Geometric Modeling

Summer Semester 2012

Polynomial Spline Curves

Piecewise Polynomials - Splines Bases - Properties

®® -
wu“'“u“u gg;VERSITAT l l I I

max planck institut
informatik

I3 sAARLANDES

Announcements

HISPOS Registration

e Important: Hispos registration is now open
e Do not forget to register for geometric modeling

Room Change

e On Tuesday, June 26th,
the lecture will be held in
Buiding E1 7 (Cluster MMCI Building), Room 0.02

Exam Topics

e Section “Spectral Graph Methods for 3D Shape Analysis”
is not relevant for the exam.

Today...

Topics:
e Introduction: Geometric Modeling
e Mathematical Background
e Interpolation & Approximation
e Splines
= Polynomial Spline Curves
= Blossoming and Polar Forms

= Rational Splines
= Spline Surfaces

e Meshes

Today...

Topics:
e Introduction: Geometric Modeling
e Mathematical Background
e Interpolation & Approximation
e Splines
= Polynomial Spline Curves
= Blossoming and Polar Forms

= Rational Splines
\\ = Spline Surfaces

e Meshes

Today

Polynomial Spline Curves
e Piecewise cubic interpolation

e Splines with local control
= Hermite Splines
= Bezier Splines
= Non-Uniform B-Splines
= Uniform B-Splines

Polynomial Spline Curves
Piecewise Cubic Interpolation

What we have so far...

What we have so far:

e Given a basis, we can interpolate and approximate points
= Curves, surfaces, higher dimensional objects
= Functions (heightfields) and parametric objects
= Differential properties can be prescribed as well

Problem:
e We need a suitable basis
e Polynomial bases don’t work for large degree (say > 10)

= Monomials — numerical nightmare

= Orthogonal polynomials: Runge’s phenomenon still limits
applicability

Piecewise Polynomials

PP —>

Key Idea:
e Polynomials of high degree don’t work
e Therefore: Use piecewise polynomials of low degree
e What is a good degree to use?

Choosing the Degree...

Candidates:

e d =0 (piecewise constant): not smooth

e d =1 (piecewise linear): not smooth enough

e d =2 (piecewise quadratic): constant 2nd
derivative, still too inflexible

e d =3 (piecewise cubic): degree of choice
for computer graphics applications

s FFFE

Cubic Splines

Cubic piecewise polynomials:

e We can attain C? continuity without fixing the second
derivative throughout the curve

o C? continuity is perceptually important
= We can see second order shading discontinuities
(esp.: reflective objects)

= Motion: continuous position, velocity & acceleration
Discontinuous acceleration noticeable (object/camera motion)

e One more argument for cubics:

= Among all C? curves that interpolate a set of points (and obey to
the same end conditions), a piecewise cubic curve has the least
integral acceleration (“smoothest curve you can get”).

Piecewise Cubic Interpolation

Y)

yoxy //\

\/n
p.(X) =ci + Pt +ct® + ot Py

Setup:
e (n+1) control points y,...y, (to be interpolated)
e For simplicity: assume uniform spacing t,...t, = (0,1,2,...,n)
e n cubic polynomial pieces p,...p, parametrized over [0...1]
e Multidimensional case: solve problem for each axis (x,y,z)

Conditions

(4n degrees of freedom)

Vi=1l.n:p (0)=y, , (n conditions)

Vi=1l..n:p.(1)=y, (n conditions)
d d

Vi=2..n:—p.(0)=—np. . (1 n-1 conditions
dtpz() dtpl—l() ()
d? d?

Vi=2.n:—p.(0)=——np. .(1 n-1 conditions
dtz pl() dt2 pz—l() ()

2 dimensional null space
(so far)

Conditions

Vi=1..

Vi

Vi=2..

Vi=2..n:

Il
=

d
dt
dZ

dt”

:p:(0)=y,4
p:(1)=y,

d

dt

p;(0)=

dZ

dt*

:—p;(0)=—p,,(1)

p: (1)

(n conditions)

(n conditions)

(n-1 conditions)

(n-1 conditions)

alternative:
cyclic boundary conditions
(closed curves)

Numerical Solution

Solving the system of equations: L
e Band matrix, bandwidthO(1) |"

e Can be solved in O(n) time & space for
n variables

Cubics Minimize Acceleration

Theorem:

e Given n data points (y, t;) to interpolate and fixed end
conditions (either prescribed 1st derivative, or zero
second derivative), a piecewise cubic interpolant

minimizes the energy: E(f):jf”(t)zdt

0
e This means: A cubic spline curve has the least square
acceleration.

e Related to elastic energy: Hooke’s elastic energy of a
straight line is given by: E(f):jz|||c2[f](t)||2dt

. o o . O .o]
e |.e.: cubic spline interpolation approximates elastic
beams.

Proof: Cubics Minimize Acceleration

Cubic spline: ¢(t)
Another C? interpolating curve: a(t)
Residual: d(t) = a(t) - c(t).

Energy functional:

E(a)=|da"(t)’dt

!
[0+ ") a
!

¢''(t) dt+2jc (t)d" (t)dt+jd (t)*dt

Proof: Cubics Minimize Acceleration

Cubic spline: ¢(t)
Another C? interpolating curve: a(t)
Residual: d(t) = a(t) - c(t).

Integration by parts
j (t)b'(£)dt = [a(t)b(t)] =" - ja (x)b(x)dt

Energy functional:

E(a)= j ¢"'(t) dt+2j ¢'(t)d" (t)dt + j d"(t)%dt

Integration by parts:

n

j ¢"(t)d"()dt = [c"()d' ()] - fc”'(t)d'(t)dt
=[c"O@@®) - @S - [(O ()t

=c"(n)(d'(m) — ¢ (n)~c"(0)(@(0) - c'(0)- j ¢ (£)d' (t)dt

0 for Oif identicalfirst O for 0if 1dent1ca1f1rst 0
¢"(n)=0 orderend cond. ¢"(n)=0 orderendcond.

Proof: Cubics Minimize Acceleration

Cubic spline: ¢(t)
Another C? interpolating curve: a(t)
Residual: d(t) = a(t) - c(t).

Integration by parts:
Jat)p (€t =[a(@)b()], - [(x)bx)dt

Energy functional:

E(a)= jc"(t) dt+2jc"(t (t)dt+jd"(t) dt

Middle term (cont):

j ¢"(£)d" (t)dt = j () d'(t)de

0 0 piecewise const.

S Zc”'(z +0.5) [d()} 5"

=0 (1nterpolat10n)

=0

Proof: Cubics Minimize Acceleration

Cubic spline: ¢(t)
Another C? interpolating curve: a(t)
Residual: d(t) = a(t) - c(t).

Energy functional:

E(a)= fc”(t)zdt + fd"(t)zdt

_/ o _/

cubic\gpline addition;rl energy:
positive . oy e

Positive additional energy:

\, Any function that differs in second

derivative from c will have higher energy.

= c is a minimal function in terms of E.

Polynomial Spline Curves
Spline Bases with Local Control

So what’s missing?

So we have solved our problem — what’s left to do?
e Target area: interactive geometric modeling
e Shape of the entire curve depends on all control points
e Changing one control point can affect the whole curve
e Not a big issue for algorithmic curve control

= Fitting curves to data, optimizing curves according to some
objective function, etc...

But not acceptable for modeling by humans

“User interface problem”: We want local control.

Notation

Function design problem:
e Functionf:R > R
f(t) = c,b(t) + c,b,(t) + c3bs(t) + ...
e Coefficientscy, ¢,, G5, ... € R

Curve design problem
e Functionf: R > R”

f(t) = by(t)p, + b,(t)p, + bs(t)ps + ...

e “Control points” p,, p,, P, --- € R”

Tt flt)t o

T \ p
t oy 0
o Q)

\ o

parametric curve

New Idea

Problem: Again the basis...

e We want a basis such that:

= Coefficients / control points have intuitive meaning

e Let the user edit the control points
= |ntuitive response
= Manually controllable

Desirable Properties

Useful requirements for a spline basis:

e Well behaved curve

= Smooth basis functions

e Local control

= Basis functions with compact support

e Affine invariance:
= Applying an affine map x — Ax + b on
— control points
— curve
should have the same effect
= In particular: rotation, translation
= Otherwise: interactive curve editing very difficult

Desirable Properties

Useful requirements for a spline basis:

e Convex hull property:
= The curve is in the convex hull of its control points
= Avoids at least too weird oscillations

e Advantages

= Computational advantages (recursive intersection tests)
= More predictable behavior

Summary

Useful properties
e Smoothness
e Local control / support
e Affine invariance
e Convex hull property

26

Affine Invariance

Affine Invariance:
e Affine map: x > Ax+b

e Part l: Linear invariance — we get this automatically
(x)

. . P;
= Linear approach: f(t)=> b,(t)p, =) b,(t) p!”’
i=1 i=1 (2)

Pi

- Therefore: A(f(t))= A(Z":b,. (t)pij S Zn:b,. (t)(Ap,)

Affine Invariance

Affine Invariance:

e Affine map: x > Ax+b
e Part ll: Translational invariance — need some brains

y ibi (t)(pi T b): ibi (t)p; + ibi (t)b= f(£)+ (Zn:bi (t)j b

J

~
must sum to one

For translational invariance, the sum of the basis functions must
be one everywhere (for all parameter values t that are used).

This is called “partition of unity property”.
The b, form an “affine combination” of the control points p..

This is very important for human modeling.

Convex Hull Property

Convex combinations:

e A convex combination of a set of points {p,,...,p,} is any
point of the form:

« > Ap, with: Y 4 =1 and Vi=1.n:4,>0,4, <1
i=1 i=1

= (Remark: 4. < 1is redundant)

e The set of all admissible convex combinations forms the
convex hull of the point set

= Easy to see (simple exercise): This convex hull is the smallest set
that contains all points {p,...,p,} and every complete straight line
between two elements of the set.

Convex Hull Property

Accordingly:

e |f we have this property: /’\S’\

VteQ:) b(t)=1 and VteQ:Vi=1.n:b,(t)>0 .
i=1

the constructed curves / surfaces will be: /

= Affine invariant (translations, linear maps)
= Be restricted to the convex hull of the control points

e Corollary: Curves with this property will have linear

precision, i.e.: if all control points lie on a straight line, the
curve is a straight line segment, too.

e Surfaces with planar control points will be flat, too.

Convex Hull Property

Convex Hull Property:
e Very useful property

= Avoids at least the worst oscillations (no escape from convex
hull, unlike polynomial interpolation through control points)
= Linear precision property is intuitive (people expect this)
= Can be used fast range checks
— Test for intersection with convex hull first, then the object.

— Recursive intersection algorithms in conjunction with
subdivision rules (more on this later)

Spline Techniques

Spline bases we will look at in this lecture:
e Hermite interpolation
e Bezier curves & surfaces
e Uniform B-splines
e Non-uniform B-splines

[INURBS: Non-uniform rational B-splines]
(not linear, more on this later)

Spline Techniques

Two views:

e Linear algebra: polynomial function spaces
= Basis changes

= Derivatives and continuity conditions

e Geometry: Successive linear interpolation (“blossoming”)

= Construct polynomial spline curves by repeated linear
interpolation of control points

= More intuitive explanations of properties

= Mathematical formalism: Blossoming and polar forms

This part of the lecture will deal with the linear algebra view.
Blossoming gets a separate chapter...

Polynomial Spline Curves
Hermite Splines

Hermite Splines

Overview:
e Simple spline technique, easy to implement
e Has some shortcomings

o We will look at C! cubic Hermite splines as an example

Key Idea:

e Specify position and derivatives at the endpoints of each
segment

e Come up with a rule to match them easily
e Precompute basis for this purpose

lllustration

h(t)=c +ct + e + e’
For each segment h (t) we know:
e Positions: h(0), h(1)
e Derivatives: 0,h/(0), 0,h(1)

Hermite Basis

Linear system: (one dimension, one segment)

h(0)=p, = c,=p, h(t)=c, +c,t+c,t° +c,t°
h(1)=p, = ¢o+Cy+Cy+C5=p; H(t)=c, +2c,t+3c,t*
h'(0)=m, = c, =m,

h(1)=m, = c¢,+2c,+3c;, =m,

1 0 0 0)c, Do 1 0 0 0} pg Co
- |1 11 1jc 2N . 0O 0 1 0 | p |G
01 0 0fc, m, -3 3 -2 -1|m, c,
01 2 3)c, m, 2 -2 1 1) m Cq

Hermite Basis

Solution:

f(t)= [1,t,t2,t3]

Basis Functions:
h, (£)=1-3t"+2t
h, (t)=3t* -2t
hy, (£)=t—=2t" +1’

h, (£)=-t*+t’

Hermite Basis

Properties:

o hpo and hpl sum to one.
(affine invariant w.r.t. position)

e Curve might leave convex hull of
control points

Open question:
e How to specify derivatives?

lllustration

Simple rule for derivatives:

e Derivatives:
0.£ (0):= 21— Tiz

(i e{2.n)

0.f (1):= 2ixt ;Xf—l , (ie{l.n—1)

0.£(0)=x, -Xx,
atfn(]‘) = Xn . Xn—l

e “Catmull-Rom Spline”

Properties

Properties of this spline construction:
e Interpolates original points
e Local control
e C, continuous
e Affine invariant
e No convex hull property

= Tends to “overshoot”
= This can be really nasty in practice

Polynomial Spline Curves
Bezier Curves

Bezier Splines

History:
e Bezier splines developed
= by Paul de Casteljau at Citroén (1959)
= Pierre Bézier at Renault (1962)

for designing smooth free-form parts in automotive
design applications.

e Today: The standard tool for 2D curve editing,
Cubic 2D Bezier curves are used almost everywhere:
= Postscript, PDF, Truetype (quadratic curves), Windows GDI...
= Corel Draw, Powerpoint, lllustrator, ...

e Widely used in 3D curve & surface modeling as well

All You See is Bezier Curves...

History:
» Bezier splines developed
= by Paul de Casteljau at Citroé

- Manwwma BLolaw ad Dawasrla F4 A2

&ener

Bernstein Basis

Bezier splines use the Bernstein basis:

e Bernstein basis of degree n: p= {Bg”),BF),..., B,E”)}
nj ; —I egreen
Bi(n) (t) :_[jtl (1 B t)n - Bfijthgbasis]fundion
1
e Each basis function is a polynomial of degree n.

e The basis functions form a partition of unity

1=(1—-t+t)=(t+(1-1))" = Z[njt(l —t)' = iBf”)(t)
|

i=0 =0
(binomial theorem)

e Fort € [0..1], the basis functions are positive (B,-(")(t) > 0).

Examples

The first three Bernstein bases:

n=1 (linear)

0) ._
B,”" =1 B) B,
B = (1 — t) B =g
B®=(1-t)) B®=2t(1-t) BP:=t?

(3) ._ 3 (3) ._ 2
By~ = (1_t) By = Bt(l_t) n=2 (quad.) ' n=3 (cubic)
B = (1 = t) B = *I \Bo B, " \Bo B

By “~ \B, B,

Bernstein Basis

Bernstein basis properties:

° B:{B(()n),BF), . (n)} (n)(t) (j i(l_t)n—i

Basis for polynomials of degree n.

Each basis function B has its
maximum at i/n.

Recursive computation:
B™(t):=(1-t)B" I (t)+t B M(t)
with B)(t)=1, B'(t)=0 for i ¢ {0..n}

Symmetry: B'(t)=B" .(1-t)

n =3 (cubic)

Bezier Curves

Bezier curves Properties:

Curves: f(t):ip.B}”)(t)

1

i=0
Considering the interval t € [0..1]

Bezier curves are affine invariant.

Bezier curves are contained in the
convex hull of the control points.

The influence of the control points is
moving along the curve with index i.
Largest influence at t = i/n.

However: A single curve segment has
no fully local control.

n=3 (cubic)

Bezier Curves: Examples

Bezier Curves:

) P, ’ n =3 (cubic)
«f()=2pB" T\ o
= p; - B, B,

Po

Matrix Form

Matrix Notation: Bezier = Monomials

f)=1 ¢ ¢2] -2

f(t)z[l t t° t3]

Py
P
P,

w o O

_ o O O

Py
P,
P
Ps3

(quadratic case)

(cubic case)

Format Conversion

Conversion: Compute Bezier coefficients from
monomial coefficients

-1

C(()Bez.) 1 0 0 c,
i =[-2 2 0 o (quadratic case)
cife) 1 -2 1 c,

clper) 1 0o o)1 c,

ctP | -3 3 0| |c |

c{Eer) 13 _g 3 0 c, (cubic case)
P] (-1 3 -3 1) \c

Format Conversion

Conversion: quadratic to cubic

@) (1 0 0 o)1 0o 0 o)c
¢l -3 3 0| |=2 2 0 0fc?®
1|3 -6 3 0 1 -2 1 0]c?
¢®) (-1 3 -3 1 0 0 0 O0fo

Convert to monomials and back to Bezier coefficients.
(Other degrees similar)

Example Application: Output of TrueType fonts in Postscript.

The Other Way Round...

Reducing the degree:

e Exact solution is not always possible
e Approximate solution: least-squares

(function approximation)
e System of normal equations:

- (b5

¢y
Cn

¢

Cn

A

(B (x).))
: , f(t)= ;Cibi(t)

(5, (x).f)

(B ()
Zci :
= (B, ()b @)

2

S

Cubic — Quadratic Case

Reducing the degree: Cubic — Quadratic

111 1) (1) (1) (L
7 14 35 | ¢, 6 10 20 60
1 3 9 | ~ 1 1 1 1

C, |=Col — |+Cy| — |F+C,| — |+C5| —
14 35 140 | - 15 10 10 15
1 9 3 |& |1l || |1| |1I
35 140 35 60 20 10 6

Polynomial Spline Curves
Bezier Splines

Bezier Splines

Local control: Bezier splines
e Concatenate several curve segments

e Question: Which constraints to place upon the control
points in order to get C%, C°, C%, C? continuity?

Derivatives

Bernstein basis properties:

e Derivatives:

%Bf”) (t)= (nj (it{"‘” 1-t)" —(n-t(1- t){”""”)
I

—n[B"0(6) - B (1)

({k} = k if k >0, zero otherwise)

Derivatives

Bernstein basis properties:

e Derivatives:

d_z (n) _i n . {i-1} B n—i_ g B {n—-i—-1}
5 B! (t)_dt ij(lt (1-t)" —(n-0t'(1-t))

= (n ({i ~ it A —t) T —in -t (1)

—in=-t" (1 -t)" Y n—i- 1y (- (1- t){”""Z})

= n(n-1)|B"? (¢) - 2B 2 () + B" (1))

({k} = k if k> 0, zero otherwise)

Bezier Curve Properties

Important for continuous concatenation: 4\ =3 (cubic)
e Function value at {0,1}: 1\Bo
n B, B
n, ; n—i 1 2
©-3" o
i=0
- f(o):po
f(1)=p,
n=10

e First derivative vector at {0,1}

e Second derivative vector at {0,1}

Bezier Curve Properties

Important for continuous concatenation:

e Function value at {0,1}:

£(0)=p,, f(1)=p,
e First derivative vector at {0,1}:

d
Ef(t)

e Second derivative vector at {0,1}

n=3 (cubic)

Bezier Curve Properties

Important for continuous concatenation: 4 =3 (cubic)
e Function value at {0,1}: "

£(0)=p,, f(1)=p, g
e First derivative vector at {0,1}:

—f(t) nZ[B(" (e)-B"V(@0)]p,

10

= (n]- BU P (@)]p, + [BI () - BV (0)]p, +.. | :

A [BEIE) - B ()]p,, + B,S”ll)(t)]pn)

£'(0)=n(p, -p,) f(1)=nlp,-p,.)

e Second derivative vector at {0,1}

Bezier Curve Properties

Important for continuous concatenation:

e Function value at {0,1}:

£(0)=p,
f(1)=p,

e First derivative vector at {0,1}:
£'(0)=nlp, —p]
f'(1)=nlp,-p, ,]

e Second derivative vector at {0,1}:
£"(0)=n(n—1)[p, —2p, +p,]
f'(1)=n(n-1)[p, ~2p,, +P,.]

n=3 (cubic)

Bezier Spline Continuity

Rules for Bezier spline continuity:
e CO continuity:

= Each spline segment interpolates the first and last control point

= Therefore: Points of neighboring segments have to coincide for
CY continuity.

Bezier Spline Continuity

Rules for Bezier spline continuity:

o Additional requirement for C! continuity:
= Tangent vectors are proportional to differences p; — py, P, — P,..1
= Therefore: These vectors must be identical for C! continuity

(i+1)

P

Bezier Spline Continuity

Rules for Bezier spline continuity:

o Additional requirement for C? continuity:
= d2/dt? vectors are prop. to (p, — 2p; + Py), (P, — 2P, 1 + P,.,)
= Tangents must be the same (C? implies C?)
= Therefore: Triangle of first / last three points must be the same

pg+1)

In Practice

In practice:
e Everyone is using cubic Bezier curves
e Higher degrees rare (CAD/CAM applications)
e Typically: “points & handles” interface
e Four modes:
= Discontinuous (two curves)

= CO Continuous (points meet)

= Tangent direction continuous (handles point into the same
direction, but different length)
(“G* continuous”, more on this shortly)

= C! Continuous (handle points have symmetric vectors)

C?is rarely supported (too restrictive, no local control)

Bezier Curve Editing

G! continuity C! continuity

Geometric Continuity

Parametric Continuity:
o CO C!, C2... continuity.

e Does a particle moving on this curve have a smooth
trajectory (position, velocity, acceleration,...)?

e Useful for animation (object movement, camera paths)

Geometric Continuity:
e |s the curve itself smooth?

e C.f.: differential geometry — parametrization independent
measures

e More relevant for modeling (curve design)

Geometric Continuity

Geometric Continuity:
e GO =CY position varies continuously

e G!: tangent directions varies continuously
= In other words: the normalized tangent varies continuously

= Equivalently: The curve can be reparametrized so that it
becomes C.
= Also equivalent: A unit speed parametrization would be C!.

e G?: curvature varies continuously
= Equivalently: The curve can be reparametrized so that it
becomes C2.
= Also equivalent: A unit speed parametrization would be C2.

Geometric Continuity for Bezier Splines

This means:

G! continuity

This Bezier curve is G*: It can be reparametrized to become C!.
(Just increase the speed for the second segment by ratio of
tangent vector lengths.)

Polynomial Spline Curves
Uniform Cubic B-Splines

Literature

Literature:

e An Introduction to Splines for use in Computer Graphics
and Geometric Modeling

Richard H. Bartels, John C. Beatty, Brian A. Barsky
Morgan Kaufmann 1987

(now hard to get, waited several month on Amazon)

Overview

Uniform cubic B-splines

e This is a special case of general B-splines

= (which additionally provide arbitrary degree and general and
non-uniform parametrization)

e We look at this first to get an intuition for the basic ideas
and concepts for B-splines

e Some derivations are left out — will be shown later for the
general case

Overview

Improvement over cubic Bezier splines:
o C? continuity is easily attainable
» We will use only one type of basis functions

= Shifted in the domain to create curves with multiple segments

= This principle is conceptually easier to apply in general modeling
problems (e.g. as a basis for finite elements, for PDEs or
variational problems)

Key Ideas

Key Ideas:
e We design one basis function b(t)
e Properties:

b(t) is C2 continuous.

b(t) is piecewise polynomial, degree 3 (cubic).

b(t) has local support.

b(t) >0 forallt

1.0

0.8

0.4

0.2

0.0

Overlaying shifted b(t + /) forms a partition of unity.

1.0

2.0

3.0

e In short: We build-in all the desirable properties into the

basis. Linear combinations will inherit these.

4.0

Shifted Basis Functions

1.0 1.0
0.8 0.8 ji=-1 i=0 =1 =2 =3
7/ 7\

08| py(t-1)/" N ps(t-2) 0s /
0.4 0.4 //
0.2 pl/(t)! p,(t-3) 0.2

0.0 1.0 2.0 3.0 4.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

basis function b(t) shifted basis functions b(t-i) for [0..6]

Basis function:

e Consists of four polynomial parts p;...p,.
e Shifted basis b(t —i): spacing of 1.
e Each interval to be used must be overlapped by 4 different b..

Basis Function

1 1.0
P1(t)—g 0.8

1 o py(t-1)/ N ps(t-2)
p,(t)==(1+3t +3t> - 3t*) 2 3

6 0.4

1 _
p3(t)——(4—6t2+3t3> 02| P1(t); p,(t-3)

6 4

1 , 3 0.0 1.0 2.0 3.0 4.0
p4(t)—g(Sotesr et) basis function b(t)

(0 ift <0 (0 ift <0

p,(t) if0<t<1 -t if0<t<1
ey - | PoE-D) fl<es2(ie3-1) 30— 1) -3(t-1)°) if1<t<2

p(t-2) if2<t<3 L(4—6(t—2)* +3(t - 2)°) if2<t<3

p,(t-3) if3<t<4 |L(1-3(t-3)+3(t-3)>—(t-3)°) if3<t<4

0 ift>4 0 ift>4

Creating Curves

1.0
0.8
0.6
0.4

Creating uniform B-spline curves:

e Choose parameter interval [n,,.-2, n.,4+2,], Nyt < Nopy € Z

start start

e Use all shifted basis functions that overlap this interval:
B = {b(t_ [nstart_l])l R b(t_ [nend+1])}

Nepd +1
» Form linear combinations: f(t)= > b(t—i)p,

[=Ngqr —1

Uniform B-Spline Curves

one segment

two segments

0 three segments

./\-

Discontinuities

Continuity Control
e Easier than with Bezier curves
e The parametric function is always C?, by construction

e However: We can create curves with lower geometric
smoothness
= This will lead to a degenerate (non-regular) parametrization
= This problem is fixed with general, non-uniform B-Splines

e Basic idea: Double control points
= Single points: G% curve
= Double points: G! curve
= Triple points: G° curve

Continuity Control

. single points
° ex 1

. double point
() o X 2

o triple point

'/\/ (interpolates that point)
(") X 3

lllustration

>X

T T
| VLW S S

7™\ 7™\
0.6 / 0.6 /
/ /
ol XA ool X)&E}

0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

End Conditions

Problem:

e We need at least 4 points for one spline segment,
5 for two and so on.

e Means: We need s + 3 control points for s segments
(rather than s + 1), two more than in spline interpolation.
e This is inconvenient...
e Simple solution:
= Use double or triple end points

= Triple end points will be interpolated
= We will get along with s + 1 control points

Knot Sequences

x 1 % 1

X 3 3 X 3
Specifying a uniform, cubic B-Spline curve:
e A set of control points p,, ..., p,,.
e Knot multiplicities (i, ..., i), . € {1,2,3}, Zij = n.
= For example (3,1,1,1,3,1,1,1,3)
— Creates one sharp corner in the middle of the spline
— Interpolates the end points

Conversion to Bezier Basis

Uniform B-Splines can be converted to the Bezier
Format:

e Cubic polynomial pieces

e Each can be represented as Bezier segment

e Just a basis change...

Basis Change

0o 1 4 1 Uniform B-Spline:
v 110 3 0 -3 pl(t):lt3
UB—>Mn — 6 0 3 _6 3 ?
L -3 3 -1 p.(0)== (1430436 -3¢)
1 0 0 0
1 2 3
-3 3 0 0 pg(t):—(4—6t +3t)
l\/lBez—>Mn: 6
3 -6 3 0 X
103 -3 1 p4(t)=g(1—3t+3t2—t3)

- Bezier-Spline:

b by

b® | _ | b BY = (1-1f B® =311ty
~ — ""'UB—Bez

o e MR

b b

Where does the basis come from?

How do we construct a B-Spline basis?
e Derivation of uniform cubic B-Splines?
e Generalizations:

= General degree?
= Non-uniform parametrization?

Three Approaches:

Three ways to get the basis:

1. The elementary approach:

= Derive a linear system of equations, solve
2. Repeated convolution:

= d-fold convolution of box functions

3. de-Boor Recursion:

= Repeated linear interpolation

The Elementary Approach

Cubic Uniform B-Spline Basis: 1.0
0.8

/7
%8 pAlt1) T \ps(t2)

0.4
o/

e One basis function, just shifted
e Consists of four pieces p,, p,, ps, Pa-

e We just need the coefficients of the o2 yr %3)
pleces 0.0 1.0 2.0 3.0 4.0
e Setting up a linear system... basis function b(t)

0z
L) [¥] R R g]

pieces pt)

The Elementary Approach

Linear system: 1.0
0.8
p.(0)=0 p1(0) =0 pi(0) =0 o P
p@=p(0) P =p3(0) P = p3(0) - pz“-“‘/ly pi{t-2)
(1) = ps(0) Pz =p3(0) pz(1) = p3(0) |
) pl(t)' (t-3)
Ps@)=Pa(0) P =Pi(0) P5)= P;(0) 4 X
p,(1)=0 ps(1) =0 pi(1)=0 00 10 20 30 40
1 1 1 1 basis function b(t)
(2o ofd) ool

pieces pt)

The Elementary Approach

Normalization: 0,(0)=0 p(©O)=0 pl(0)=0
. @ =p,(0) pi@)=pz(0) pi@)=p3(0)
e Completely determines the p;. P = p:0) P =piO) P = PL(O)

e Turns out to hold everywhere in [0,1] pgg)(l:) P péi)(lz) P pgsz)(lz) P
 Not yet clear why p{%} pl[%} p{%} p{%jzl
e But: if it is possible, our

conditions are sufficient

e So we have to show that it is possible

Positivity:
e Not enforced; we get this accidentally (simplicity)
e Same argument: if it’s possible, the conditions are sufficient

Properties

Minimal Support:

e We have 16 conditions (cubic case)
= 15 for smoothness, one for normalization
= Easy to see: linear independent

 Need 4 polynomial segments to get sufficiently many
degrees of freedom

e Consequence: Any C? function with 3 or less polynomial
segments, and the zero function everywhere else, must

be the zero function.
= 15 linear independent constraints, homogeneous.
= Zero vector is the only solution.

e Therefore: We have minimal support.

Repeated Convolution

Convolution:
e Weighted average of functions
e Definition:

}Qf-
fH®g() = [f()g(x—t)dx 1 £

Example:

Repeated Convolution

A Different Derivation:
e We start with Oth degree basis functions
e Increase smoothness by convolution

Degree-zero B-Spline:

1,if t€[0...])
0, otherwise

b (t) = {

General-degree B-Spline:

b® (1) =b™M (1) ® b (t) = Tb(i)(x)b(o) (x —t)dx

lllustration

v

v

-1 0 1 2
0
| | >
-1 0 1 2
1 -
| | >

lllustration

Result:
e Piecewise linear B-spline basis function
e Each convolution with b, increases the continuity by 1.

lllustration

Smoothness

Convolution with a box filter increases smoothness:

Function fthatis C<! at t = t, and C* everywhere else:

t+1

e fg=f ®b, = jf(t)dt: F(t+1) - F(t)

d' d’

e AD ::E_f(t)—ﬁj(t), AD'f (t)=0 fori=1.k-1
. d’ f(t) = djl[d f (t)j— djz(d (F(t+1)—F(t))j
dti Y g tlde) dei2 | dt
di—?
:dtj_z(f(t+1)_f(t))

*AD! f (t) = ADIH(f (t+1) - f (1))

Partition of Unity

Proof by Induction:

— 1 14
AL (G
-1 0 1 -1 0 1 2
degree zero: OK degree d: given
1_-

ﬁ k

I 1

-1 0 1 2

degree d... degree d+1: follows

Other Properties

Positivity:
e By definition

Continuity:

e Smoothness increasing property: k-fold convolution is C.

Piecewise polynomial:
e Easy to see: Polynomial in each interval
e Degree k for k-fold convolution.

Consequences

Conseqguences:

e The constructed functions are identical to the explicitly
constructed ones (limited degrees of freedom)

e This means, the explicitly constructed basis has the same
properties (partition of unity, positivity)

Repeated Linear Interpolation

Another way to increase smoothness:

S /x
\ t € [0..2]

| /X\
\\ﬁ
» M |
<—+<

Repeated Linear Interpolation

Another way to increase smoothness:

X A A

/ +

\

- l
-»
A

t

AT

Plot of the Three Pieces

\/

X

N
N

Repeated Linear Interpolation

General Principle:

N

De Boor Recursion

The uniform B-spline basis of degree d is given as:

0 1, ifi-1<t<i
Ny (t) = 0 . ‘ \
. otherwise |

i t=(i-1) - (i+d)-t 44
Ny (t) = (i+d—l)—(i—1)Ni (t) T (I+d)—(i)Ni+l (t)
PN A
:t—i+1Nid_1(t)+i+d—t Nid_l(t)

Connection

Three constructions:

|t can be shown that this construction is equivalent to the
previous two.

e Rough idea:

= Convolution with a box filter increases degree by one
(multiplication with linear weight in de Boor formula)

= Antiderivative of box filter: evaluate at t, t+1
(corresponds to overlaying N, N.,,)

= Need to show that the coefficients match (induction)

Polynomial Spline Curves
Non-Uniform B-Splines

Generalization

De Boor formula can be generalized:

e Arbitrary parameter sequences (“knot sequence”)
(to, | PP tn) witht,<t, <...<t,
= Not necessary to have uniform spacing
= Will give us more flexibility in curve design.

e Specifying one parameter value multiple times is
permitted, e.g. (0,0,0, 1, 2,3,4,4,4,5,6,7,8, 8, 8)

= This has a similar effect as multiple nodes in simple
uniform B-Splines

= Will avoid irregular parametrization (means: will create a basis
that itself is less smooth, not just the traced out curve)

General De Boor Recursion

Generalized Formula:

NO(t) = 1, ift , <t<t "—‘
! 0, otherwise |

t—t t

NO(t) = N+ ivd N,d+11(t)
ti+d—1_ti—l ti+d t
/"’ N
y N
!/// > —_— > ! \\\= ‘[l—&>
Remark:

e |f a knot value is repeated d times, the denominator may vanish
e |n this case: The fraction is treated as a zero

Uniform Case:

For comparison — the uniform case:

0 1, ifi-1<t<i
N (t) = 0 . ‘ \
. otherwise |

S PR o L™ AV

(i+d-1)-(i-1)

B-Splines

Constructing a Spline Curve:
e Choose a degree d.

e Choose a knot sequence (t,, t, ..., t,)witht,; <t <... <t
(n>d-1)

e Choose control points p,, py, -, P, (M=n—d + 1)

n

e Form the spline curve:

f(t) =2 N/ ()P
=0
De Boor Algorithm:

e This evaluation can be expanded explicitly...

De Boor Algorithm

f(t)=i1vf (O)p,

_Z(LN 1(t))p, S (t N[‘if(t)jp,-

1+d 1 ti— =0 t
n t—t., Wit -t)
= S Ve 1(t))p, + [tld N/ 1(t)jp,-l
i=0 ti+d—1 _ti— i=1 t1+d 1 i—
n+1 t.

t_t d-1 —1+d —L d-1
N, (t):|p1 |: — N; (t):|p1 1
|:ti+d1 ti—l t1+d 1 ti—

(t —t)pi +L (i—1+d t)pi—l Nid—l (t) pl} — (t —t)pi + (ti—1+d B t)pi—l

T 0
—_ o

I
1N

T
= O

ti+d—1 o ti—l ti+d—1 o ti—l

N (6)p;

=

I
(@)

De Boor Algorithm

n+1

f(O) =2 N (Op
i=0

n+j -

o L . t—t o g —t)
= > NI tp!? with: pt = =t o, b)pi‘il”
i=0 livaoja—tia livaoja—tia

n+d

- NP
1=0

This means:
e Fort e[t 4,...,t;), we obtain the function value f(t).
e We can write this as an algorithm...

De Boor Algorithm

De Boor Algorithm:
e We want to evaluate f(t) forat € [t ,,...,t)
e We compute:

pi(O) =Pi

For increasing | :

pi(t) = —tid) sy sso s 1) pi (1)

iiaojo1—tia iiaojoa—tia

tiiaojo1—lia

Output p?(t)

Example

pi(O) =P
For increasing | :
- t—t, j Gigaj—t) -
pij(t):—() pijl(t)Jr—(_—)pijll(t)
ti+d—j—1_ti—1 ti+d—j—1_ti—1

:Oti(j)pij_l(t)+(1—0(i(j))pij__ll(t), oD = (t—t,)
ird—j-1—lia

Output p~(t)

Data Flow

Data Flow:

0
p%,

0) ™ (1
pl(—zj +1—* pl(—)d +1

0) N oo(1) d—2
pi(—)l ::pi()l :: pi(—l)\
0 1 d—2

p® 2p % . ped

d-1
Pi @

—>pi

De Boor Algorithm

Some nice properties:
o Pi(t)=apl?(t)+@—a)pli(t) (forsomea)
e The algorithm forms only convex combinations of the
original data points.

= Affine invariance follows directly

= Numerically stable — no cancelation or error amplification
problems

= Much better than transforming to monomial basis

= But slower: O(d?) instead O(d) multiplications with Horner
scheme in monomial basis

Benefits of Non-Uniform B-Splines

Improvements over the uniform case:

e We can choose the parameter intervals freely

= Typically: Use distance between control points as knot distance
= Allows better adaptation to distance between control points

= Curves tend to “overshoot” less (in particular: problem for
B-Spline interpolation; no convex hull property there)

= Achieve more uniform speed for applications in animation

e No irregularities

= Reduced smoothness, start/end conditions build into the
computed bases

= Advantages for rendering (no stopping at sharp corners)

Examples

The effect of parameter spacing:

M . first interval larger

Examples

Multiplying Knots

A Closer Look at B-Splines

Need some more tools & properties:
e Proof various properties
e Operations: Knot insertion, degree elevation, etc.
e Convert to alternative bases (e.g. Bezier, monomials)

Problem:
e Indexing nightmare

e We need a better formalism to understand
what’s really going on: blossoming & polars

 We will look at that tool first, then go into the details
again

