Geometric Modeling

Summer Semester 2012

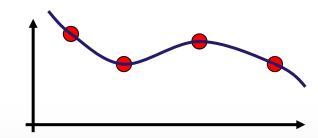
Interpolation and Approximation Interpolation · Least-Squares Techniques

Interpolation General & Polynomial Interpolation

Interpolation Problem

First approach to modeling smooth objects:

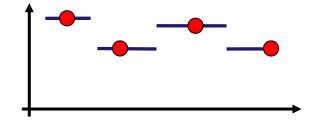
- Given a set of points along a curve or surface
- Choose basis functions that span a suitable function space
 - Smooth basis functions
 - Any linear combination will be smooth, too
- Find a linear combination such that the curve/surface interpolates the given points



Interpolation Problem

Different types of interpolation:

• Nearest





General Formulation

Settings:

- Domain $\Omega \subseteq \mathbb{R}^{d_s}$, mapping to \mathbb{R} .
- Looking for a function $f: \Omega \to \mathbb{R}$.
- Basis set: $B = \{b_1, \dots, b_n\}, b_i: \Omega \rightarrow \mathbb{R}$.
- Represent *f* as linear combination of basis functions:

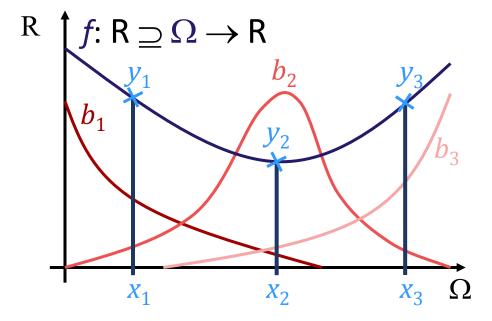
 $f(\mathbf{x})$

$$f_{\lambda}(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i b_i(\mathbf{x})$$
, i.e. *f* is just determined by $\lambda = \begin{bmatrix} f_{\lambda} \\ f_{\lambda} \end{bmatrix}$

- Function values: $\{(x_1, y_1), ..., (x_n, y_n)\}, (x_i, y_i) \in \mathbb{R}^{d_s} \times \mathbb{R}$
- We want to find λ such that: $\forall i \in \{1, ..., n\} : f_{\lambda}(\mathbf{x}_i) = y_i$

X₁

Illustration



1D Example

$$f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i b_i(\mathbf{x}) \qquad \forall i \in \{1, \dots, n\} : f(\mathbf{x}_i) = y_i$$

Solving the Interpolation Problem

Solution: linear system of equations

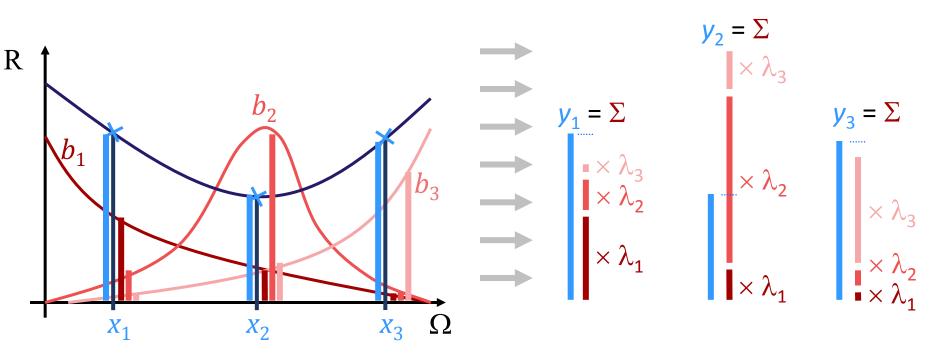
• Evaluate basis functions at points **x**_i:

$$\forall i \in \{1, \dots, n\}: \sum_{i=1}^n \lambda_i b_i(\mathbf{x}_i) = y_i$$

• Matrix form:

$$\begin{pmatrix} b_1(\mathbf{x}_1) & \cdots & b_n(\mathbf{x}_1) \\ \vdots & & \vdots \\ b_1(\mathbf{x}_n) & \cdots & b_n(\mathbf{x}_n) \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

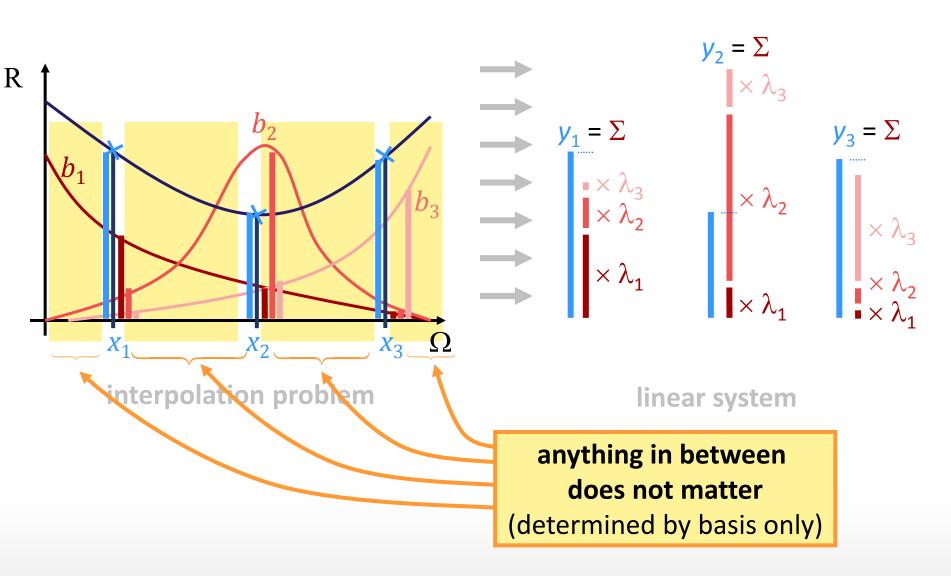
Illustration



interpolation problem

linear system

Illustration



Example

Example: Polynomial Interpolation

- Monomial basis $B = \{1, x, x^2, x^3, ..., x^{n-1}\}$
- Linear system to solve:

$$\begin{pmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

"Vandermonde Matrix"

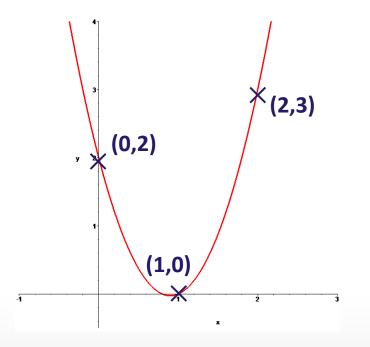
Example with Numbers

Example with numbers

- Quadratic monomial basis B = {1, x, x²}
- Function values: {(0,2), (1,0), (2,3)} [(x, y)]
- Linear system to solve:

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$$

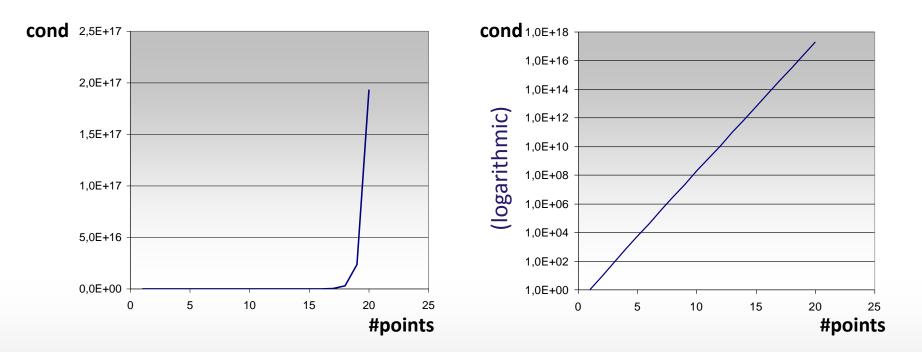
• Result: $\lambda_1 = 2$, $\lambda_2 = -9/2$, $\lambda_3 = 5/2$



Condition Number...

The interpolation problem is ill conditioned:

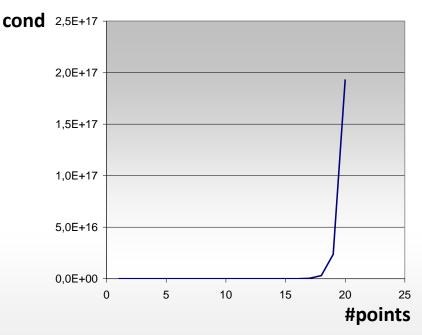
 For equidistant x_i, the condition number of the Vandermode matrix grows exponentially with n (maximum degree+1 = number of points to interpolate)



Why ill-conditioned?

- Solution with inverse Vandermonde matrix: $Mx = y \implies x = M^{-1}y = (V D^{-1} U^{T})y$ $D := \begin{pmatrix} 2.5 & 0 & 0 & 0 \\ 0 & 1.1 & 0 & 0 \\ 0 & 0 & 0.9 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
- Condition number defined as a ratio between largest and smallest singular value: $\sigma_{\rm max}/\sigma_{\rm min}$

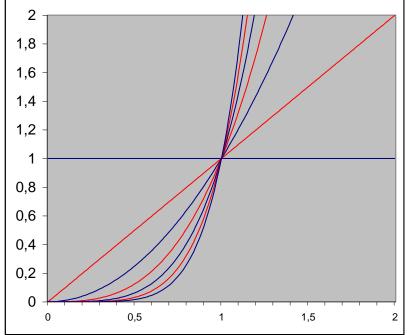
0.00000001



Why ill-conditioned?

Monomial Basis:

- Functions become increasingly indistinguishable with degree (non orthogonal)
- Only differ in growing rate (xⁱ growth faster than xⁱ⁻¹)
- For higher degrees numerical precision became a key factor

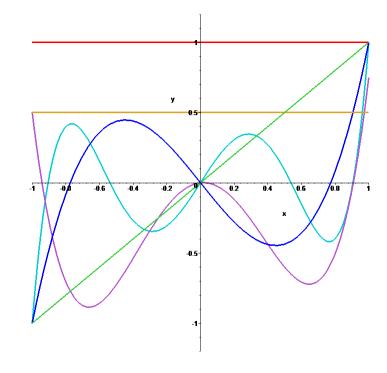


Monomial basis

The Cure...

This problem can be fixed:

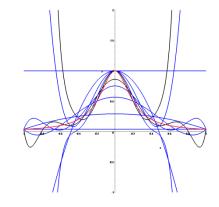
- Use orthogonal polynomial basis
- How to get one? → e.g.
 Gram-Schmidt orthogonalization (see assignment sheet #1)
- Legendre polynomials orthonormal on [-1..1]
- Much better condition of the linear system (converges to 1)



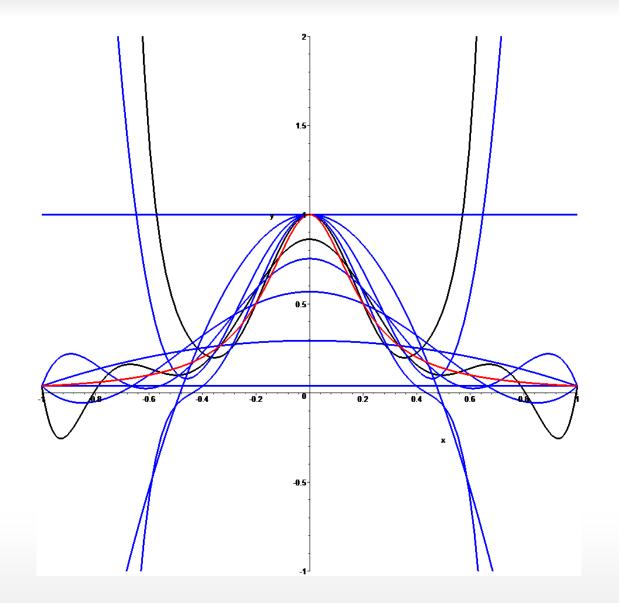
However...

This does not fix all problems:

- Polynomial interpolation is instable
 - "Runge's phenomenon": Oscillating behavior
 - Small changes in control points can lead to very different result. x_i sequence important.
- Weierstraß approximation theorem:
 - Smooth functions (C⁰) can be approximated arbitrarily well with polynomials
 - However: Need carefully chosen construction for convergence
 - Not useful in practice



Runge's Phenomenon



Conclusion

Conclusion: Need a better basis for interpolation

For example, piecewise polynomials will work much better \rightarrow Splines

Approximation (Reweighted) Least-squares, Scattered Data

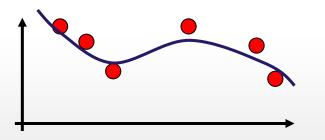
Approximation

Common Situation:

- We have many data points, they might be noisy
- Example: Scanned data
- Want to approximate the data with a smooth curve / surface

What we need:

- Criterion what is a good approximation?
- Methods to compute this approximation

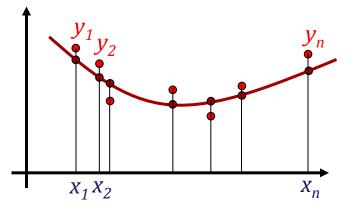


Least-Squares

We assume the following scenario:

- We have a set of function values y_i at positions x_i . (1D \rightarrow 1D for now)
- The independent variables x_i are known exactly.
- The dependent variables y_i are known approximately, with some error.
- The error is *normal distributed, independent,* and with the *same distribution* at every point (normal noise).
- We know the class of functions from which the noisy samples were taken.

Situation

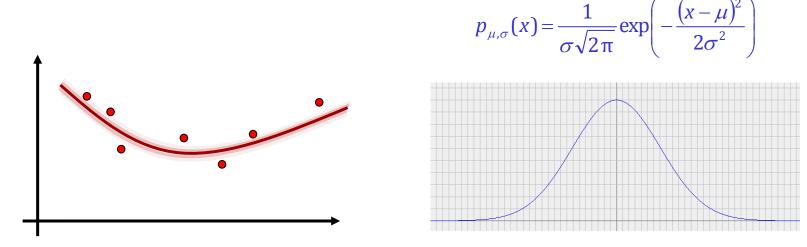


Situation:

- Original sample points taken at x_i from original f.
- Unknown Gaussian noise added to each y_i.
- Want to estimated reconstructed \tilde{f} .

Goal:

- Maximize the probability that the data originated from the reconstructed curve \tilde{f} fits the points
- "Maximum likelihood estimation"



Gaussian normal distribution

 $\arg\max_{\widetilde{f}}\prod_{i=1}^{n}N_{0,\sigma}(\widetilde{f}(x_{i})-y_{i})$

$$\arg \max_{\widetilde{f}} \prod_{i=1}^{n} N_{0,\sigma}(\widetilde{f}(x_i) - y_i) = \arg \max_{\widetilde{f}} \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\widetilde{f}(x_i) - y_i)^2}{2\sigma^2}\right)$$
$$= \arg \max_{\widetilde{f}} \ln \prod_{i=1}^{n} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\widetilde{f}(x_i) - y_i)^2}{2\sigma^2}\right)$$
$$= \arg \max_{\widetilde{f}} \sum_{i=1}^{n} \left[\left(\ln \frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{(\widetilde{f}(x_i) - y_i)^2}{2\sigma^2}\right]$$
$$= \arg \min_{\widetilde{f}} \sum_{i=1}^{n} \frac{(\widetilde{f}(x_i) - y_i)^2}{2\sigma^2}$$
$$= \arg \min_{\widetilde{f}} \sum_{i=1}^{n} (\widetilde{f}(x_i) - y_i)^2$$

Least-Squares Approximation

This shows:

 The solution with maximum likelihood in the considered scenario (y-direction, iid Gaussian noise) minimizes the sum of squared errors.

Next: Compute optimal coefficients

- Linear ansatz: $\widetilde{f}(x) \coloneqq \sum_{j=1}^{k} \lambda_j b_j(x)$
- Task: determine optimal λ_i

Compute optimal coefficients:

 $\arg\min_{\lambda} \sum_{i=1}^{n} (\tilde{f}(x_{i}) - y_{i})^{2} = \arg\min_{\lambda} \sum_{i=1}^{n} \left[\left(\sum_{j=1}^{k} \lambda_{j} b_{j}(x_{i}) \right) - y_{i} \right]^{2}$ $= \arg\min_{\lambda} \sum_{i=1}^{n} \left[\lambda^{T} \mathbf{b}(x_{i}) - y_{i} \right]^{2}$ $= \arg\min_{\lambda} \left(\lambda^{T} \left[\sum_{i=1}^{n} \mathbf{b}(x_{i}) \mathbf{b}^{T}(x_{i}) \right] \lambda - 2 \sum_{i=1}^{n} y_{i} \lambda^{T} \mathbf{b}(x_{i}) + \sum_{i=1}^{n} y_{i}^{2} \right)$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \qquad \mathbf{b} \mathbf{x} \qquad \mathbf{c}$

 \Rightarrow *Quadratic optimization* problem

Critical Point

$$\begin{split} \mathbf{\lambda} &\coloneqq \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} k \text{ entries, } \mathbf{b}(x) \coloneqq \begin{pmatrix} b_1(x) \\ \vdots \\ b_k(x) \end{pmatrix} k \text{ entries, } \mathbf{b}_i &\coloneqq \begin{pmatrix} b_i(x_1) \\ \vdots \\ b_i(x_n) \end{pmatrix} n \text{ entries, } \mathbf{y} \coloneqq \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} n \text{ entries} \end{split}$$

$$\nabla_{\mathbf{\lambda}} \left(\mathbf{\lambda}^{\mathrm{T}} \left[\sum_{i=1}^{n} \mathbf{b}(x_i) \mathbf{b}^{\mathrm{T}}(x_i) \right] \mathbf{\lambda} - 2 \sum_{i=1}^{n} y_i \mathbf{\lambda}^{\mathrm{T}} \mathbf{b}(x_i) + \sum_{i=1}^{n} y_i^2 \right) \\ &= 2 \left[\sum_{i=1}^{n} \mathbf{b}(x_i) \mathbf{b}^{\mathrm{T}}(x_i) \right] \mathbf{\lambda} - 2 \left(\begin{array}{c} \mathbf{y}^{\mathrm{T}} \mathbf{b}_1 \\ \vdots \\ \mathbf{y}^{\mathrm{T}} \mathbf{b}_k \end{array} \right) \end{split}$$

We obtain a linear system of equations:

$$\left[\sum_{i=1}^{n} \mathbf{b}(x_i) \mathbf{b}^{\mathrm{T}}(x_i)\right] \boldsymbol{\lambda} = \begin{pmatrix} \mathbf{y}^{\mathrm{T}} \mathbf{b}_1 \\ \vdots \\ \mathbf{y}^{\mathrm{T}} \mathbf{b}_k \end{pmatrix}$$

Critical Point

This can also be written as:

$$\begin{pmatrix} \left\langle \mathbf{b}_{1}, \mathbf{b}_{1} \right\rangle & \cdots & \left\langle \mathbf{b}_{1}, \mathbf{b}_{k} \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle \mathbf{b}_{k}, \mathbf{b}_{1} \right\rangle & \cdots & \left\langle \mathbf{b}_{k}, \mathbf{b}_{k} \right\rangle \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} = \begin{pmatrix} \left\langle \mathbf{y}, \mathbf{b}_{1} \right\rangle \\ \vdots \\ \left\langle \mathbf{y}, \mathbf{b}_{k} \right\rangle \end{pmatrix}$$

with:

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle \coloneqq \sum_{t=1}^n b_i(x_t) \cdot b_j(x_t)$$

 $\langle \mathbf{y}, \mathbf{b}_i \rangle \coloneqq \sum_{t=1}^n b_i(x_t) \cdot y_t$

Summary

Statistical model yields least-squares criterion:

$$\arg\max_{\widetilde{f}} \prod_{i=1}^{n} N_{0,\sigma}(\widetilde{f}(x_i) - y_i) \longrightarrow \arg\min_{\widetilde{f}} \sum_{i=1}^{n} (\widetilde{f}(x_i) - y_i)^2$$

Linear function space leads to quadratic objective:

$$\widetilde{f}(x) \coloneqq \sum_{j=1}^{k} \lambda_j b_j(x) \longrightarrow \arg \min_{\lambda} \sum_{i=1}^{n} \left[\left(\sum_{j=1}^{k} \lambda_j b_j(x_i) \right) - y_i \right]^2$$

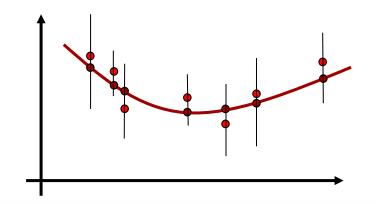
Critical point: linear system

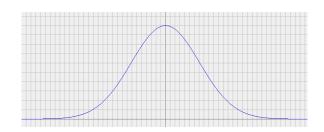
$$\begin{pmatrix} \langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle & \cdots & \langle \mathbf{b}_{1}, \mathbf{b}_{k} \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{b}_{k}, \mathbf{b}_{1} \rangle & \cdots & \langle \mathbf{b}_{k}, \mathbf{b}_{k} \rangle \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} = \begin{pmatrix} \langle \mathbf{y}, \mathbf{b}_{1} \rangle \\ \vdots \\ \langle \mathbf{y}, \mathbf{b}_{k} \rangle \end{pmatrix} \text{ with: } \begin{cases} \langle \mathbf{b}_{i}, \mathbf{b}_{j} \rangle \coloneqq \sum_{t=1}^{n} b_{i}(x_{t}) \cdot b_{j}(x_{t}) \\ \langle \mathbf{y}, \mathbf{b}_{i} \rangle \coloneqq \sum_{t=1}^{n} b_{i}(x_{t}) \cdot y_{t} \end{cases}$$

Variants

Weighted least squares:

- In case the data point's noise has different standard deviations σ at the different data points
- This gives a weighted least squares problem
- Noisier points have smaller influence





Same procedure as prev. slides...

$$\arg\max_{\widetilde{f}} \prod_{i=1}^{n} N_{\sigma}(\widetilde{f}(x_{i}) - y_{i}) = \arg\max_{\widetilde{f}} \prod_{i=1}^{n} \frac{1}{\sigma_{i}\sqrt{2\pi}} \exp\left(-\frac{(\widetilde{f}(x_{i}) - y_{i})^{2}}{2\sigma_{i}^{2}}\right)$$
$$= \arg\max_{\widetilde{f}} \log\prod_{i=1}^{n} \frac{1}{\sigma_{i}\sqrt{2\pi}} \exp\left(-\frac{(\widetilde{f}(x_{i}) - y_{i})^{2}}{2\sigma_{i}^{2}}\right)$$
$$= \arg\max_{\widetilde{f}} \sum_{i=1}^{n} \left[\left(\log\frac{1}{\sigma_{i}\sqrt{2\pi}}\right) - \frac{(\widetilde{f}(x_{i}) - y_{i})^{2}}{2\sigma_{i}^{2}}\right]$$
$$= \arg\min_{\widetilde{f}} \sum_{i=1}^{n} \frac{(\widetilde{f}(x_{i}) - y_{i})^{2}}{2\sigma_{i}^{2}}$$
$$= \arg\min_{\widetilde{f}} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} (\widetilde{f}(x_{i}) - y_{i})^{2}$$
weights

Result

Linear system for the general case:

$$\begin{pmatrix} \left\langle \mathbf{b}_{1}, \mathbf{b}_{1} \right\rangle & \cdots & \left\langle \mathbf{b}_{1}, \mathbf{b}_{n} \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle \mathbf{b}_{n}, \mathbf{b}_{1} \right\rangle & \cdots & \left\langle \mathbf{b}_{n}, \mathbf{b}_{n} \right\rangle \end{pmatrix} \begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{n} \end{pmatrix} = \begin{pmatrix} \left\langle \mathbf{y}, \mathbf{b}_{1} \right\rangle \\ \vdots \\ \left\langle \mathbf{y}, \mathbf{b}_{n} \right\rangle \end{pmatrix} & \left\langle \mathbf{b}_{i}, \mathbf{b}_{j} \right\rangle \coloneqq \sum_{l=1}^{n} b_{i}(x_{i}) \cdot b_{j}(x_{i}) \cdot \boldsymbol{\omega}^{2}(x_{i}) \\ \text{with:} \\ \left\langle \mathbf{y}, \mathbf{b}_{n} \right\rangle \coloneqq \left\langle \mathbf{y}, \mathbf{b}_{i} \right\rangle \coloneqq \sum_{l=1}^{n} b_{i}(x_{i}) \cdot y_{i} \cdot \boldsymbol{\omega}^{2}(x_{i})$$

$$\omega^2(x_i) = \frac{1}{\sigma_i^2}$$
, i.e. $\omega(x_i) = \frac{1}{\sigma_i}$

Larger $\omega \rightarrow$ larger influence of data point

Least-Squares Linear Systems

Remark:

- We get the same result, if we solve an overdetermined system for the interpolation problem in a least squares sense
- Least-squares solution to linear system:

```
A\mathbf{x} = \mathbf{b}

\rightarrow \arg \min_{\mathbf{x}} (\mathbf{A}\mathbf{x} - \mathbf{b})^{2}

= \arg \min_{\mathbf{x}} (\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A}\mathbf{x} - 2\mathbf{A}\mathbf{x} \cdot \mathbf{b} + \mathbf{b}^{T} \mathbf{b})

compute gradient :

\rightarrow 2\mathbf{A}^{T} \mathbf{A}\mathbf{x} = 2\mathbf{A}^{T} \mathbf{b}, \text{ i.e.: } \mathbf{A}^{T} \mathbf{A}\mathbf{x} = \mathbf{A}^{T} \mathbf{b}
```

"System of normal equations"

SVD

Problem with normal equations:

- Condition number of normal equations is square of that of A itself
- Proof:

```
SVD: \mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}
\mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{V}^{\mathrm{T}}\mathbf{D}\mathbf{U}^{\mathrm{T}}\mathbf{U}\mathbf{D}\mathbf{V} = \mathbf{V}^{\mathrm{T}}\mathbf{D}^{2}\mathbf{V}
```

- For "evil" (i.e. ill conditioned) problems, normal equations are not the best way to solve the problem
- In that case, we can use the SVD to solve the problem...

Least-Squares with SVD

Compute singular value decomposition, then:

A = UDV $A^{T}Ax = A^{T}b$ $V^{T}DU^{T}UDVx = V^{T}DU^{T}b$ $\Leftrightarrow V^{T}D^{2}Vx = V^{T}DU^{T}b$ $\Leftrightarrow D^{2}Vx = DU^{T}b$ $\Leftrightarrow DVx = U^{T}b$ $\Leftrightarrow x = V^{T}D^{-1}U^{T}b$

If **D** is not invertible (not full rank), inverting the nonzero entries only yields the least-squares solution of minimal norm (critical point with **|| x ||** minimal).

One more Variant...

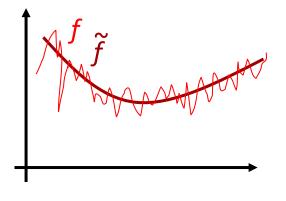
Function Approximation

- Given the following problem:
 - We know a function $f: \Omega \supseteq \mathbb{R}^n \to \mathbb{R}$
 - We want to approximate f in

a linear subspace: $\widetilde{f}(x) \coloneqq \sum_{j=1}^{\kappa} \lambda_j b_j(x)$

How to choose λ?

• Solution: Almost the same as before...



Function Approximation

Objective function:

- $\left\|\widetilde{f}(x) f\right\|^2 \to \min$
- We obtain:

$$\left\|\sum_{j=1}^{k} \lambda_{j} b_{j}(x) - f\right\|^{2} = \left\langle \sum_{j=1}^{k} \lambda_{j} b_{j}(x) - f, \sum_{j=1}^{k} \lambda_{j} b_{j}(x) - f \right\rangle$$
$$= \mathbf{\lambda}^{\mathrm{T}} \left(\begin{array}{cc} \langle b_{1}, b_{1} \rangle & \cdots & \langle b_{n}, b_{1} \rangle \\ \vdots & \ddots & \vdots \\ \langle b_{1}, b_{n} \rangle & \cdots & \langle b_{n}, b_{n} \rangle \end{array} \right) \mathbf{\lambda} - 2 \sum_{j=1}^{k} \lambda_{j} \langle b_{j}(x), f \rangle + \langle f, f \rangle$$

Function Approximation

Critical point (i.e., solution):

$$\begin{pmatrix} \langle b_1, b_1 \rangle & \cdots & \langle b_k, b_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle b_1, b_k \rangle & \cdots & \langle b_k, b_k \rangle \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_k \end{pmatrix} = \begin{pmatrix} \langle b_1(x), f \rangle \\ \vdots \\ \langle b_k(x), f \rangle \end{pmatrix}$$

with:

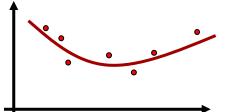
 $\langle f,g \rangle = \int_{\Omega} f(x)g(x)dx$ (unweighted version)

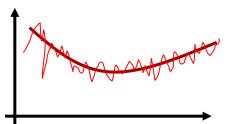
$$\langle f,g \rangle_{\omega} = \int_{\Omega} f(x)g(x)\omega^2(x)dx$$
 (weighted version)

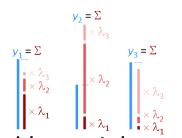
Summary

What we can do so far:

- Least-squares approximation:
 - Given more data points than basis functions, we can fit an approximate function from a basis function set to the data
- Variants:
 - We can solve linear systems in a least-squares sense
 - Given a function, we can fit the most similar approximation from a subspace
- Extensions:
 - Any known uncertainty in the data can be modeled by weights
 - The multi-dimensional case is similar







Remaining problems

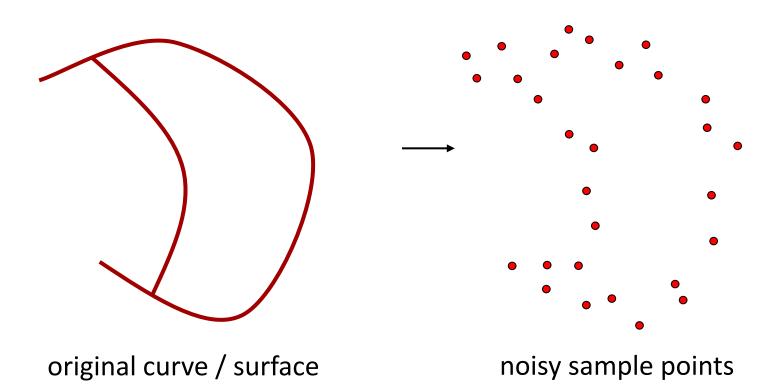
What is missing:

- Any error in x-direction is ignored so far (only y-direction)
 - We will look at that problem next (total least-squares)...
- Noise must be Gaussian
 - Can be generalized using iteratively reweighted least-squares (M-estimators)

Approximation Total Least Squares

Statistical Model

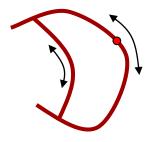
Generative Model:



Statistical Model

Generative Model:

- 1. Determine sample point (uniform)
- 2. Add noise (Gaussian)



sampling

Gaussian noise

many samples

distribution (in space)

Squared Distance Function

Result:

- Gaussian distribution convolved with object
- No analytical density

Approximation:

- 1D Gaussian \rightarrow minimize squared residual
- This case \rightarrow minimize squared distance function

General Total Least Squares

General Total Least Squares:

- Given a class of objects *obj* with parameters $\lambda \in \mathbb{R}^k$.
- A set of *n* sample points (Gaussian, iid, isotropic covariance) $d_i \in \mathbb{R}^m$.
- Total least squares solution minimizes: $\underset{\lambda \in \mathbb{R}^{k}}{\operatorname{arg\,min}} \sum_{i=1}^{n} dist(obj_{\lambda}, d_{i})^{2}$
- In general: Non-linear, possibly constrained (restrictions on admissible λ s) optimization problem
- Special cases can be solved exactly

Fitting Affine Subspaces

The following problem can be solved exactly:

- Best fitting line to a set of 2D, 3D points
- Best fitting plane to a set of 3D points
- In general: Affine subspace of ℝ^m, with dimension
 d ≤ m that best approximates a set of data points
 x_i ∈ ℝ^m.

This will lead to the - famous - *principle component analysis (PCA)*.

Start: O-dim Subspaces

Easy Start: The optimal 0-dimensional affine subspace

- Given a set X of n data points $x_i \in \mathbb{R}^m$, what is the point x_0 with minimum least square error to all data points?
- Answer: just the sample mean (average)...:

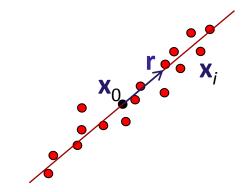
$$\mathbf{x}_{0} = \mathbf{m}(\mathbf{X}) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

One Dimensional Subspaces...

Next:

- What is the optimal line (1D subspace) that approximates a set of data points X?
- Two questions:
 - Optimum origin (point on the line)?
 - This is still the average
 - Optimum direction?
 - We will look at that next...
- Parametric line equation:

 $\mathbf{x}(t) = \mathbf{x}_0 + t.\mathbf{r}$ $(\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{r} \in \mathbb{R}^m, \|\mathbf{r}\| = 1)$



Line equation:

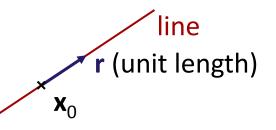
 $\mathbf{x}(t) = \mathbf{x}_0 + t.\mathbf{r} \ (\mathbf{x}_0 \in \mathbb{R}^m, \mathbf{r} \in \mathbb{R}^m, \|\mathbf{r}\| = 1)$

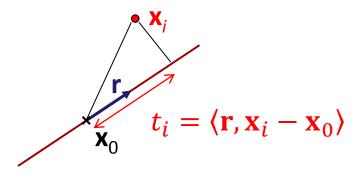
Best projection on any line:

$$t_i = \langle \mathbf{r}, \mathbf{x}_i - \mathbf{x}_0 \rangle$$

Objective Function:

$$\sum_{i=1}^{n} dist(line, \mathbf{x}_i)^2 = \sum_{i=1}^{n} ([\mathbf{x}_0 + t_i \mathbf{r}] - \mathbf{x}_i)^2$$





Best Fitting Line

Optimal parameters t_i : $t_i = \langle \mathbf{r}, \mathbf{x}_i - \mathbf{x}_0 \rangle$ $\sum_{i=1}^{n} dist(line, \mathbf{x}_{i})^{2} = \sum_{i=1}^{n} ([\mathbf{x}_{0} + t_{i}\mathbf{r}] - \mathbf{x}_{i})^{2} = \sum_{i=1}^{n} (t_{i}\mathbf{r} - [\mathbf{x}_{i} - \mathbf{x}_{0}])^{2}$ $=\sum_{i=1}^{n} t_i^2 \mathbf{r}^2 - 2\sum_{i=1}^{n} t_i \langle \mathbf{r}, \mathbf{x}_i - \mathbf{x}_0 \rangle + \sum_{i=1}^{n} [\mathbf{x}_i - \mathbf{x}_0]^2$ $= \sum_{i=1}^{n} \langle \mathbf{r}, \mathbf{x}_{i} - \mathbf{x}_{0} \rangle^{2} - 2 \sum_{i=1}^{n} \langle \mathbf{r}, \mathbf{x}_{i} - \mathbf{x}_{0} \rangle^{2} + \sum_{i=1}^{n} [\mathbf{x}_{i} - \mathbf{x}_{0}]^{2}$ $= -\sum_{i=1}^{n} \langle \mathbf{r}, \mathbf{x}_{i} - \mathbf{x}_{0} \rangle^{2} + \sum_{i=1}^{n} [\mathbf{x}_{i} - \mathbf{x}_{0}]^{2}$ $= -\sum_{i=1}^{n} (\mathbf{r}^{2}(\mathbf{x}_{i} - \mathbf{x}_{0}))^{2} + \sum_{i=1}^{n} [\mathbf{x}_{i} - \mathbf{x}_{0}]^{2}$ $= -\mathbf{r}^{\mathrm{T}} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{x}_{0}) (\mathbf{x}_{i} - \mathbf{x}_{0})^{\mathrm{T}} \right] \mathbf{r} + \sum_{i=1}^{n} [\mathbf{x}_{i} - \mathbf{x}_{0}]^{2}$ Matrix=:S const. w.r.t. r

Best Fitting Line

Result:

$$\sum_{i=1}^{n} dist(line, \mathbf{x}_{i})^{2} = -\mathbf{r}^{T}\mathbf{S}\mathbf{r} + \text{const.}$$

with $\mathbf{S} = \sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{x}_{0}) (\mathbf{x}_{i} - \mathbf{x}_{0})^{T}$, $\|\mathbf{r}\| = 1$

Eigenvalue Problem:

- **r^TSr** is a Rayleigh quotient
- Minimizing the energy: maximum quotient
- Solution: eigenvector with *largest* eigenvalue

Fitting a *d*-dimensional affine subspace:

- *d* = 1: line
- *d* = 2: plane
- *d* = 3: 3D subspace

- Simple rule:
 - Use the *d* eigenvectors with the *largest eigenvalues* from the spectrum of S.
 - Gives the (total) least-squares optimal subspace that approximates the data set X.

General Case

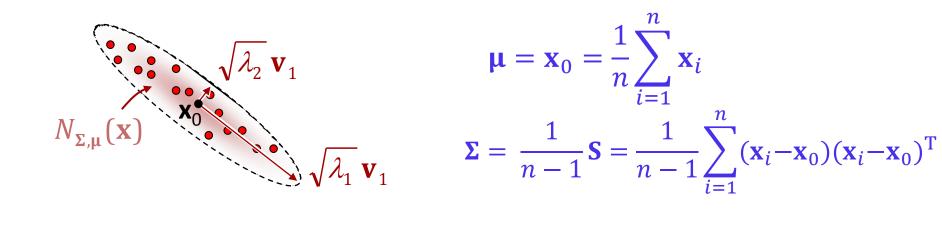
Procedure: Principal Component Analysis (PCA)

- Compute average x₀ = m(D)
- Compute "scatter matrix" $\mathbf{S} = \sum_{i=1}^{n} (d_i \mathbf{x}_0) (d_i \mathbf{x}_0)^T$
- Let (λ₁, v₁), ..., (λ_n, v_n) be sorted eigenvalue/vector pairs of S, where λ₁ is the largest, and the v_i are of unit length.
- The subspace spanned by $p(t_1,...,t_d) = x_0 + \sum_{i=1}^{d} (t_i \mathbf{v}_i)$ approximates the data optimally in terms of squared

distances to a point in the subspace.

• Stronger: projecting the data into this subspace is the best *d*-dimensional (affine subspace) data approximation.

Statistical Interpretation



$$N_{\boldsymbol{\Sigma},\boldsymbol{\mu}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{d}{2}} \det(\boldsymbol{\Sigma})^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Observation:

- $\frac{1}{n-1}$ **S** is the covariance matrix of the data set **X** = {**x**_{*i*}}_{*i*=1:n}
- PCA can be interpreted as fitting a Gaussian distribution and computing the main axes

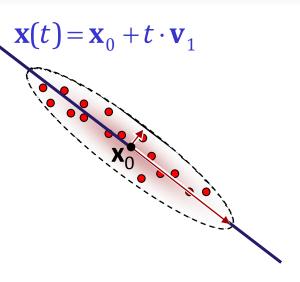
Applications

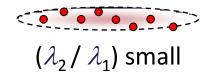
Fitting a line to a point cloud in \mathbb{R}^2 :

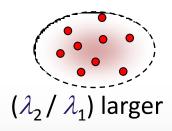
 Sample mean and direction of maximum eigenvalue

Plane Fitting in \mathbb{R}^3 :

- Sample mean and the two directions of maximum eigenvalues
- Smallest eigenvalue
 - Eigenvector points in normal direction
 - Aspect ratio (λ₃ / λ₂) is a measure of "flatness" (quality of fit)







Applications

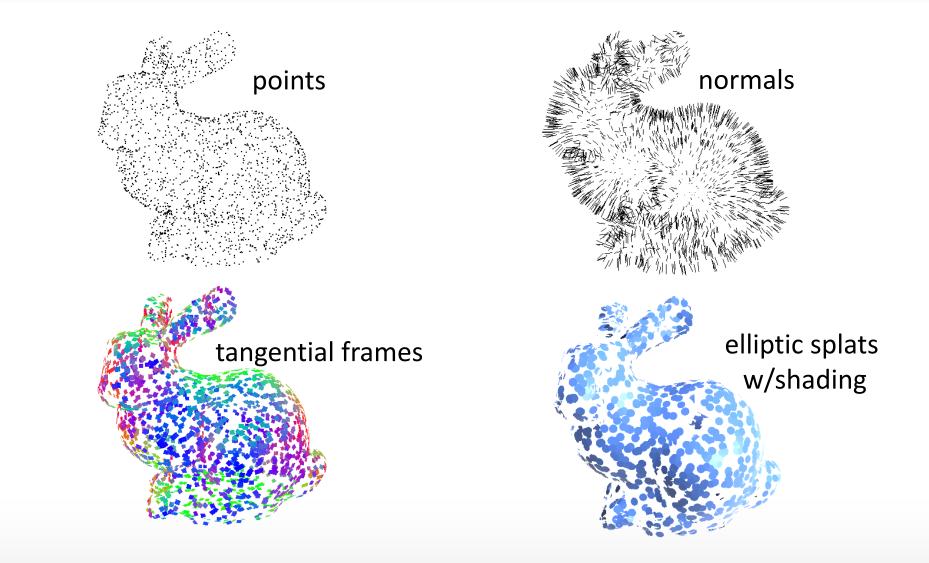
Application: Normal estimation in point clouds

- Given a set of points $p_i \in \mathbb{R}^3$ that form a smooth surface.
- We want to estimate:
 - Surface normals
 - Sampling spacing

Algorithm:

- For each point, compute the k nearest neighbors ($k \approx 20$)
- Compute a PCA (average, main axes) of these points
 - Eigenvector with smallest eigenvalue \rightarrow normal direction
 - The other two eigenvectors → tangent vectors
 - Tangent eigenvalues give sample spacing estimate

Example



Example

