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Fitting Affine Subspaces 

The following problem can be solved exactly: 

• Best fitting line to a set of 2D, 3D points 

• Best fitting plane to a set of 3D points 

• In general: Affine subspace of ℝ𝑑, with dimension 𝑑 ≤
𝑚 that best approximates a set of data points 𝐱𝑖 ∈ ℝ𝑚. 

This will lead to the - famous - principle component 
analysis (PCA). 



Start: 0-dim Subspaces 

Easy Start: The optimal 0-dimensional affine subspace 

• Given a set 𝐗 of 𝑛 data points 𝐱𝑖 ∈ ℝ𝑚, what is the point 
𝐱0 with minimum least square error to all data points? 

• Answer: just the sample mean (average)...: 
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One Dimensional Subspaces... 

Next: 

• What is the optimal line (1D subspace) that approximates 
a set of data points 𝐗? 

• Two questions: 

 Optimum origin (point on the line)? 

– This is still the average 

 Optimum direction? 

– We will look at that next... 

• Parametric line equation: 

x0 
xi 

r 

𝐱 𝑡 = 𝐱0 + 𝑡. 𝐫  𝐱0 ∈ ℝ𝑚, 𝐫 ∈ ℝ𝑚, 𝐫 = 1  



Best Fitting Line 

Result: 

 

 

Eigenvalue Problem: 

• 𝐫T𝐒𝐫 is a Rayleigh quotient 

• Minimizing the energy: maximum quotient 

• Solution: eigenvector with largest eigenvalue 

 𝑑𝑖𝑠𝑡 𝑙𝑖𝑛𝑒, 𝐱𝑖 
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General Case 

Fitting a  𝑑-dimensional affine subspace: 

• 𝑑 = 1 : line 

• 𝑑 = 2 : plane 

• 𝑑 = 3 : 3D subspace 

• ... 

Simple rule: 

• Use the 𝑑 eigenvectors with largest eigenvalues from 
the spectrum of S. 

• Gives the (total) least-squares optimal subspace that 
approximates the data set 𝐗. 



PCA Maximum Variance Formulation 

Alternate Formulation: 

• Let 𝐯 ∈ ℝ𝑚 be the 1D subspace (with 𝐯𝐓𝐯 = 1), that 
maximize the variance of data  𝐗 ∈ ℝ𝑚. 

• Each data point 𝐱𝑖is projected onto a scalar value 𝐯𝐓𝐱𝑖. 

• The mean of projected data is 𝐯𝐓𝐱0. 

• The variance of the projected data is given by: 
1

𝑛
 𝐯𝐓𝐱𝑖 − 𝐯𝐓𝐱0

2𝑛
𝑖=1 = 𝐯𝐓S𝐯 ; 

• The problem now reduces to  

  𝐯⋇ = 𝒂𝒓𝒈 𝒎𝒂𝒙 { 𝐯𝐓S𝐯 + 𝜆 1 −  𝐯𝐓𝐯 } 

• Solution:  

  Eigenvector of S with largest eigenvalue 𝜆1. 

𝐒 =
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𝑛
  𝐱𝑖−𝐱0  𝐱𝑖−𝐱0 

T
𝑛

𝑖=1
 



Statistical Interpretation 

Observation: 

•
𝟏

𝒏−𝟏
𝐒 is the covariance matrix of the data 𝐗. 

• PCA can be interpreted as fitting a Gaussian distribution 
and computing the main axes. 
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Applications 

Fitting a line to a point cloud in ℝ𝟐: 

• Sample mean and direction 
of maximum eigenvalue 

Plane Fitting in ℝ𝟑: 

• Sample mean and the two 
directions of maximum eigenvalues 

• Smallest eigenvalue 

 Eigenvector points in normal direction 

 Aspect ratio (3 / 2) is a measure of “flatness” 
(quality of fit) 

x0 

(2 / 1) small 

(2 / 1) larger 

𝐱 𝑡 = 𝐱0 + 𝑡. 𝐯𝟏 



Applications 

Application: Normal estimation in point clouds 
• Given a set of points 𝐗 ∈ ℝ𝟑 sampled from a smooth 

surface. 

• We want to estimate Surface Normals. 

Algorithm: 
• For each point, compute the 𝑘-nearest neighbors (𝑘 = 20 . 

• Compute a PCA (average, main axes) of these points. 

• Eigenvector with smallest eigenvalue  normal direction. 

• The other two eigenvectors  tangent vectors. 



Example 

points normals 

tangential frames 



Dimensionality Reduction 

Notations: 
• 𝐗 = 𝐱1, … , 𝐱𝑘 , … , 𝐱𝑛 ,   𝐱𝑘 ∈ ℝ𝑚   

 

• 𝐑 is a  𝑚 ×𝑚 orthogonal matrix with 𝐑𝐓𝐑 = 𝐈𝒎. 

Projection: from ℝ𝑚onto ℝ𝑑  removes 𝑚− 𝑑 rows of 𝐑𝐓 to obtain 𝐐𝐓 

• 𝐘 =  𝐐𝐓𝐗  with 𝐐𝐓𝐐 = 𝐈𝒅. 

 

Reconstruction: of ℝ𝑚 from ℝ𝑑  removes 𝑚− 𝑑 columns of 𝐑 to obtain 𝐐 

• 𝐗 = 𝐐𝐘 with 𝐐𝐓𝐐 = 𝐈𝒅. 

 

 det 𝐑 = +1 implies a Rotation matrix. 



Idea: Projection of higher dimensional data to a lower dimensional 

subspace. 

• 𝐗 ∈ ℝ𝑚 𝐘 ∈ ℝ𝑑  where  

 

 
       𝐐𝐓𝐗 

 

 

 

               
          𝐐𝐘 

 

 

• Linear Dimensionality Reduction using PCA computes 𝐐 = 𝐕𝐈𝒅. 

Dimensionality Reduction  

𝐛′1 

𝐛′2 

𝐛′𝑗 𝐛′𝑑 

Projection 

𝐛1 

𝐛2 

𝐛𝑖 𝐛𝑚 

 𝑑 ≪ 𝑚  

Reconstruction 

*Information is LOST 



Metric Multi Dimensional Scaling 

PCA uses Covariance matrix  

• 𝐒 =
1

𝑛
𝐗𝐗𝐓 assuming centered data (i.e. zero mean). 

• The data points are represented in a vector space. 

• Dimension of 𝐒 is 𝑚 ×𝑚. 

MDS uses Gram Matrix (dot products) 

• 𝐆 = 𝐗𝐓𝐗 captures (dis)similarity of data points. 

• The data points are not explicitly required. 

• Dimension of 𝐆 is 𝑛 × 𝑛. 

• Goal is to embed the data in 𝑑-dimensional space such 
that some metric is preserved.  



Part III: Intrinsic Geometry 
and Intrinsic Mappings 



Scenario 

Mapping between Surfaces 

• Intrinsic view – only metric tensor 

• Ignore isometric deformations 

• Applications: 

 Deformable shape matching 

 Texture mapping (flat  3D) 
“parametrization” 

f 
S1 

S2 



Differential Geometry Revisited 



Parametric Patches 
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Parametric Patches 

Function 𝑓 𝑢, 𝑣 → ℝ3 

• Canonical tangents:    𝜕𝑢𝑓 𝑢, 𝑣 ,  𝜕𝑣𝑓 𝑢, 𝑣   

• Normal: 𝐧 𝑢, 𝑣 =
𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓 𝑢,𝑣 

𝜕𝑢𝑓 𝑢,𝑣 ×𝜕𝑣𝑓 𝑢,𝑣 
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Fundamental Forms 

Fundamental Forms: 

• Describe the local parameterized surface. 

• Measure... 

 ...distortion of length (first fundamental form) 

 ...surface curvature (second fundamental form) 



First Fundamental Form 

First Fundamental Form 

• Also known as metric tensor. 

• It can be written as a 2 × 2 symmetric matrix: 

 

𝐈 =
𝜕𝑢𝑓𝜕𝑢𝑓 𝜕𝑢𝑓𝜕𝑣𝑓
𝜕𝑢𝑓𝜕𝑣𝑓 𝜕𝑣𝑓𝜕𝑣𝑓

=: 
𝐸 𝐹
𝐹 𝐺

 

 

• The matrix is symmetric and positive definite 

(regular parametrization, semi-definite otherwise) 

• Defines a generalized scalar product that measures 

lengths and angles on the surface. 

v 

u 

v f (u,v) 

u f (u,v) f(u,v) 



Second Fundamental Form 

Second Fundamental Form 

• Also known as shape operator or curvature tensor. 

• It can be written as a 2 × 2 symmetric matrix: 

 

𝐈𝐈 =
𝜕𝑢𝑢𝑓. 𝐧 𝜕𝑢𝑣𝑓. 𝐧
𝜕𝑢𝑣𝑓. 𝐧 𝜕𝑣𝑣𝑓. 𝐧

=: 
𝑒 𝑓
𝑓 𝑔

 

Eigen-analysis: 

• Eigenvalues of second fundamental form 
for an orthonormal tangent basis are called 
principal curvatures κ1, κ2. 

• Corresponding orthogonal eigenvectors are called 
principal directions of curvature. 



• A metric at point 𝑝 is a function 𝑔𝑝: 𝑇𝑝ℳ×𝑇𝑝ℳ→ ℝ such 

that: 

 𝑔𝑝 is Bilinear : 𝑔𝑝 𝑎𝜶𝑝 + 𝑏𝜷𝑝, 𝜸𝑝 = 𝑎𝑔𝑝 𝜶𝑝, 𝜸𝑝 + 𝑏𝑔𝑝 𝜷𝑝, 𝜸𝑝  and 

                𝑔𝑝 𝜸𝑝, 𝑎𝜶𝑝 + 𝑏𝜷𝑝 = 𝑎𝑔𝑝 𝜸𝑝, 𝜶𝑝 + 𝑏𝑔𝑝 𝜸𝑝, 𝜷𝑝  

 𝑔𝑝 is Symmetric:  𝑔𝑝 𝜶𝑝, 𝜷𝑝 = 𝑔𝑝 𝜷𝑝, 𝜶𝑝  

 𝑔𝑝 is Non-degenerated:  𝜷𝑝 ↦ 𝑔𝑝 𝜶𝑝, 𝜷𝑝 , ∀𝜶𝑝 ≠ 𝟎 

How to build a metric 

Tangent Space 

• For a 𝑑-dimensional manifold ℳ, at each point 𝑝 ∈ ℳ 
there exist a vector space 𝑇𝑝ℳ, called “Tangent Space”. 

• It consist of all tangent vectors to manifold at point 𝑝. 

𝑇𝑝ℳ 𝑝 



How to build a metric 

Inner Product Metric  

• Two tangent vector at point 𝑝 can be defined as: 
  𝜶𝒑 = 𝛼1𝜕𝑢𝑓 + 𝛼2𝜕𝒗𝑓 and  𝜷𝒑 = 𝛽1𝜕𝑢𝑓 + 𝛽2𝜕𝒗𝑓 

• The Inner product is defined as: 

 𝑔𝑝 𝜶𝒑, 𝜷𝒑 = 𝜶𝒑, 𝜷𝒑 = 𝛼1 𝛼2
𝐸 𝐹

𝐹 𝐺

𝛽1
𝛽2

 

 It inherently uses the first fundamental form.  

• 𝑔𝑝 𝜶𝒑, 𝜷𝒑  is symmetric, bilinear and non-degenerated  and 
hence a metric. 

 

 𝑇𝑝ℳ 𝑝 



Riemannian Manifolds 

Riemannian Manifold 

• Manifold topology, 𝑑-dimensional  

 We mostly focus on 2-manifolds, embedded in ℝ3 

• Real differentiable manifold.  

• Local parametrization: tangent space 

• Intrinsic metric (metric tensor everywhere) 

 Allows to define various geometric notions on manifold: 

–  Angles  

– Lengths of curves  

– Areas (or volumes)  

– Curvature 

– Gradients of functions  

– Divergence of vector fields 
standard 
metric 

non-standard 
(pos-def.) 



Riemannian Manifolds 

Arclength: 

• Let 𝑔 𝑡 =  𝑢, 𝑣 , in an interval [𝑎, 𝑏]. 

• 𝑓 𝑢 𝑡 , 𝑣 𝑡  will trace out a parametric curve in 𝑃. 

Arclength of parametric curve in interval [𝑎, 𝑏]:  
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=  𝑑𝑢𝟐𝐸 + 2𝑑𝑢 𝑑𝑣 𝐹 + 𝑑𝑣𝟐𝐺 𝑑𝑡
𝑏

𝑎

 

Riemannian Manifolds 

Arclength: 

• Let 𝑔 𝑡 =  𝑢, 𝑣 , in an interval [𝑎, 𝑏]. 

• 𝑓 𝑢 𝑡 , 𝑣 𝑡  will trace out a parametric curve in 𝑃. 

=   𝑑𝑢𝟐𝜕𝑢𝑓. 𝜕𝑢𝑓 + 2𝑑𝑢 𝑑𝑣 𝜕𝑢𝑓. 𝜕𝑣𝑓 + 𝑑𝑣𝟐𝜕𝑣𝑓. 𝜕𝑣𝑓 𝑑𝑡
𝑏

𝑎

 

𝑠 =   
𝑑

𝑑𝑡
𝑓 𝑢 𝑡 , 𝑣 𝑡 𝑑𝑡

𝑏

𝑎

 

 
=   𝑑𝑢 𝜕𝑢𝑓 + 𝑑𝑣 𝜕𝑣𝑓 𝑑𝑡

𝑏

𝑎

   

Arclength of parametric curve in interval [𝑎, 𝑏]:  

=  𝑑𝑢 𝑑𝑣
𝐸 𝐹
𝐹 𝐺

𝑑𝑢
𝑑𝑣

 𝑑𝑡
𝑏

𝑎

 



Riemannian Manifolds 

Surface Area: 

• Apply integral transformation theorem: 
 

 

 

• Using Langrange’s identity: 

area 𝑃 =  𝜕𝑢𝑓. 𝜕𝑢𝑓 𝜕𝑣𝑓. 𝜕𝑣𝑓 −  𝜕𝑢𝑓. 𝜕𝑣𝑓 
𝟐 𝑑𝑢 𝑑𝑣

Ω

 

 

= 𝐸𝐺 − 𝐹𝟐 𝑑𝑢 𝑑𝑣
Ω

 

= det
𝐸 𝐹
𝐹 𝐺

 𝑑𝑢 𝑑𝑣
Ω

 

area 𝑃 = 𝜕𝑢𝑓 × 𝜕𝑣𝑓  𝑑𝑢 𝑑𝑣
Ω

 



Curvature: 

• Principle Curvature : Eigenvalues of second fundamental form for an 

orthonormal tangent basis.  

 

• Normal Curvature : norm of the projection of the derivative  
𝑑𝑻

𝑑𝒔
 on 

normal plane 𝐧.  

 

 

• Mean Curvature : 

 

• Gaussian Curvature : 
 

 

 

Riemannian Manifolds 

κ1, κ2 

κ𝑁 = κ 𝐧 = 𝐧𝑇
𝑒 𝑓
𝑓 𝑔

𝐧 with 𝑚𝑎𝑥 κ 𝐧 = κ1 and 𝑚𝑖𝑛 κ 𝐧 = κ2 

𝐻 =
1

2
 κ1 + κ2 = det

𝑒 𝑓
𝑓 𝑔

 

𝐾 = κ1κ2 =
1

2
tr

𝑒 𝑓
𝑓 𝑔

 

Source: Wikipedia 



Riemannian Manifolds 

Curvature: 

• Geodesic Curvature : norm of the projection of the derivative  
𝑑𝑻

𝑑𝒔
 on the 

tangent plane.  
 It allows to distinguish inherent curvature of the curve in the (u,v) space from the curvature induced 

by mapping 𝒇 in 𝓜. 

•  Total Curvature : 

 

 

• For circles : κ𝑁 = 1. 

• For Great circles : κ𝑇 = κ𝑁 = 1 , κg = 0 i.e. locally Flat e.g. Earth 

• For Small circles of radius 𝑟 : κ𝑔 = 1 − 𝑟𝟐 𝑟  

κ𝑇 = κ𝑁
𝟐 + κ𝑔

𝟐 

v 

u 



Riemannian Manifolds 

35 

Geodesics: 

• Curves on a surface which minimize length between the 
end points are called Geodesics. 

 

 

 

 

 

• A path minimizing energy is just a geodesic parameterized 
by arc length. 

• A curve on a surface with zero geodesic curvature is a 
geodesic.  

𝑠 =   𝑑𝑢 𝑑𝑣
𝐸 𝐹
𝐹 𝐺

𝑑𝑢
𝑑𝑣

 𝑑𝑡
𝑏

𝑎

 

𝑒𝑛𝑒𝑟𝑔𝑦 =   𝑑𝑢 𝑑𝑣
𝐸 𝐹
𝐹 𝐺

𝑑𝑢
𝑑𝑣

𝑑𝑡
𝑏

𝑎

 



Types of Mappings 

Given: Riemannian Manifolds ℳ1,ℳ2 

Consider: Functions  𝜓:ℳ1 →ℳ2 

Important types of mappings: 

• Isometric: preserves distances, angles and area 

• Conformal: preserves (only) angles 

• Equi-areal (incompressible): preserves area 



Isometric Mapping 

Definition 

• An mapping  𝜓 between two surface patch ℳ1and ℳ2 is 
an isometric mapping if it preserves distance on them.  

• An isometric mapping is symmetric i.e. 𝜓−1is also an isometry.  

 

ℳ1 

ℳ2 

𝜓:ℳ1 →ℳ2 

𝜓−1:ℳ2 →ℳ1 



Isometric Mapping 

Isometric surfaces have same parametric domain 

• If 𝜓:ℳ1 →ℳ2 is an isometric mapping then both surfaces 
have same intrinsic parameterization. i.e.  

 

 
𝑓1
−1 ℳ1 = 𝑓2

−1 ℳ2 = Ω 𝑢, 𝑣   

𝒖 

𝒗 Ω 

ℳ1 ℳ2 

𝜓:ℳ1 →ℳ2 

𝑓2: Ω → ℳ2 

𝑓1: Ω → ℳ1 



Isometric Mapping 

Surfcap: University of Surry 



Isometric Mapping 

To solve Isometry  
• Either find the explicit parameterization 𝑓1 and 𝑓2 to recover the implicit domain.  

• OR find an intrinsic mapping 𝑔 of ℳ1 and ℳ2 to an isometry invariant space 𝔗. 

 

 

ℳ1 ℳ2 

𝐛1 

𝐛2 

𝐛𝑖 𝐛𝑑 

𝑔:ℳ1 → 𝔗 𝑔:ℳ2 → 𝔗 

𝔗 ∈ ℝ𝑑 



Isometric Mapping 

Property of Isometry Invariant Space  
• Geodesic distance between any pair of points in ℳ1 and their images in ℳ2 

should be equivalent to Euclidean distance between their images in 𝔗.  

 

 

 

ℳ1 ℳ2 

𝐛1 

𝐛2 

𝐛𝑖 𝐛𝑑 

𝑔:ℳ1 → 𝔗 𝑔:ℳ2 → 𝔗 

𝔗 ∈ ℝ𝑑 



Spectral Graph Methods for 3D 
Shape Analysis  



Discrete Manifold Representation 

𝒚 

𝒙 

𝒛 

Surface Patches in Practice  
• Most existing shape acquisition methods often yield noisy point 

clouds instead of a nice parametric surface representation.  

• Finding a parameterization of complex real world object is 
practically infeasible.  

 

𝒙 

𝒚 

𝒛 



Represent surface patch with an underlying locally 
connected graph structure 

• Distances are assumed to be locally Euclidean. 

• In practice we assume that Isometric transforms keep the topology (i.e. 
the connectivity) of underlying graph intact.  

 

Graph Based Representation 

𝒚 

𝒙 

𝒛 



Graph Based Representation 

Popular Representation  

• Mesh representation of 3D object is traditionally popular. 

• It enables a direct application of Graph based tools for 
shape analysis tasks.  



Spectral Graph Theory (SGT) 

Spectral Graph Theory analyze properties of graphs via eigenvalues and 

eigenvectors of various graph matrices.  

• Builds on well studied algebraic properties of graph matrices.  

• Provides a natural link between differential operators on continuous 
and discrete manifold representation. 

• Allows to Embed a discrete manifold (graph) into an isometry 
invariant space.  

• Provide intrinsic Spectral metric for isometry invariant distance 
computation.  

References: 
• F. R. K. Chung. Spectral Graph Theory. 1997.  

• M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. 
Neural Computation, 15, 1373{1396 (2003).  

• U. von Luxburg. A Tutorial on Spectral Clustering. Statistics and Computing, 17(4), 395{416 (2007).*  

• Software: http://open-specmatch.gforge.inria.fr/index.php. 



Spectral Graph Theory (SGT) 

𝒚 

𝒙 

𝒛 
𝐯1 

𝐯2 

𝐯𝑖 𝐯𝑑 

SVD of Graph Matrices  

to obtain [𝐯1, … , 𝐯𝑑] 
Eigenvectors 

Input ℝ3 space Output ℝ𝑑 space 

Isometry Invariant Space 

Spectral Embedding 

* Typically 𝑑 ≫ 3, i.e. we can now embed the surface in a higher dimensional space.  

Geodesic distances in the input space ℝ3 can be approximated by Euclidean distances 

in the new space ℝ𝑑 spanned by eigenvectors of certain Graph matrices. 



Idea: Projection of higher dimensional data to a lower dimensional 

subspace. 

• 𝐗 ∈ ℝ𝑚 𝐘 ∈ ℝ𝑑  where  

 

 
       𝐐𝐓𝐗 

 

 

 

               
          𝐐𝐘 

 

 

• Linear Dimensionality Reduction using PCA computes 𝐐 = 𝐕𝐈𝒅. 

Recall Dimensionality Reduction (DR) 

𝐛′1 

𝐛′2 

𝐛′𝑗 𝐛′𝑑 

Projection 

𝐛1 

𝐛2 

𝐛𝑖 𝐛𝑚 

 𝑑 ≪ 𝑚  

Reconstruction 

*Information is LOST 



In Spectral Graph Theory 
• We consider eigen-decomposition of various Graph matrices of size (𝑛 × 𝑛) 

where 𝑛 is the number of data points. 

• Matrices here are typically sparse with very few entries as non-zero. 

• We minimize a different criteria that preserve geodesic distances on the 
surface patch.  

Difference between SGT and DR 

In Dimensionality Reduction 
• In linear DR (PCA) we consider eigendecomposition of Scatter/Covariance 

matrix of size (𝑚 ×𝑚), where 𝑚 is the original dimension of input data. 

• Matrices here are typically full with all entries as non-zero. 

• We find a least square fitting of the data.  



Graph Matrices 

Basic Graph Notations 
• Consider a simple graph with no loops and multiple edges 𝒢 = 𝒱, ℰ : 

 𝒱 = 𝓋1, … , 𝓋𝑛  as vertex set with its cardinality i.e. (number of vertices) 𝒱 = 𝑛. 

 ℰ = 𝑒𝑖,𝑗  as edge set with each element 𝑒𝑖,𝑗  representing an edge between two adjacent  

vertex 𝓋𝑗 ∽ 𝓋𝑖  . 

Adjacency and Degree Matrix 
• Adjacency matrix of graph 𝒢 is a symmetric matrix : 

 𝐀 = 𝑎𝑖,𝑗 𝑛×𝑛
 with 𝑎𝑖,𝑗 =  

𝜔𝑖,𝑗    if  𝑒𝑖,𝑗 ∈ ℰ

0        if  𝑒𝑖,𝑗 ∉ ℰ

0        if   𝑖 = 𝑗    

 

 𝜔𝑖,𝑗 is a weight assigned to each edge and in case of unweighted  graph 𝜔𝑖,𝑗 = 1. 

 
• Degree matrix of graph 𝒢 is : 

 𝐃 = [𝑑𝑖𝑎𝑔 𝒹𝑖 ]𝑛×𝑛 where 𝒹𝑖 =  𝜔𝑖,𝑗∀𝓋𝑗~𝓋𝑖
.  

 A graph 𝒢 is connected if 𝒹𝑖 > 0, ∀𝑖 ∈ 1: 𝑛  

 A graph 𝒢 is regular if 𝒹𝑖 = 𝒹𝑗 , ∀𝑖 ∀𝑗 ∈ {1: 𝑛} 

 

𝓋1 𝓋2 

𝓋3 

𝓋4 𝓋5 

𝑒1,5 

A graph with 5 vertices and 6 edges. 

𝐀 =

 0 
 0 
 1 

 0 
 0 
 1 

 1 
 1 
 0 

 0 
 0 
 1 

 1 
 0 
 1 

 0 
 1 
 0 
 0 
 1 
 1 
 0 
 1 
 1 
 0 

, 𝐃 =

 2 
 0 
 0 

 0 
 1 
 0 

 0 
 0 
 4 

 0 
 0 
 0 

 0 
 0 
 0 

 0 
 0 
 0 
 0 
 0 
 0 
 2 
 0 
 0 
 3 

 



• Eigen-decomposition of Adjacency matrix  𝐀 yields 𝑛 smooth eigenvectors 
that can be seen as discrete functions defined on graph vertices. 

 𝐀 = 𝐕𝚲𝐕𝑇 with 𝐕 = [𝐯1, … , 𝐯𝑛] as matrix of eigenvectors. 

 Hence 𝐯𝑖 =  𝑓𝑖 𝓋1 , … , 𝑓𝑖 𝓋𝑛  
𝑻=  𝑣1

𝑖 , … , 𝑣𝑛
𝑖  𝑻 

 

 

Discrete Functions on Graph  

Definition 
• Let 𝑓 be a smooth real valued function on graph  𝒢 such that 𝑓:𝒱 → ℝ. 

 It assign a real number to each node of the graph.  

 A discrete vector representation of a continuous function 𝑓 is written as 𝒇 ∈  ℝ𝑛 
where 𝒇 =  𝑓 𝓋1 , … , 𝑓 𝓋𝑛  

𝑻. 

 

 

𝑓 𝓋1  𝑓 𝓋2  

𝑓 𝓋3  

𝑓 𝓋4  𝑓 𝓋5  

𝑓𝑖 𝓋1 = 𝑣1
𝑖  𝑓𝑖 𝓋2 = 𝑣2

𝑖  

𝑓𝑖 𝓋5 = 𝑣5
𝑖  

𝑓𝑖 𝓋4 = 𝑣4
𝑖  

𝑓𝑖 𝓋3 = 𝑣3
𝑖  



Graph Matrix as Discrete Operator 

Adjacency Matrix as an Operator 
• Adjacency matrix 𝐀 can be viewed as an operator. 

 𝒈 = 𝐀𝒇 where 𝒈 𝓋𝑖 =  𝑓 𝓋𝑗 ∀𝓋𝑗~𝓋𝑖
 

• In quadratic form we can write. 

 𝒇𝑇𝐀𝒇 =  𝑓 𝓋𝑖 𝑓 𝓋𝑗 𝑒𝑖,𝑗  

 

𝑔 𝓋1
𝑔 𝓋2 
 𝑔 𝓋3 
𝑔 𝓋4 
 𝑔 𝓋5 

= 𝒈 = 𝐀𝒇 =

 0 
 0 
 1 

 0 
 0 
 1 

 1 
 1 
 0 

 0 
 0 
 1 

 1 
 0 
 1 

 0 
 1 
 0 
 0 
 1 
 1 
 0 
 1 
 1 
 0 

𝑓 𝓋1 
𝑓 𝓋2 
 𝑓 𝓋3 
𝑓 𝓋4 
 𝑓 𝓋5 

=

𝑓 𝓋3 + 𝑓 𝓋5 
𝑓 𝓋3 

𝑓 𝓋1 + 𝑓 𝓋2 + 𝑓 𝓋4 + 𝑓 𝓋5  
𝑓 𝓋3 + 𝑓 𝓋5 

 𝑓 𝓋1 + 𝑓 𝓋3 + 𝑓 𝓋4 

 

𝑓 𝓋1  𝑓 𝓋2  

𝑓 𝓋3  

𝑓 𝓋4  𝑓 𝓋5  
𝑔 𝓋4 = 𝑓 𝓋3 + 𝑓 𝓋5  

𝑔 𝓋2 = 𝑓 𝓋3  

𝑔 𝓋2 = 𝑓 𝓋1 + 𝑓 𝓋2 + 𝑓 𝓋4 + 𝑓 𝓋5  



Discrete Laplace Operator 

Laplacian Matrix 
• Laplacian matrix  𝐋 of graph 𝒢 is a 𝑛 × 𝑛 symmetric matrix : 

 

 

• This matrix can also be viewed as an operator : 

 𝒈 = 𝐋𝒇 where 𝒈 𝓋𝑖 =  𝑓 𝓋𝑖 − 𝑓 𝓋𝑗 ∀𝓋𝑗~𝓋𝑖
 

 

• In quadratic form we can write: 

 𝒇𝑇𝐋𝒇 =  𝑓 𝓋𝑖 − 𝑓 𝓋𝑗 
2

∀𝓋𝑗~𝓋𝑖
 

 

𝐋 = 𝐃 − 𝐀 

𝑓 𝓋1  𝑓 𝓋2  

𝑓 𝓋3  

𝑓 𝓋4  𝑓 𝓋5  
𝑔 𝓋2 = 𝑓 𝓋3 + 𝑓 𝓋5 − 2𝑓 𝓋2  



Continuous V/s Discrete Laplace 



Local Parametrization 

55 



Continuous V/s Discrete Laplace 

𝛻𝑓 𝑝 =
𝜕

𝜕𝑢
𝑓 𝑝 +

𝜕

𝜕𝑣
𝑓 𝑝  𝛻𝑓 𝓋𝑖 = 𝑓 𝓋𝑖 − 𝑓 𝓋𝑗  

Derivative vector in Tangent Space Directional Derivative w.r.t. edge 𝑒𝑖,𝑗 

∆𝑓 𝑝 = div 𝛻𝑓 𝑝 = 𝛻. 𝛻𝑓 𝑝  

∆𝑓 𝑝 =
𝜕2

𝜕𝑢2
𝑓 𝑝 +

𝜕2

𝜕𝑣2
𝑓 𝑝  

Laplace operator computed at 𝑝 

Laplace operator computed at 𝓋𝑖  

∆𝑓 𝓋𝑖 = div 𝛻𝑓 𝓋𝑖 = 𝛻𝑇𝛻𝑓 𝓋𝑖  

𝐋𝑓 𝓋𝑖 = 𝑓 𝓋𝑖 − 𝑓 𝓋𝑗 
∀𝑗 ~ 𝑖

  



Discrete Laplace Operator 

Laplacian Operator 

• Minimization of quadratic form 𝒇𝑇𝐋𝒇 ==  𝑓 𝓋𝑖 − 𝑓 𝓋𝑗 
2

∀𝓋𝑗~𝓋𝑖
over 𝒇 

yield a smooth function that maps neighboring vertices of 𝒢 together. 

 Hence it is desired that 𝑓 𝓋𝑖  and 𝑓 𝓋𝑗  are mapped closer on the real 

line.  

 

• One important consequence of this is that if a graph is not regular (i.e. not 
uniformly connected) then a set of stongly connected vertices will be 
mapped closer as compare to set of weakly connected vertices. 

 
 

ℝ 



Laplacian Eigenvectors 

Laplacian Eigenvectors 
• Minimization of quadratic form 𝒇𝑇𝐋𝒇 over 𝒇 can be written as Rayleigh 

quotient : 

 

 

• The solution of minimization is a family of smooth orthonormal functions i.e. 

eigen-functions of 𝐋 matrix corresponding to increasing eigenvalues. 

• 𝐋𝐕 = 𝚲𝐕 with 𝐕 = [𝐯1, … , 𝐯𝑛] and 𝚲 = 𝐝𝐢𝐚𝐠 𝜆1, … , 𝜆𝑛  such that 

0 = 𝜆1 < 𝜆2 ≤ 𝜆3… ≤ 𝜆𝑛. 

• 𝐋𝟏 = 𝟎, 𝜆1 = 0 (If graph is connected). Trivial solution as constant vector. 

• 𝐋𝐯2 = 𝜆2𝐯2 is called the Fiedler vector. 

•  ∀𝑖 ∈ {2: 𝑛}, 𝐯𝒊
T𝟏 = 𝟎 by orthonormal property of eigenvectors.  

• Hence,  𝐯𝑖 𝑗 𝑗=1:𝑛 = 0. 

 
 

min
𝒇

𝒇𝑇𝐋𝒇

𝒇𝑇𝒇
 



Laplacian Eigenvectors 

𝐯𝟐 𝐯𝟑 

𝐯𝟒 

𝐯𝟖 

Sharma et. al. Symp. on Manifold Learning 2009 



Types of Laplace Discretization 

Binary Weighting (Non Geometric) 
• Weights of adjacency matrix are set to 0 or 1, i.e. all edges are 

equally weighted.  Also known as Umbrella operator.  
 

Gaussian Weighting 
• Weights of adjacency matrix are set to 𝒩μ,σ −Euclid 𝓋𝑖 , 𝓋𝑗 , 

i.e. edges with small length are weighted more than the larger 
once.  

Cotangent Weighting 
• Weights of adjacency matrix are computed in terms of 

cotangent of angles of triangle in the triangulated mesh, i.e. 
areas with higher curvature are weighted more.  

 
 

 

 
 

𝒈 = 𝐋𝒇 where 𝒈 𝓋𝑖 = 𝜔𝑖𝑗 𝑓 𝓋𝑖 − 𝑓 𝓋𝑗 
∀𝓋𝑗~𝓋𝑖

 

Discrete Laplace operators: No free lunch, M. Wardetzky, S. Mathur, F. Kälberer and E. Grinspun, In SGP 2007 



Laplacian Embedding 



Spectral Metric 

Distance computation on surface 
• Given a 3D shape represented as 𝐗 ∈ ℝ3 and its  𝑑-dimensional 

embedding  as 𝐘 = [𝐯2, … , 𝐯𝑑+1]
T. 

• Each point 𝐱𝑖 ∈ 𝐗 is represented as  𝒚𝒊 =  𝐯2 𝑖 , … , 𝐯𝑑+2  𝑖  
T.  

• Geodesic 𝐱𝑖, 𝐱𝑗 ≈  𝒚𝒊 − 𝒚𝒋 =   𝐯𝑘 𝑖 − 𝐯𝑘 𝑗  2𝑑+1
𝑘=2 . 

 

 

 
 

𝒚𝒊 − 𝒚𝒋  

Geodesic 𝐱𝑖, 𝐱𝑗  



Spectral Matching 

Mateus et. al. CVPR 2008 



Questions? 


