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Interpolation Problem 

First approach to modeling smooth objects: 

• Given a set of points along a curve or surface 

• Choose basis functions that span a suitable function space 

 Smooth basis functions 

 Any linear combination will be smooth, too 

• Find a linear combination such that the curve/surface 
interpolates the given points 



Different types of interpolation: 

• Nearest 

 
 

 

• Linear 

 

 

 

• Polynomial 
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Interpolation Problem 
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General Formulation 

Settings: 

• Domain   Rds, mapping to R.  

• Looking for a function f:   R. 

• Basis set: B = {b1,...,bn}, bi:   R. 

• Represent f as linear combination of basis functions: 
 
 
 

• Function values: {(x1, y1), ..., (xn, yn)},  (xi, yi)  Rds  R  

• We want to find  such that: 
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Illustration 

1D Example 

 

f: R    R 
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Solving the Interpolation Problem 

Solution: linear system of equations 

• Evaluate basis functions at points xi: 

 

 

• Matrix form: 
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Illustration 

R 

 x1 x2 x3 

b1 

b2 

b3 
 3 
 2 

 1 

 3 

 2 

 1 

 3 

 2 
 1 

y1 =  

y2 =  

y3 =  

interpolation problem linear system 
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Illustration 

R 

 x1 x2 x3 

b1 

b2 

b3 
 3 
 2 

 1 

 3 

 2 

 1 

 3 

 2 
 1 

y1 =  

y2 =  

y3 =  

interpolation problem linear system 

  

anything in between  
does not matter 

(determined by basis only) 
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Example 

Example: Polynomial Interpolation 

• Monomial basis B = {1, x, x2, x3, ..., xn-1} 

• Linear system to solve: 
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Example with Numbers 

Example with numbers 

• Quadratic monomial basis B = {1, x, x2} 

• Function values: {(0,2), (1,0), (2,3)}   [(x, y)] 

• Linear system to solve: 

 

 

 

 

• Result: 1 = 2, 2 = -9/2, 3 = 5/2 
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#points 

Condition Number... 

The interpolation problem is ill conditioned: 

• For equidistant xi, the condition number of the 
Vandermode matrix grows exponentially with n 
(maximum degree+1 = number of points to interpolate) 
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Why ill-conditioned? 

• Solution with inverse Vandermonde matrix:  
Mx = y  => x = M-1y = (V D-1 UT)y 
 
 

• Condition number defined as a ratio between largest and 
smallest singular value: max /min 
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Why ill-conditioned? 

Monomial Basis: 

• Functions become 
increasingly indistinguishable 
with degree (non orthogonal) 

• Only differ in growing rate 
(xi growth faster than xi-1) 

• For higher degrees numerical 
precision became a key factor 
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The Cure... 

This problem can be fixed: 

• Use orthogonal polynomial basis 

• How to get one?  e.g.  
Gram-Schmidt orthogonalization 
(see assignment sheet #1) 

• Legendre polynomials – 
orthonormal on [-1..1] 

• Much better condition of the 
linear system (converges to 1) 



17 / 85 

However... 

This does not fix all problems: 

• Polynomial interpolation is instable 

 “Runge’s phenomenon”: Oscillating behavior 

 Small changes in control points can lead to 
very different result. xi sequence important. 

• Weierstraß approximation theorem: 

 Smooth functions (C0) can be approximated 
arbitrarily well with polynomials 

 However: Need carefully chosen construction 
for convergence 

 Not useful in practice 
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Runge’s Phenomenon 
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Conclusion 

Conclusion: Need a better basis for interpolation 

For example, piecewise polynomials will work much 
better   % Splines 



Approximation 
(Reweighted) Least-squares, 

Scattered Data 
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Approximation 

Common Situation: 

• We have many data points, they might be noisy 

• Example: Scanned data 

• Want to approximate the data with a smooth curve / 
surface 

What we need: 

• Criterion – what is a good approximation? 

• Methods to compute this approximation 
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Least-Squares 

We assume the following scenario: 

• We have a set of function values yi at positions xi. 
(1D  1D for now) 

• The independent variables xi are known exactly. 

• The dependent variables yi are known approximately, 
with some error. 

• The error is normal distributed, independent, and with the 
same distribution at every point (normal noise). 

• We know the class of functions from which the noisy 
samples were taken. 
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Situation 

Situation: 

• Original sample points taken at xi from original f. 

• Unknown Gaussian noise added to each yi. 

• Want to estimated reconstructed f. ~ 

x1 x2 xn 

y1 y2 
yn 
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Maximum Likelihood Estimation 

Goal: 

• Maximize the probability that the data originated from 
the reconstructed curve f  fits the points 

• “Maximum likelihood estimation” 

~ 

Gaussian normal distribution 
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Maximum Likelihood Estimation 
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Maximum Likelihood Estimation 
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Least-Squares Approximation 

This shows: 

• The solution with maximum likelihood in the considered 
scenario (y-direction, iid Gaussian noise) minimizes the 
sum of squared errors. 

Next: Compute optimal coefficients 

• Linear ansatz: 

• Task: determine optimal i 
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Maximum Likelihood Estimation 
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Critical Point 
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Critical Point 

This can also be written as: 
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Summary 

Statistical model yields least-squares criterion: 

 

Linear function space leads to quadratic objective: 

 

Critical point: linear system 
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Variants 

Weighted least squares: 

• In case the data point’s noise has different standard 
deviations   at the different data points 

• This gives a weighted least squares problem 

• Noisier points have smaller influence 
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Same procedure as prev. slides... 
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Result 

Linear system for the general case: 
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Least-Squares Linear Systems 

Remark: 

• We get the same result, if we solve an overdetermined 
system for the interpolation problem in a least squares 
sense 

• Least-squares solution to linear system: 
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SVD 

Problem with normal equations: 

• Condition number of normal equations is square of that 
of A itself 

• Proof: 

 

 

• For “evil” (i.e. ill conditioned) problems, normal equations 
are not the best way to solve the problem 

• In that case, we can use the SVD to solve the problem... 

VDVUDVDUVAA

UDVA
2TTTT

:SVD




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Least-Squares with SVD 

Compute singular value decomposition, then: 

 

 

 

If D is not invertible (not full rank), inverting the non-
zero entries only yields the least-squares solution of 
minimal norm (critical point with |x| minimal). 
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One more Variant... 

Function Approximation 

• Given the following problem: 

 We know a function f:   Rn  R 

 We want to approximate f in 

  a linear subspace: 

 How to choose ? 

• Difference: Continuous function as “data” to be matched. 

• Solution: Almost the same as before... 
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Function Approximation 

Objective function: 

•   

• We obtain: 
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Function Approximation 

Critical point (i.e., solution): 
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Summary 

What we can do so far: 

• Least-squares approximation: 
 Given more data points than basis functions, 

we can fit an approximate function from 
a basis function set to the data 

• Variants: 
 We can solve linear systems in 

a least-squares sense 

 Given a function, we can fit the 
most similar approximation from a subspace 

• Extensions: 
 Any known uncertainty in the data can be modeled by weights 

 The multi-dimensional case is similar 
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Remaining problems 

What is missing: 

• Any error in x-direction is ignored so far (only y-direction) 

 We will look at that problem next (total least-squares)... 

• Noise must be Gaussian 

 Can be generalized using iteratively reweighted least-squares 
(M-estimators) 

 



Approximation 
Total Least Squares 
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Statistical Model 

Generative Model: 

original curve / surface noisy sample points 
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Statistical Model 

Generative Model: 

1. Determine sample point (uniform) 

2. Add noise (Gaussian) 

sampling Gaussian noise many samples distribution 
(in space) 
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Squared Distance Function 

Result: 

• Gaussian distribution convolved with object 

• No analytical density 

Approximation: 

• 1D Gaussian  minimize squared residual 

• This case  minimize squared distance function 
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General Total Least Squares 

General Total Least Squares: 

• Given a class of objects obj with parameters   Rk. 

• A set of n sample points (Gaussian, iid, isotropic 
covariance) di   Rm. 

• Total least squares solution minimizes: 

 

 

• In general: Non-linear, possibly constrained (restrictions 
on admissible s) optimization problem 

• Special cases can be solved exactly 
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Fitting Affine Subspaces 

The following problem can be solved exactly: 

• Best fitting line to a set of 2D, 3D points 

• Best fitting plane to a set of 3D points 

• In general: Affine subspace of ℝ𝑚, with dimension 
 𝑑 ≤ 𝑚 that best approximates a set of data points 
𝐱𝑖 ∈ ℝ𝑚. 

This will lead to the - famous - principle component 
analysis (PCA). 



Start: 0-dim Subspaces 

Easy Start: The optimal 0-dimensional affine subspace 

• Given a set 𝐗 of 𝑛 data points 𝐱𝑖 ∈ ℝ𝑚, what is the point 
𝐱𝟎 with minimum least square error to all data points? 

• Answer: just the sample mean (average)...: 

 
 

x0 

𝐱0 = m 𝐗  ≔ 
1

𝑛
 𝐱𝑖

𝑛

𝑖=1

 



One Dimensional Subspaces... 

Next: 

• What is the optimal line (1D subspace) that approximates 
a set of data points 𝐗? 

• Two questions: 

 Optimum origin (point on the line)? 

– This is still the average 

 Optimum direction? 

– We will look at that next... 

• Parametric line equation: 

x0 
xi 

r 

𝐱 𝑡 = 𝐱0 + 𝑡. 𝐫  𝐱0 ∈ ℝ𝑚, 𝐫 ∈ ℝ𝑚, 𝐫 = 1  



Best Fitting Line 

Line equation: 

Best projection on any line: 

r (unit length) 

x0 

line 

r 

x0 

xi 

Objective Function: 

𝑡𝑖 =  𝐫, 𝐱𝑖 − 𝐱0  

 𝑑𝑖𝑠𝑡 𝑙𝑖𝑛𝑒, 𝐱𝑖 
2

𝑛

𝑖=1

=   𝐱0 + 𝑡𝑖𝐫 − 𝐱𝑖 
2

𝑛

𝑖=1

 

𝑡𝑖 =  𝐫, 𝐱𝑖 − 𝐱0  

𝐱 𝑡 = 𝐱0 + 𝑡. 𝐫  𝐱0 ∈ ℝ𝑚, 𝐫 ∈ ℝ𝑚, 𝐫 = 1  



 𝑑𝑖𝑠𝑡 𝑙𝑖𝑛𝑒, 𝐱𝑖 
2

𝑛

𝑖=1
=   𝐱0 + 𝑡𝑖𝐫 − 𝐱𝑖 

2
𝑛

𝑖=1
=   𝑡𝑖𝐫 − [𝐱𝑖 − 𝐱0] 

2
𝑛

𝑖=1
 

 

                               =  𝑡𝑖
2𝐫2

𝑛

𝑖=1
− 2 𝑡𝑖 𝐫, 𝐱𝑖 − 𝐱0  

𝑛
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2
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                                              =   𝐫, 𝐱𝑖 − 𝐱0 
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𝑛
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2
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                             = − 𝐫T   𝐱𝑖−𝐱0  𝐱𝑖−𝐱0 
T

𝑛

𝑖=1

Matrix=:𝐒

𝐫 +  𝐱𝑖 − 𝐱0
2

𝑛

𝑖=1

const. 𝑤.𝑟.𝑡.  𝐫

 

                                                                         

Best Fitting Line 
𝑡𝑖 =  𝐫, 𝐱𝑖 − 𝐱0  Optimal parameters ti: 



Best Fitting Line 

Result: 

 

 

Eigenvalue Problem: 

• rTSr is a Rayleigh quotient 

• Minimizing the energy: maximum quotient 

• Solution: eigenvector with largest eigenvalue 

 𝑑𝑖𝑠𝑡 𝑙𝑖𝑛𝑒, 𝐱𝑖 
2= −𝐫𝐓𝐒𝐫

𝑛

𝑖=1
+ const. 

with  𝐒 =   𝐱𝑖−𝐱0  𝐱𝑖−𝐱0 
T, 𝐫 = 1𝑛

𝑖=1  



General Case 

Fitting a d-dimensional affine subspace: 

• d = 1: line 

• d = 2: plane 

• d = 3: 3D subspace 

• ... 

Simple rule: 

• Use the d eigenvectors with the largest eigenvalues from 
the spectrum of S. 

• Gives the (total) least-squares optimal subspace that 
approximates the data set 𝐗. 
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General Case 

Procedure: Principal Component Analysis (PCA) 

• Compute average x0 = m(D) 

• Compute “scatter matrix”  

• Let (1,v1), ... ,(n,vn) be sorted eigenvalue/vector pairs 
of S, where 1 is the largest, and the vi are of unit length. 

• The subspace spanned by                                           

 approximates the data optimally in terms of squared 
distances to a point in the subspace. 

• Stronger: projecting the data into this subspace is the best 
d-dimensional (affine subspace) data approximation. 
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Statistical Interpretation 

Observation: 

•
𝟏

𝒏−𝟏
𝐒 is the covariance matrix of the data set X = {xi}i=1:n 

• PCA can be interpreted as fitting a Gaussian distribution 
and computing the main axes 
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11 v
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Applications 

Fitting a line to a point cloud in ℝ𝟐: 

• Sample mean and direction 
of maximum eigenvalue 

Plane Fitting in ℝ𝟑: 

• Sample mean and the two 
directions of maximum eigenvalues 

• Smallest eigenvalue 

 Eigenvector points in normal direction 

 Aspect ratio (3 / 2) is a measure of “flatness” 
(quality of fit) 

x0 

10)( vxx  tt

(2 / 1) small 

(2 / 1) larger 
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Applications 

Application: Normal estimation in point clouds 
• Given a set of points pi  R3 that form a smooth surface. 

• We want to estimate: 
 Surface normals 

 Sampling spacing 

Algorithm: 
• For each point, compute the k nearest neighbors (k  20) 

• Compute a PCA (average, main axes) of these points 
 Eigenvector with smallest eigenvalue  normal direction 

 The other two eigenvectors  tangent vectors 

 Tangent eigenvalues give sample spacing estimate 



62 / 85 

Example 

points normals 

tangential frames elliptic splats  
w/shading 
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Example 

Example: 
- k-nearest neighbors 
- PCA coordinate frames 
  at each point 
- Quadratic monomials 
  (bivariate, local coords.) 
- Least squares fit 
 


