector.



Example

Intuition:

e In the direction of an eigenvector, the linear map acts like
a scaling

e Example: two eigenvalues (0.5 and 2)
e Two eigenvectors
e Standard basis contains no eigenvectors



Eigenvectors & Eigenvalues

Diagonalization:

In case an nxn matrix M has n linear independent
eigenvectors, we can diagonalize M by transforming to this
coordinate system: M = TDT..



Spectral Theorem

Spectral Theorem:
Given: symmetric nxn matrix M of real numbers (M = M")
It follows: There exists an orthogonal set of n eigenvectors.

This implies:
Every (real) symmetric matrix can be diagonalized:
M = TDT' with an orthogonal matrix T, diagonal matrix D.



Computation

Simple algorithm
e “Power iteration” for symmetric matrices
e Computes largest eigenvalue even for large matrices
e Algorithm:
= Start with a random vector (maybe multiple tries)
= Repeatedly multiply with matrix

= Normalize vector after each step

= Repeat until ration before / after normalization converges
(this is the eigenvalue)

e |ntuition:

= Largest eigenvalue = “dominant” component/direction



Powers of Matrices

What happens:

e A symmetric matrix can be written as:
A

M=TDT' =T T'
A

n

e Taking it to the k-th power yields:
A"
M =TDT'TDT .. TDT' =TD*T" =T T

e Bottom line: Eigenvalue analysis key to understanding
powers of matrices.



Improvements

Improvements to the power method:
e Find smallest? — use inverse matrix.

e Find all (for a symmetric matrix)? — run repeatedly,
orthogonalize current estimate to already known
eigenvectors in each iteration (Gram Schmidt)

e How long does it take? — ratio to next smaller eigenvalue,
gap increases exponentially.

There are more sophisticated algorithms based on
this idea.



Generalization: SVD

Singular value decomposition:
e Let M be an arbitrary real matrix (may be rectangular)
e Then M can be written as:
=M=UDV'
= The matrices U, V are orthogonal
= D is a diagonal matrix (might contain zeros)
= The diagonal entries are called singular values.
e UandV are usually different

e Diagonalizable matrices:
= U=V
= Singular values = eigenvalues



Singular Value Decomposition

Singular value decomposition

740
M U D
oolo|o|o|o|oO
_ 0|a|o|o0|0]oO
o(o|a|o|o0]|oO
0[o|o|a|o0]oO
e o
4
orthogonal

orthogonal



Singular Value Decomposition

Singular value decomposition
e Can be used to solve linear systems of equations
e For full rank, square M:
M=UDV'
= Mi=(UDV)iI=(V)1D!(U')=vDIlUT
Good numerical properties (numerically stable)

 More expensive than iterative solvers

e The OpenCV library provides a very good implementation
of the SVD



Example:
Linear Inverse Problems



Inverse Problems

Settings
e A (physical) process f takes place
e |t transforms the original input x into an output b
e Task: recover x from b

Examples:
e 3D structure from photographs
e Tomography: values from line integrals
e 3D geometry from a noisy 3D scan



Linear Inverse Problems

Assumption: f is linear and finite dimensional
fix)=b = Mx=b

Inversion of fis said to be an ill-posed problem, if one
of the following three conditions hold:

e There is no solution

e There is more than one solution

e There is exactly one solution, but the SVD contains very
small singular values.



Ill posed Problems

Ratio: Small singular values amplify errors

e Assume inexact input
= Measurement noise

= Numerical noise

e Reminder: M1=Vv D1UT

\
does noﬁ:urt \ does not hurt

(orthogonal) (orthogonal)
this one is decisive
e Orthogonal transforms preserve norm of x,
so V and U do not cause problems



Ill posed Problems

Ratio: Small singular values amplify errors
e Reminder: x=M1b=(VD1U"b
e Say D looks like that:

25 0 0 0
0 11 0 0
D:=
0 0 09 0

0O O 0 0.000000001
e Any input noise in b in the direction of the fourth right
singular vector will be amplified by 10°.

e If our measurement precision is less than that, the result
will be unusable.

Does not depend on how we invert the matrix.

Condition number: o /o .



lll Posed Problems

Two problems:

: . . 25 0 0 0
(1) Mapping destroys information N X
= goes below noise level "o o0 o009 0

0 O 0 0.000000001
= cannot be recovered by any means

(2) Inverse mapping amplifies noise
= yields garbage solution
= even remaining information not recovered
= extremely large random solutions are obtained

We can do something about problem #2



Regularization

Regularization

e Avoiding destructive noise caused by inversion
= Various techniques
= Goal: ignore the misleading information

Approaches

e Subspace inversion: Ignore subspace with small singular values
= Needs an SVD, risk of “ringing”

e Additional assumptions:
= smoothness (or something similar)
= make compound problem (f* + assumptions) well posed



lllustration of the Problem

| f g forward | f®g

problem
E /m/

original function smoothed function



lllustration of the Problem

I
| }F' inverse | f® g
problem
ﬂ/ D ZE— /\A/
\‘ > >
reconstructed function smoothed function




lllustration of the Problem

| f’ inverse | f® g
m/\ problem /m/
regularized smoothed function

reconstructed function



Quadratic Forms




Multivariate Polynomials

A multi-variate polynomial of total degree d:
e Afunctionf:R"—> R, x— f(x)
e fis a polynomial in the components of x

e Any 1D direction f(s + tr) is a polynomial of
maximum degree d in t.

Examples:

e f(x,y):=x+xy+Yy is of total degree 2. In diagonal
direction, we obtain f{t[1/+42, 1/42]T) = t2.

. 2 2 :
o flX, V) 1= CpoX” + Cop¥” + C14XY + C1pX + €1V + Cgp IS @
guadratic polynomial in two variables



Quadratic Polynomials

In general, any quadratic polynomial in n variables
can be written as:

e X'AX + b'™x +c¢
e Ais an nxn matrix, b is an n-dim. vector, c is a number

e Matrix A can always be chosen to be symmetric

e If it isn’t, we can substitute by 0.5 - (A + AT), not changing
the polynomial



Example

Example:

X B — | 1 2
(RS
1 2V x 1x 2y
i y][3 4j[yj - y](?vx 4y j

=xIx+x2y+y3x+ydy
=1x* +(2+3)xy +4y°
=1x*+(2.5+2.5)xy +4y°

< el



Quadratic Polynomials

Specifying quadratic polynomials:
e X'AX + b'x +cC

e b shifts the function in space (if A has full rank):

(x —,u)T A(X —,u)+c
=X Ax— ' AX—X Au+pu-pu+c
(Asym.) T
= X AX—(ZA,u)x+,u-,u+c
=b
e Ccis an additive constant




Some Properties

Important properties
e Multivariate polynomials form a vector space
e We can add them component-wise:
2x%2 + 3y?2 +4xy + 2x+ 2y + 4
+ 3x2+ 2y? + Ixy + 5x+ 5y + 5

= 5x2+5y2+5xy+7x+7y + 9
e |n vector notation:
x'A;x + b;'x + ¢
+ J(x'A,x + b,'x +¢,)
=X'(A+1A;)x + (by+4b,)'x + (¢ +4c)



Quadratic Polynomials

Quadrics
e Zero level set of a quadratic polynomia

|_ 17

quadric”
e Shape depends on eigenvalues of A

e b shifts the object in space

e c sets the level



Shapes of Quadrics

Shape analysis:
e Ais symmetric
e A can be diagonalized with orthogonal eigenvectors

A
xTAx:x{QT( . jQ}x

™ Je

e (Q contains the principal axis of the quadric

e The eigenvalues determine the quadratic growth
(up, down, speed of growth)



Shapes of Quadratic Polynomials




The Iso-Lines: Quadrics

elliptic hyperbolic degenerate case

A,=0,4,#0

'/III}
W
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N




Quadratic Optimization

Quadratic Optimization

e Minimize quadratic objective function

xTAx + b™x + ¢

e Required: A >0 (only positive eigenvalues)

= |[t’s a paraboloid with a unique minimum

T
@3@3‘&0

SO

VL
I,,/

N XX
NS

= The vertex (critical point) can be determined
by simply solving a linear system

e Necessary and sufficient condition

2AXx =-b



Condition Number

How stable is the solution?
e Depends on Matrix A




Regularization

Regularization

e Sums of positive semi-definite matrices are
positive semi-definite
e Add regularizing quadric

= “Fill in the valleys”
= Bias in the solution

Example
e Original: xTAx + b™x +¢

e Regularized: x'(A+I)x + b'x +¢



Rayleigh Quotient

Relation to eigenvalues:

e Min/max eigenvalues of a symmetric A expressed as
constraint quadratic optimization:

P . X'Ax (T ) s x AX
min = MIN—— =min (X AX max = MNAX—

X'x |x= X' X |¥=t

e The other way round — eigenvalues solve a certain type of
constrained, (non-convex) optimization problem.



Coordinate Transformations

One more interesting property:

e Given a positive definite symmetric (“SPD”) matrix M
(all eigenvalues positive)

e Such a matrix can always be written as square of another
matrix:

M=TDT" = T\/_I\/_ TT) 73D |rvp) =(rVDf
\//1/1 .

Joo-|
i




SPD Quadrics

main axis

x ' Mx

1.

\: 1N,
J N

2

Identity I M=TDT" = (T\/B )

Interpretation:
e Start with a unit positive quadric x"x.
e Scale the main axis (diagonal of D)
e Rotate to a different coordinate system (columns of T)

e Recovering main axis from M: Compute eigensystem
(“principal component analysis”)



Why should | care?

What are quadrics good for?

e log-probability of Gaussian models

Gaussian normal distribution

e Estimation in Gaussian probabilistic

models...
@—#Yj

20°

. . . . . — 1 _
= ...is quadratic optimization. Pﬂ,a(x)—amexp[
= ...is solving of linear systems of equations.

e Quadratic optimization

= easy to use & solve
= feasible :-)

e Approximate more complex models locally



Constructing Bases




How to construct a basis?

Goal (of much of this whole lecture):

e Build a good basis for a problem

Ingredients:
e Basis functions
e Placement in space
e Semantics



Basis Function

Shape of individual functions:
e Smoothness
e Symmetry
e Support




Ensembles of Functions

‘f\

i

/\

Basis function sets:

e Stationary

= Same function repeating? (dilations)

= Varying shapes



Ensembles of Functions
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_17
0,2 4
0 15

0 0 27
Monomial basis Fourier basis

(orthogonal)
Basis function sets:

e Orthogonality?
= Basis functions span independent directions?

= Advantages: easier, faster, more stable computations
= Disadvantages: strong constraint on function shape



Example: Radial Basis functions

Radial basis function:
e Pick one template function
e Symmetric around “center” point

Instantiate by placing in domain 1D




Placement

MEEEXK o ©® © 4 °
.Q‘ [
e o o @ 0 O o P
© ©o o 0 0 O o 00 0°
© o0 0 0 o o ©0,° %o
e o @ 0 0 @ o0 ® Co
e o0 0 0 o o 0° 0% o 0
Regular grids Irregular

Context:

e Stationary functions, or very similar shape
 How to instantiate?




Placement

Regular grids

Irregular
(w/scaling)




Semantics

Explicit representations
e Height field
e Parametric surface

e Function value corresponds
to actual geometry

Implicit representation
e Scalar fields

e Zero crossings correspond
to actual geometry

_____________________

/
/
/
i
|
+—e
\
\
\




How to shape basis functions?

Back to this problem:

e Shape the functions of an ensemble (a whole basis)

Tools:
e Consistency order
e Frequency space analysis



Consistency Order

target target target
f approx approx approx

zero-order first-order third-order
(PPT cubic splines)

Consistency order:

e A basis of functions is of order k iff it can represent
polynomials of total degree k exactly

e Better fit to smooth targets
e High consistency order: risk of oscillations (later)



Frequency Space Analysis

Which of the following two is better?

‘f\ | |

4 : A

Why?
e Long story...
o We'll look at this next.



A Very Brief Overview
of Sampling Theory



Topics

Topics
e Fourier transform
e Theorems
e Analysis of regularly sampled signals
e Irregular sampling



Fourier Basis

Fourier Basis
e Function space: {/:R — R, f sufficiently smooth}

= Fourier basis can represent
— Functions of finite variation
— Lipchitz-smooth functions

e Basis: sine waves of different frequency and phase:

= Real basis:

{sin 2mwx , cos 2nwx | w € R}

= Complex variant:
{e—Zniwx | w E ]R}

(Euler’s formula: e* = cosx + isinx)



Fourier Transform

Fourier Basis properties:

e Fourier basis: {e "™* | w € R}
= Orthogonal basis
= Projection via scalar products = Fourier transform

e Fourier transform: (R - C) - (F:R - C)
F(w) =f f(x)e 2mxw gy
e Inverse Fourier transform: (F:R - C) » (R - C)

f(w) = f_OOF(x)eZ”ix“’dx



Fourier Transform

Interpreting the result:

e Transforming a real functionf: R - R
e Result: F(w):R - C
= w are frequencies (real)

= Real input f:
Symmetric F(—w) = F(w)

= Qutput are complex numbers

— Magnitude: “power spectrum”
(frequency content)

— Phase: phase spectrum
(encodes shifts)

Re




Important Functions

Some important Fourier-transform pairs

[ box(x) /&inc(m)
L - -

— . = =~
e Box function:

f(x) =box(x) - F(w)=

w

e (Gaussian:

Sin w

:= sinc(w)

_(nw)?

f(x)ze‘am2 — F(a))—\/i e a

B



Higher Dimensional FT

Multi-dimensional Fourier Basis:
e Functions f: R? - C
e 2D Fourier basis:

f(x,y) represented
as combination of

{e—i2nwxx . pTi2Twyy ‘ Wy, Wy € R}

e |In general: all combinations of 1D functions



Convolution

Convolution:
e Weighted average of functions

e Definition: )Q’C\f‘
fH®g() = [ f()g(x-t)dx 1 £

Example:




Theorems

Fourier transform is an isometry:

° (f'.g> — (F:G>
e In particular ||f|| = ||F]|]

Convolution theorem:

« FT(f®g) =F -G
e Fourier Transform converts convolution into
multiplication

= All other cases as well:
FT Y f -9) =FQG,FT(f-g) = FQG,FT 1(F-G) = FRG
= Fourier basis diagonalizes shift-invariant linear operators



Sampling a Signal

Given:
e Signal f:R—> R
e Store digitally:

= Sample regularly ... £(0.3), (0.4), f(0.5) ...
e Question: what information is lost?



Sampling

spatial domain

frequency domain

spatial domain

frequency domain

Au(t)

!

\\/ :’

AFT(w)(f)

/

AN

f

A () u(l)
X
xxxxxx X X% %
3¢ >
X
t

FT@) () e FTw)(f)

5

aliasing

(a) a continuous function and
its frequency spectrum

(¢) sampling: frequencies beyond the Nyquest limit
v./2 appear as aliasing

As()

LT

A FT(s)()

|

r

@ u(t)®FT(R)

rvevdl, sy

t

(FT(s)(f) ®AFT(M)(f)) *R(f)

J

§

R(f)

; >
f

(b) a regular sampling pattern
(impulse train) and its frequency spectrum

(d) reconstruction: filtering with a low-pass filter R
to remove replicated spectra



Regular Sampling

Case I: Sampling

e Band-limited signals can be represented exactly
= Sampling with frequency vq:
Highest frequency in Fourier spectrum < v, /2
e Higher frequencies alias
= Aliasing artifacts (low-frequency patterns)
= Cannot be removed after sampling (loss of information)

band-limited aliasing



Regular Sampling

Case Ill: Reconstruction
e When reconstructing from discrete samples
e Use band-limited basis functions

= Highest frequency in Fourier spectrum < v, /2
= Otherwise: Reconstruction aliasing




Regular Sampling

Reconstruction Filters

e Optimal filter: sinc

(no frequencies discarded) QR

e However:

= Ringing artifacts in spatial domain

= Not useful for images (better for audio) Ringing by sinc reconstruction
C . from [Mitchell & Netravali,
e Lompromise Siggraph 1988]

= Gaussian filter
(most frequently used)

= There exist better ones,
such as Mitchell-Netravalli,
Lancos, etc...

2D sinc 2D Gaussian



Irregular Sampling

Irregular Sampling
 No comparable formal theory
e However: similar idea

= Band-limited by “sampling frequency”
= Sampling frequency = mean sample spacing
— Not as clearly defined as in regular grids
— May vary locally (adaptive sampling)
e Aliasing
= Random sampling creates noise as aliasing artifacts

= Evenly distributed sample concentrate noise in higher frequency
bands in comparison to purely random sampling



Consequences for our applications

When designing bases for function spaces
e Use band-limited functions
e Typical scenario:

= Regular grid with spacing o
= Grid points g;

—o.)2
= Use functions: exp (— & ;’;‘) )
e Irregular sampling:

= Same idea
= Use estimated sample spacing instead of grid width

= Set 0 to average sample spacing to neighbors



Tutorials:
Linear Algebra

Software



MPI Informatik Open Source
GeoX Q
Gw'netric Moclulins Toolkit
GeoX comes with several linear algebra libraries:

e 2D, 3D, 4D vectors and matrices: LinearAlgebra.h

e Large (dense) vectors and matrices:
DynamiclinearAlgebra.h

e Gaussian elimination: invertMatrix()
e Sparse matrices: SparselinearAlgebra.h

lterative solvers (Gauss-Seidel, conjugate gradients,
power iteration): /terativeSolvers.h



