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Interpolation and Approximation

Interpolation - Least-Squares Techniques
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Interpolation Problem

First approach to modeling smooth objects:
e Given a set of points along a curve or surface
e Choose basis functions that span a suitable function space

= Smooth basis functions
= Any linear combination will be smooth, too

e Find a linear combination such that the curve/surface
interpolates the given points

N,
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Interpolation Problem

Different types of interpolation:

e Nearest | & —e—
—-o— —e

e Linear '\./0\‘

* Polynomial .\o/.\o \/\\/‘
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General Formulation

Settings:

e Domain Q2 = R%, mapping to R. f(x)t

e Looking for a function f: Q — R. @ o
e Basisset: B=1{b,,...,b,}, b: Q —>R. X,

e Represent f as linear combination of basis functions:

n A
fl(x):z/’tibi(x) , i.e. fis just determined by }\—( fl]
i=1 A

n

e Function values: {(x;, y;), ..., (X,, ¥.)}, (X, y;) € R% xR

e We want to find A such that: Vie{l,...n}: f,(x,)=y,
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lllustration

1D Example

(00=DA000  Viefl.i}:f(x)=y,
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Solving the Interpolation Problem

Solution: linear system of equations

e Evaluate basis functions at points x;:

Vie{l,..n}: ) Ab(x,)=y,
i=1

e Matrix form:

b (x,) -

b(x,) -

bn()‘l)

b,(x,)

Y1

Yn
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lllustration

interpolation problem

y, =2
V=2
|><7L2 XAy
X Ay
|><7»1

linear system
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lllustration

y, =2
yle y3=2
IXIXQ .XAKZ
X Ay X A
|><7\,1 !x},i

anything in between
does not matter
(determined by basis only)
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Example

Example: Polynomial Interpolation

e Monomial basis B ={1, x, x2, x3, ..., x™1}

e Linear system to solve:

1 x,

1 x,

1 x

n

n-1
Xy

n-1
X,

Xn—l

n

Z

Y1

e

“Vandermonde Matrix”
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Example with Numbers

Example with numbers

e Quadratic monomial basis B = {1, x, x?}

e Function values: {(0,2), (1,0), (2,3)} [(x, v)]

e Linear system to solve:

_ e
N = O

e Result:

ﬂﬁ
1 4,
A

Ay=2,2,=-9/2, 1,=5/2

2

3

NS

(0,2)

(1,0)

(2,3)
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Condition Number...

The interpolation problem is ill conditioned:

e For equidistant x; the condition number of the

Vandermode matrix grows exponentially with n

(maximum degree+1 = number of points to interpolate)

cond 25e+17

2,0E+17
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1,0E+17

5,0E+16
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cond 1.0E+18
1,0E+16
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1,0E+00
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Why ill-conditioned?

e Solution with inverse Vandermonde matrix:

Mx=y =>x=M1ly=(VD!UTy 25 0 0 0
D — 0O 11 O 0
0O 0 09 0

0 O0 0 0.000000001

e Condition number defined as a ratio between largest and
smallest singular value: ¢, /o

cond 25e+17

in

2,0E+17
1,5E+17 I
1,0E+17 I
5,0E+16 /

0,0E+00 T T T j \
0 5 10 15 20 25

#points




Why ill-conditioned?

Monomial Basis:

e Functions become 2

1,8 1

increasingly indistinguishable | ¢
with degree (non orthogonal) |**]

1,2 -

e Only differ in growing rate .
(x' growth faster than x1) 08 |

0,6 -

e For higher degrees numerical |4
.« . 0,2 -
precision became a key factor

0 05 1 15 2

Monomial basis
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The Cure...

This problem can be fixed:
e Use orthogonal polynomial basis

e How to get one? — e.g.
Gram-Schmidt orthogonalization
(see assignment sheet #1)

e Legendre polynomials —
orthonormal on [-1..1]

e Much better condition of the
linear system (converges to 1)

¥
\ -5
-1 -0, 0.6

14 7"

J
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However...

This does not fix all problems:

e Polynomial interpolation is instable

= “Runge’s phenomenon”: Oscillating behavior

= Small changes in control points can lead to
very different result. x; sequence important.

e Weierstral} approximation theorem:

= Smooth functions (C°) can be approximated
arbitrarily well with polynomials

= However: Need carefully chosen construction
for convergence

= Not useful in practice
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Runge’s Phenomenon
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Conclusion

Conclusion: Need a better basis for interpolation

For example, piecewise polynomials will work much
better — Splines
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Approximation
(Reweighted) Least-squares,
Scattered Data



Approximation

Common Situation:

e We have many data points, they might be noisy
e Example: Scanned data

e Want to approximate the data with a smooth curve /
surface

What we need:

e Criterion —what is a good approximation?
e Methods to compute this approximation
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Least-Squares

We assume the following scenario:

e We have a set of function values y; at positions x..
(1D — 1D for now)

e The independent variables x; are known exactly.

e The dependent variables y. are known approximately,
with some error.

e The error is normal distributed, independent, and with the
same distribution at every point (normal noise).

 We know the class of functions from which the noisy
samples were taken.
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Situation

Y2

Xl XZ Xn

Situation:
e Original sample points taken at x; from original f.
e Unknown Gaussian noise added to each y..
e Want to estimated reconstructedf:
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Maximum Likelihood Estimation

Goal:

e Maximize the probability that the data originated from
the reconstructed curve f fits the points

e “Maximum likelihood estimation”

_ 1 (x—pf
el 2

Gaussian normal distribution
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Maximum Likelihood Estimation

argmax | [N, (f(x,)-y,)
f i=1
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Maximum Likelihood Estimation

argmaXHNOG(f(x) y,)= argmaxﬁg\/l_exp(_ (f(xé)a_zyi) j

7
—argmaxlnﬁ . exp(—(f(xi)_yi)zj

i=1 O~ 2 20°

: 1 ) (fx)-»)
— 1 . I i
arg;naxlzllﬁ ng\/_j - }

_argmlnz(f(xz) y’)

CT

:argfminZ(f(X,-)_yz')

27/ 85



Least-Squares Approximation

This shows:

e The solution with maximum likelihood in the considered
scenario (y-direction, iid Gaussian noise) minimizes the
sum of squared errors.

Next: Compute optimal coefficients
~ k
e Linear ansatz: f(x)=> 4b,(x)
j=1

e Task: determine optimal 4,
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Maximum Likelihood Estimation

Compute optimal coefficients:

argmin > (F(x,)- y,)? =argmin’}’ {iz,-b,-(x,-)]yi}

- argkminzn: :)\Tb(xi )—y, ]2
i=1

—arg min(A{Zb(xi )b (x, )})\ -2> yA'b(x,)+ ) yizj
A i=1 i=1 i=1
X'AX bx C

= Quadratic optimization problem
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Critical Point

A=

A

A

~k entries , b(X) =

J

b, (x)

b, (x) )

&k entries , bi —

b;(x;) |

b,(x,)

vx[x{ib(xi)b%x,-)}x—ZEyI-ATb(x,-)Jriyfj

= z{z b(x,)b"(x, )}}\ ~2

{ib(xi)b%xi)}x:

*nentries, y =

Yu))

Y1

snentries
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Critical Point

This can also be written as:

<b1jb1> <b11bk>}(%1} [(yb1>
by} - (b)) i) Lyb,)

with:
<bi'bj> ::ibi(xt)'bj(xt)

(y,b,):=3 b,(x.)- .
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Summary

Statistical model yields least-squares criterion:
argmax [ [No, (F(x)-y)  —  argmind (7(x)- 1)
i=1 f i=1
Linear function space leads to quadratic objective:

7(X):=lebj(x) — argminzn: [Zklﬁjbj(xi)]—yi

Critical point: linear system
<b1'b1> <b1'bk> 4 <y'b1> <bi’bj>::Zn:bi(Xt)'bj(Xt)
L =] | with: o
<bk'b1> <bk'bk> A <Y»bk> <y,bi>::Zbi(xt)-yt
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Variants

Weighted least squares:

e In case the data point’s noise has different standard
deviations o at the different data points

e This gives a weighted least squares problem
e Noisier points have smaller influence
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Same procedure as prev. slides...

argmaXHN (f(x) V. )= argmaxH

110' 2T

exp(_ (Fe)-2.) J
20

i

- 1 (F(Xi)_yi)z
=arg max log exp| —
f Hai\/Z'n [ 20

i

: 1) (Fx)-x)
— ] _ i 1
arg ;naX ;|:( (0324 - mj 261-2 :|

:argmini(f(x,-)—zy,-)z

20,

1

—al‘gmlnz —(f(X )-y,)’

i=1 G
H,—J
weights
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Result

Linear system for the general case:

<b1;b1> <b1;bn> 11 <y,b1> <bi,bj>:= Zn:bi(xi)'bj(x,-)'a)z(xi)
5 : D= with: =
{(bn,b1> <bn,bn>[ } [ }

) b)) (b)) =Ybx)y, @)

n

o (x)=-1, ie alx, )=
O O;

1

Larger ® — larger influence of data point

36 /85



Least-Squares Linear Systems

Remark:

e We get the same result, if we solve an overdetermined
system for the interpolation problem in a least squares
sense

e Least-squares solution to linear system:
Ax=Db

—> arg min(AX = b)2

X

=arg min(xTATAx —~2AXx-b+ bTb>

X

compute gradient :
—2A"Ax=2A"b, i.e:A"Ax=A"b

e “System of normal equations”
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SVD

Problem with normal equations:

e Condition number of normal equations is square of that
of A itself

e Proof:
SVD: A=UDV
A"A=V'DU'UDV =V'D*V

e For “evil” (i.e. ill conditioned) problems, normal equations
are not the best way to solve the problem

e In that case, we can use the SVD to solve the problem...
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Least-Squares with SVD

Compute singular value decomposition, then:
A=UDV
A"Ax=A"b
V'DU'UDVx=V'DU'b
< V'D°Vx=V'DU'D
<D’Vvx=DU'Db
<DVx=U'b
<x=V'D'U'D

If D is not invertible (not full rank), inverting the non-
zero entries only yields the least-squares solution of
minimal norm (critical point with || x || minimal).
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One more Variant...

Function Approximation b
e Given the following problem: W

= We know a function f: Q D R"” —> R
= We want to approximate fin

~ k
a linear subspace: flx):= Zijbj(x)
j=1

= How to choose A?

e Difference: Continuous function as “data” to be matched.
e Solution: Almost the same as before...
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Function Approximation

Objective function:

2

o 7(X)—f — min
e We obtain:
2/1jbj(x)—f =<Zk;z}b] (X)—f,zk;ijbj(x)—f>
(by,by) -+ (b,.b;) )
=A"| A-2>" 4;(b;(x),f)+{f.f)
(bi,b,) - (bb,)) 7
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Function Approximation

Critical point (i.e., solution):

with:

(f.9)=[ f(x)g(x)dx (unweighted version)

(f.9) = jf(x)g(x)a)z(x)dx (weighted version)

<b1,b1>

<b1;bk>

(biby)

(b,.b,)

Z

A

(b, ({<),f )
(b, (x).f)
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Summary

What we can do so far:

e Least-squares approximation:

= Given more data points than basis functions,
we can fit an approximate function from
a basis function set to the data

e Variants:

= We can solve linear systems in
a least-squares sense

= Given a function, we can fit the
most similar approximation from a subspace

e Extensions:

= Any known uncertainty in the data can be modeled by weights

= The multi-dimensional case is similar

v

XAy

% Ay
><7\_1

I><7L2

IX7\‘1 IX?Ll

44 [ 85



Remaining problems

What is missing:
e Any error in x-direction is ignored so far (only y-direction)
= We will look at that problem next (total least-squares)...

e Noise must be Gaussian

= Can be generalized using iteratively reweighted least-squares
(M-estimators)
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Approximation
Total Least Squares



Statistical Model

Generative Model:

o ® o
® @
) ) ®
e @
P ]
—_— ) ()
® ®
o
o
@ () )
® (]
o ©® ®
(]
original curve / surface noisy sample points
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Statistical Model

Generative Model:

1. Determine sample point (uniform)

2. Add noise (Gaussian)

) )

sampling

Gaussian noise

many samples

distribution
(in space)
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Squared Distance Function

Result:
e Gaussian distribution convolved with object
e No analytical density

Approximation:
e 1D Gaussian — minimize squared residual
e This case — minimize squared distance function
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General Total Least Squares

General Total Least Squares:
e Given a class of objects obj with parameters A € Rk,

e A set of n sample points (Gaussian, iid, isotropic
covariance) d;, € R™.

Total least squares solution minimizes:

arg min Zn: dist(obj, ,d. )’

reRK i=1

In general: Non-linear, possibly constrained (restrictions
on admissible As) optimization problem

Special cases can be solved exactly
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Fitting Affine Subspaces

The following problem can be solved exactly:
e Best fitting line to a set of 2D, 3D points
e Best fitting plane to a set of 3D points

e In general: Affine subspace of R™, with dimension
d < m that best approximates a set of data points
X e R™,

This will lead to the - famous - principle component
analysis (PCA).



Start: 0-dim Subspaces

Easy Start: The optimal O-dimensional affine subspace

e Given a set X of n data points x; € R™, what is the point
Xo With minimum least square error to all data points?

e Answer: just the sample mean (average)...:

1
Xo = m(X) = ~ /X
i=1
) (]
) ® .
@
® ) ® xo’ °



One Dimensional Subspaces...

Next:

e What is the optimal line (1D subspace) that approximates
a set of data points X?

e Two questions:
= Optimum origin (point on the line)?
— This is still the average
= Optimum direction?
— We will look at that next...

e Parametric line equation:

x(t) =X, +t.T (X € R™, 1€ R™ ||| = 1)



Best Fitting Line

Line equation: line
r (unit length)
X(t) =xp+t.r X € R re R"|r|| =1) ’
0

Best projection on any line:

ti = (F,Xi — XO>

Objective Function:

n n
Z dist(line, x;)?* = Z([xo +t;r] — x;)°
i=1

=1




Best Fitting Line

Optimal parameters t:: t; = (r,X; — Xg)
n

n n
Z dist(line, x;)? = z ([xo + t;r] — x;)% = z (tir — [X; — Xo])?
i=1 i=1 i=1
n 5 n n
:Z. irz_ZE, i(I',Xi—X0> +z [Xi_XO]2
i=1 i=1 =1
n 5 n 2 n
:z (r,x; —xq)" — 2 (r,x; —Xq)" + z [x; — X]?
i=1 =1 =1

n

o DI D DU L M G

4 N 4

-

Matrix=:S const. W.r.t. r



Best Fitting Line

Result:

n
dist(line,x;)*= —r1Sr + const.
i=1
with S = Y (x;—x)(x;—%) ", |Ir] =1

Eigenvalue Problem:
e r'Sris a Rayleigh quotient
e Minimizing the energy: maximum quotient

e Solution: eigenvector with largest eigenvalue



General Case

Fitting a d-dimensional affine subspace:
e d=1:line
e d=2:plane
e d=3:3D subspace

Simple rule:

e Use the d eigenvectors with the largest eigenvalues from
the spectrum of S.

e Gives the (total) least-squares optimal subspace that
approximates the data set X.



General Case

Procedure: Principal Component Analysis (PCA)

e Compute average x, = m(D)

e Compute “scatter matrix” S :an(d,. ~x, \d, -x, )"

i=1
Let (A,,v4), ... ,(4,,v,) be sorted eigenvalue/vector pairs
of S, where A4, is the largest, and the v, are of unit length.

d
The subspace spanned by plty ity )= X, +Z(t,-Vi)
i=1

approximates the data optimally in terms of squared
distances to a point in the subspace.

e Stronger: projecting the data into this subspace is the best
d-dimensional (affine subspace) data approximation.
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Statistical Interpretation

X

Sli—*
M=

=1
1 n
P=——5=— 1;(xi—xo><xi—x0f
1 1 s
Ng, (X) = 7 exp| 3 xX—wWI " x—p
(2m)2 det(X)1/2
Observation:
" | | | = {X}iz1.1

e PCA can be interpreted as fitting a Gaussian distribution
and computing the main axes



Applications

Fitting a line to a point cloud in R%:  x(t)=x,+t-V,

e Sample mean and direction
of maximum eigenvalue

Plane Fitting in R3:

e Sample mean and the two
directions of maximum eigenvalues

<.e @ e @ =

e Smallest eigenvalve ~ Em o-2-o
. . , , (A,/ A;) small
= Eigenvector points in normal direction
= Aspect ratio (4;/ A,) is @ measure of “flatness” [~ B
(quality of fit) .

-
S~

(4,/ A;) larger



Applications

Application: Normal estimation in point clouds
* Given a set of points p; € R® that form a smooth surface.

e We want to estimate:
= Surface normals
= Sampling spacing

Algorithm:

e For each point, compute the k nearest neighbors (k = 20)

e Compute a PCA (average, main axes) of these points
= Eigenvector with smallest eigenvalue — normal direction
= The other two eigenvectors — tangent vectors
= Tangent eigenvalues give sample spacing estimate
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Example

normals
Wi,
/

i
1'}’

s\
£

Ly \I%w
= I
=T i 2 %
4//;‘:; T3 \_\\.\\‘.i I \\‘l{‘ \w q.f Wﬂ/; K;jf// =
4/ vl ‘.""3‘\;{\ RO 0 //;f;o—:f/gé
LV e /‘F’/’(//’/
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Example

Example:

- k-nearest neighbors

- PCA coordinate frames
at each point

- Quadratic monomials
(bivariate, local coords.)

- Least squares fit
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