
Geometric Modeling
Summer Semester 2012

Blossoming and Polar Forms

Piecewise Polynomial Splines Revisited

Today...

Topics:

• Introduction: Geometric Modeling

• Mathematical Background

• Interpolation & Approximation

• Splines

 Polynomial Spline Curves

 Blossoming and Polar Forms

 Rational Splines

 Spline Surfaces

• Meshes

Overview...

Topics:

• Blossoming and Polar Forms

 The De Casteljau Algorithm

 Polar Forms: Idea & Definition

 Polynomial Splines Revisited

– Bezier Splines

– B-Splines

Geometric View:
The De Casteljau Algorithm

De Casteljau Algorithm

Idea of Bezier splines can be formulated differently:

• Geometric view

 Repeated linear interpolation with common parameter t

 Implicitly creates polynomial in t

 Degree depends on number of cascaded interpolations

• Geometric interpretation: more intuitive

 Properties of the Bezier spline can be interpreted geometrically

– Derivatives

– Operations (e.g. subdivision)

– ...

• We will now look at the corresponding algorithm...

De Casteljau

De Casteljau Algorithm: Computes f (t) for given t

• Bisect control polygon in ratio t : (1 – t)

• Connect the new dots with lines (adjacent segments)

• Interpolate again with the same ratio

• Iterate, until only one point is left

De Casteljau

Algorithm:
for j = 0..d-1 do

 for i = 1..d-j do

 pi
(j) = (1-t)·pi

(j-1) + t·pi+1
(j-1)

 end for

end for

return p1
(d)

p1
(0)

p2
(0)

p3
(0)

p4
(0)

p1
(1)

p2
(1)

p3
(1)

p1
(2)

p1
(2)

p1
(3) = f(t)

Properties

Properties:

• Yields same result as Bernstein basis formulation

• Iterated convex combinations of control points
 Numerically more stable than monomial evaluation
 Easy to see:

– Affine invariant
– Convex hull property

• Open questions: How to geometrically interpret
 Derivatives
 Operations (knot insertion, degree elevation etc.)
 ...

Polar Forms & Blossoms:
Idea & Definition

Affine Combinations

First: A quick recap of “linear interpolation”

• Actually, the right name should be “affine interpolation”

Definition:

• An affine combination of n points d is given by:

• A function f is set to be affine in its parameter xi, if:

1 with
11

n

i

i

n

i

ii ppα

 1for x,...,,...,x,...,,...,
11

m
)(

1m

1

)(
1

n

i

i

n

k

k
ii

n

k

k
ii xxfxxf

Affine Combinations

Examples:

• Linear (affine) interpolation of 2 points:

21)1(ppp

1 –

p1

p2

Affine Combinations

Examples:

• Barycentric combinations of 3 points
(“barycentric coordinates”)

 Properties:

 Transformation to barycentric coordinates is a linear map

(heights in triangles).

1:with,321 pppp

 1

)),,((

)),,((
,

)),,((

)),,((
,

)),,((

)),,((

321

21

321

31

321

32

ppp

ppp

ppp

ppp

ppp

ppp

area

area

area

area

area

area

p1

p2

p3

p

Formalizing the Idea

Idea: Express (piecewise) polynomial curves as
 iterated linear (affine) interpolations

First try:

• A polynomial:

• Can be written as:

• Interpret each variable t a separate parameter:

 t1 moves linearly in direction (a + b + c)

 t2 in direction (a + b)

 t3 in direction a

• Problems: fixed directions, many representations

dctbtattp 23)(

dtcttbtttatp)(

dcbap 121321321),,(ttttttttt

Polar Forms

Improved solution: Polar Forms / Blossoms

A polar form or blossom f of a polynomial F of degree d is a
function in d variables:
 F:

 f: d

 with the following properties:

 Diagonality: f (t, t, ..., t) = F(t)

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d))
 for all permutations of indices .

 Multi-affine: k = 1

 f (t1, t2, ..., kti
(k),..., td)

 = 1f (t1, t2, ..., ti
(1), ..., td)+ ... +n f (t1, t2, ..., ti

(n),,..., td)

Polar Forms

Based on the same idea as on slide 9:

• Model polynomial as multi-affine function
(multi-affinity property)

• Plugging in a common parameter to obtain the original
polynomial

• New: Symmetry property – makes the solution unique

 There is exactly one polar form for each polynomial

 This standardization makes different polars “compatible”,
we can compare them with each other

 We will see how this works in a few slides...

Properties

Properties of polar forms:

• The mapping from polynomials to their polar forms is
one-to-one:

 For each polar form f (t1,t2,...,tn),
a unique polynomial F (t,t,...,t) exists

 For each polynomial F,
 a unique polar form f (t1,t2,...,tn) exists

Properties

Properties of polar forms:

• Polar forms of monomials:

 Degree 0:

 Degree 1:

 Degree 2:

 Degree 3:

11

tt ,11

21
21

,
2

,11 ttt
tt

t

321
3321

3132212

,
3

,
3

,11

tttt
ttt

t

tttttt
t

Properties

Properties of polar forms:

• Polar forms of monomials:

 Degree 0:

 Degree 1:

 Degree 2:

 Degree 3:

0cf

1101)(tcctf

212
21

1021
2

),(ttc
tt

ccttf

3213
313221

2
321

10321
33

),,(tttc
tttttt

c
ttt

cctttf

Properties

General Case:

•

• The ci are the monomial coefficients.

• Idea: Use all possible subsets of ti to make it symmetric.

• This solution is unique.

• Without the symmetry property, there would be a large
number of solutions.

n

i
iS
nS Sj

iin t
i

n
cttf

0
||

},..1{

1

1),...,(

new

Generalizations

Blossoms for polynomial curves (points as output):

• Polar form of a polynomial curve of degree d:
 F: n

 f: d n

• Required Properties:

 Diagonality: f(t, t, ..., t) = F(t)

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d))
 for all permutations of indices .

 Multi-affine: k = 1

 f (t1, t2, ..., kti
(k),..., td)

 = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td)

new

Generalizations

Blossoms with points as arguments:

• Polar form degree d with points as input und output:
 F: m n

 f: dm n

• Required Properties:

 Diagonality: f(t, t, ..., t) = F(t)

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d))
 for all permutations of indices .

 Multi-affine: k = 1

 f (t1, t2, ..., kti
(k),..., td)

 = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td)

Generalizations

Vector arguments

• We will have to distinguish between points and vectors
(differences of points)

• Use “hat” notation v = p – q to denote vectors
(differences of points)

• Also defined in the one dimensional case (vectors in)

• One vector: 1 = 1 – 0, 1 = [1,...,1]T – 0

• Define shorthand notation (recursive):

^

)ˆ,...,ˆ,,,...,()ˆ,...,ˆ,,,...,(:)ˆ,...,ˆ,,...,(

1

211

1

21111

k

k

kn

kn

k

k

kn

kn

k

k

kn

kn vvqttfvvpttfvvttf

^

^

Properties

Derivatives of blossoms:

•

• The ci are related to the derivatives at t = 0.

• Hence:

• In general:

n

i
iS
nS Sj

iin t
i

n
cttf

0
||

},..1{

1

1),...,(

)1̂,...,1̂,0,...,0(
!

)0(

kkn

k

k

i f
k

n

k

F
dt

d

c

)1̂,...,1̂,,...,(

!

!
)(

kkn

k

k

ttf
kn

n
tF

dt

d

Example

Example:

12
2

3

321

2103210

3213
313221

2
321

10321

23

3

2

3

1
3

33

0
1

3

11

3

1

!2

!3
)('

33
),,(

ctctc

ttc
t

cc

tt
c

tt
ccttc

tttt
c

tt
cctf

tttc
tttttt

c
ttt

cctttf

Continuity Condition

Theorem: Continuity condition for polynomials
The following statements are equivalent:

• F and G are Ck-continuous at t

• t1, ..., tk: f (t, ..., t, t1, ..., tk) = g(t, ..., t, t1, ..., tk)

• f (t, ..., t, 1, ..., 1) = g(t, ..., t, 1, ..., 1) *)

*) 2 3: f(t, ..., t, t1) = f(t, ..., t,(t1 – 0))

 = t1f(t, ..., t,1) - f(t, ..., t, 0)

 = t1f(t, ..., t,1)

k-times k-times

^ ^ ^ ^

^

Continuity Condition

Examples:

• t1, t2, t3: f(t1, t2, t3) = g(t1, t2, t3) same curve

• t1, t2: f(t1, t2, t) = g(t1, t2, t) C2 at t

• t1: f(t1, t, t) = g(t1, t, t) C1 at t

• f(t, t, t) = g(t, t, t) C0 at t

Raising the Degree

Raising the degree of a blossom:

• Can we directly construct a polar form with degree
elevated by one from a lower degree one, without
changing the polynomial?

• [other than transforming to monomials, adding 0·td+1, and
transforming back?]

Solution:

• Given:

• We obtain:

1

1

111111
)1(),..,,,..,(

1

1
),..,(

d

i

diid ttttf
d

ttf

),..,(1 dttf

leave out ti

Raising the Degree

Proof:

),...,(

),....,(
1

1

:
..

),..,,,..,(
1

1
),..,(

1

1

1

1 11
1111

)1(

ttf

ttf
d

ttt
ttttf

d
ttft

d

i

d

i d
dii

)()()1(tFtF

Polars and Control Points

Interpretation (Examples):

• Multi-variate function: f(t1, t2, t3)

 Describes a point depending on three parameters

 Where f(t1, t2, t3) moves for changing (t1, t2, t3) depends on f
(think of storing monomial coefficients inside)

• Polynomial value: f(1.5, 1.5, 1.5)

 One value of the polynomial curve: F(1.5)

• Off-curve points: f(1, 2, 3)

 Evaluate points not necessarily on the polynomial curve

 Question: What meaning do various off-curve points have?

 We will use of-curve points as control points

Polars and Control Points

Interpretation (Examples):

• Specifying f(t1, t2, t3):

 Assume, f is not know yet

 We want to determine a polar (i.e. a polynomial)

• On curve points:
{f(0,0,0) = x0, f(1,1,1) = x1, f(2,2,2) = x2, f(3,3,3) = x3}

 Degree d polynomial has d+1 degrees of freedom

 We know already how to do polynomial interpolation

• Off-curve points:
 {f(1,1,1) = x111, f(1,2,3) = x123, f(2,3,4) = x234, f(3,3,3) = x333}

 We can also use off-curve points to specify the polar/polynomial

 This is the main motivation for the whole formalism

Polynomial Splines Revisited:
Bezier Splines

De Casteljau Algorithm

The de Casteljau algorithm is simple to state with
blossoms:

• We just have to exchange the labels

• Then use the multi-affinity property in order to compute
intermediate points

• With this view, we can easily show that the de Casteljau
algorithm is equivalent to the formulation based on
Bernstein polynomials

De Casteljau

p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1)

p(0,0,t)

p(0,t,1)

p(t,1,1)

p(0,t,t) p(t,t,1)

p(t,t,t) = f(t)

Bezier control points: p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1)

Analysis

Transforming a polar to the Bernstein basis:

n

i iin

ini tt
i

n

tttttttttt

tttttttttttttt

tttttttt

0

22

)1,..,1,0,..,0()1(

...

)1,1,,..,()1,0,,..,()1(2)0,0,,..,()1(

)1,1,,..,()0,1,,..,()1()1,0,,..,()0,0,,..,()1()1(

)1,,..,()0,,..,()1(),...,(

f

fff

ffff

fff

Analysis

De Castlejau Algorithm: Performs this in reverse order

• Bezier points:

• Intermediate points:

• Recursive computation:

Consequence: Bernstein / de Casteljau lead to the same result

),..,,1,..,1,0,..,0()()(

jijid

j
i ttt

 fp

)()()1(

)1,..,1,,..,,0,..,0()1,..,1,,..,,0,..,0()1(

)1,..,1,,..,,0,..,0()(

)1(
1

)1(

1111

)(

tttt

tttttt

ttt

j
i

j
i

ijjidijjid

ijjid

j
i

pp

ff

fp

),1,..,1,0,..,0()()0(

iid

i t

 fp

Generalized Parameter Intervals

p(u,u,u)

p(u,u,v) p(u,v,v)

p(v,v,v)

p(u,u,t)

p(u,t,v)

p(t,v,v)

p(u,t,t) p(t,t,v)

p(t,t,t) = f(t)

Bezier control points: p(u,u,u), p(u,u,v), p(u,v,v), p(v,v,v)

Multiple Segments

p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1)

p(0,0,t)

p(0,t,1)

p(t,1,1)

p(0,t,t) p(t,t,1)

p(t,t,t) = f(t)
p(2,2,2)

p(1,2,2)
p(1,1,2)

Bezier control points:
p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1) = p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2)

Two Curve Segments:
{p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1)}, {p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2)}

Remark: no interpolation between different segments
(e.g.: combination of p(0,1,1) and p(2,1,1) is not defined)

p(1,1,1)

More Observations

Derivatives:

•

• C1 Continuity condition follows

p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1)

p(0,0,t)

p(0,t,1)

p(t,1,1)

p(0,t,t) p(t,t,1)

p(t,t,t) = f(t)
p(2,2,2)

p(1,2,2)
p(1,1,2)

p(1,1,1)

) (degree),,..,()1,,..,()1̂,,..,()(

1

dtttftttfdttfdtF
dt

d

d

)1('
3

1
F

)1('
3

1
F

More Observations

Derivatives:

• De Casteljau Algorithm computes tangent vectors at any
point as a byproduct

• Proportional to last line segment that is bisected

p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1)

p(0,0,t)

p(0,t,1)

p(t,1,1)

p(0,t,t) p(t,t,1)

p(t,t,t) = f(t)
p(2,2,2)

p(1,2,2)
p(1,1,2)

p(1,1,1)

)('
3

1
tF

More Observations

Subdivision:

• After each de Casteljau step, we obtain two new control
polygons left and right of f(t) describing the same curve.

• We can divide a segment into two.

• Recursive subdivision can be used for rendering

p(u,u,u)

p(u,u,v) p(u,v,v)

p(v,v,v)

p(u,u,t)

p(u,t,v)

p(t,v,v)

p(u,t,t) p(t,t,v)

p(t,t,t)

Observations

Remark: The de Casteljau algorithm for computing

• Derivatives

 at endpoints

 at inner points t

• Subdivisions

hold for Bezier curves of arbitrary degree d 1.

(General degree derivatives: 1/d F’(t))

More Bezier Curve Properties...

General degree elevation:

• Increase the degree of a Bezier curve segment by one.

• What are the new control points?

Polar forms:

• Old curve:

• New curve:

),..,(1 dttb

1

1

111111
)1(),..,,,..,(

1

1
),..,(

d

i

diid tttt
d

tt bb

leave out ti

Degree Elevation

)0,..,0()0,..,0(
1

1
)0,..,0(

1

1

)1(bbb

d

id

)0,..,0,1(
1

)0,..,0(
1

1
)0..,0,1()1(bbb

d

d

d

)0,..,0,1,1(
1

1
)0,..,0,1(

1

2
)0..,0,1,1()1(bbb

d

d

d

)1,..,1,1,1(
1

1
)0,1,..1(

1
)0,1..,1,1,1()1(bbb

dd

d

)1,..,1()1,..,1()1(bb

Degree Elevation

Result: new control points

Repeated degree elevation:

Repeating degree elevation lets the control point converge to
the Bezier curve in the limit (proof using Stirling’s formula).

range) ofout if points (zero1,...,0,
1

1
1

1
)1(

 ni
n

i

n

i
iii ppp

d

j

j
k

i

j

kd

ji

k

j

d

1

)(
pp (proof by induction)

Variation Diminishing Property

Settings:

• Given an original curve C(original) 3

• Given a second curve 3 C(derived) = f (C(original)) that is
derived from the original by some mapping (algorithm) f.

• If for any arbitrary plane P, C(derived) does not have more
intersections*) with P than C(original), the mapping f is called
variation diminishing.

• Formally: planes P: #(C(derived) P) #(C(original) P)

Mappings of interest:

• Mapping from a control polygon to the curve segment

*) Intersection = crossing the plane

Easy example

Very simple mapping:

• Given a continuous curve C = p([a, b])

• The mapping f creates a linear
approximation:
the line through p(a) and p(b).

• This mapping is variation diminishing

 The line segment intersects the plane at
most once

 If this is the case, the original curve must
have at least one intersection, too,
because of continuity

p(a)

p(b)

C
f (C) P

Another Example

Piecewise linear approximation:

• Obviously, a piecewise linear approximation of a curve
(approximating with a polygon) is variation diminishing,
too.

p(a)

p(b)

C

f (C) P

Bezier Curves

Bezier curves are variation diminishing:

• The Bezier curve is the limit of the control point sequence
for infinite degree elevation.

• Every degree elevation step produces a piecewise linear
approximation of the original control polygon, which is
variation diminishing.

iii
n

i

n

i
ppp

1
1

1
1

)1(

Degree Elevation: p1
(+1)

p2
(+1)

p3
(+1)

p0

p1

p2

p3

p0
(+1)

p4
(+1)

Bezier Curves

Consequence:

• A Bezier curve does not intersect any plane more
frequently than its control polygon.

• Therefore, it cannot have too weird oscillations.

• However

 The convergence of degree elevation is very slow

 Not useful as evaluation technique in practice

 One can approximate arbitrary smooth functions in a convergent
way using the Bernstein basis (Weierstraß approximation
theorem). But:

– The convergence rate is not satisfactory in practice.

– We do not have local control.

Polynomial Splines Revisited:
B-Splines

B-Spline Curves

(General) B-Spline Curves:

• Given:

 A degree d (constant for the whole curve)

 A knot sequence (t0, t1, ..., tn) with t0 t1 ... tn

 Control points p0, p1, ..., pm (m = n – d + 1)

• With this information, we want to construct the spline
curve within t = [td,...,tn-d]

• Each polynomial segment fi(t) is defined by the d + 1
control points pi,..., pi+d.

• Within each such segment / control point set, we can
apply linear interpolation based on blossoms to compute
points on the curve.

De Boor Algorithm

Blossoming version of the de Boor algorithm:

• The de Boor algorithm will appear as a generalization of
the de Casteljau algorithm

 similar structure

 de Casteljau as a special case (special knot sequence)

De Boor Algorithm

Blossoming definition of B-Splines: very simple

• The control point sequence is given as:
p0 = p(t0,...,td-1)
 ...

pi = p(ti,...,ti+d-1)
 ...

pm = p(tn-d+1,...,tn)

• This means: we just use consecutive knot values as
blossom arguments

• Then, we proceed as before

• Same computational scheme as de Casteljau, but different
weights (because of the different knot values)

),..,,(1),..,,(),..,,(111111

 ddd ttbf

ab

tb
ttaf

ab

tb
tttf

De Boor Algorithm

For simplicity, we will first look at a single B-spline
segment:

• Knots (t1, t1, ..., t2d)

• Control points p1, p1, ..., pd+1

• B-spline segment within [td...td+1]

Interpolation rule:

• Given blossoms f(a, t1, ..., td-1), f(b, t1, ..., td-1)

• We obtain f(t, t1, ..., td-1) as:

f: 0,1,2,3,4,5,6,7,8

quadratic,
interval [1,2]

* updated *

De Boor Algorithm

f: 0,1,2,3,4,5

cubic,
interval [2,3]

0.0 1.0 2.0 3.0 4.0 5.0

p(1,2,3) p(2,3,4) p(3,4,5) p(0,1,2)

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

2d knots
(“middle” interval

always exists)

* updated *

De Boor Algorithm

p(3,1,2)

p(0,1,2)
p(t,1,2)

p(4,2,3)

p(1,2,3)
p(t,3,2)

3

3 t

p(5,3,4)

p(2,3,4)
p(t,3,4)

p(t,t,2)

p(t,t,3)

p(t,t,t)

3

3
1

t

3

4 t

3

4
1

t

3

5 t

3

5
1

t

2

3 t

2

3
1

t

2

4 t

2

4
1

t

1

3 t

1

3
1

t

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

6

1

2

1

6

1

4

1

4

1

2

1

Example: General Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Example: General Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Example: General Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

Example: General Case

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(4,5,6)

p(5,6,7)

p(6,7,8)

p(7,8,9)

p(8,9,10)

p(9,10,11)

De Boor Algorithm

De Boor Algorithm:

• In order to evaluate f (t) for a t [ti-1,...,ti)

• Compute:

)(Output

),(1)()(

: increasingFor

1

11

1)(1
1

)(1)(

)0(

t

tt

tt
ttt

j

d
i

ijdi

ij
i

j
i

j
i

j
i

j
i

j
i

ii

p

ppp

pp

Structure

Bezier Spline
p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1) p(1,1,1)

p(1,1,2) p(1,2,2)

p(2,2,2) p(2,2,2)

p(2,2,3) p(2,3,3)

p(3,3,3)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

p(1,2,3) p(2,3,4) p(3,4,5) p(4,5,6) p(0,1,2)

0.0 1.0 2.0 3.0

B-Spline

Structure

Bezier Spline

B-Spline

p(0,0,0)

p(0,0,1)

p(0,1,1)

p(1,1,2)

p(1,2,2)

p(1,1,1)

p(2,2,2)

p(2,2,3)
p(2,3,3)

p(3,3,3)

Smoothness

Multiplied Control Points:

• Quadratic B-Spline Curve (two segments)

p(0,1)
p(2,3)

p(1,2)

p(3,4)

f1: 0,1,2,3,4

f1

f2

p(0,1)
p(1,2)

p(2,3)

f2: 0,1,2,3,4

p(1,2)
p(2,3)

p(3,4)

interval [1,2]

interval [2,3]

Smoothness

Multiplied Control Points:

• Double end points interpolated (c.f. de Casteljau)

p(1,1)
p(2,3)

p(1,2)

p(3,3)

f1
f2

f1: 1,1,2,3,3

p(1,1)
p(1,2)

p(2,3)

f2: 1,1,2,3,3

p(1,2)
p(2,3)

p(3,3)

interval [1,2]

interval [2,3]

Smoothness

Multiplied Control Points:

• Double inner node: reduces continuity by one.

p(1,1)
p(2,2)

p(1,2)

p(2,3)

p(3,3) f1: 1,1,2,2,3,3

p(1,1)
p(1,2)

p(2,2)

f2: 1,1,2,2,3,3

p(2,2)
p(2,3)

p(3,3)

f2: 1,1,2,2,3,3
interval [2,2]

interval [1,2]

interval [2,3]

Smoothness

Multiplied Control Points: Blossoming

• Assume a control point contains one knot value v with
multiplicity k.

• Through repeated linear interpolation, we can transform
the blossoms for the left and right spline segment to:

• This means, we have at least Cd-k continuity.

k

kdvvvv ,..,,,.., 1p

k

kdvvvv ,..,,,.., 1pand .

Example

p(0,1)
p(2,3)

p(1,2)

p(3,4)
p(2,2)
p(2,2)

f1(0,1) = p(0,1)
f1(1,2) = p(1,2)
f1(2,3) = p(2,3)

f2(1,2) = p(1,2)
f2(2,3) = p(2,3)
f2(3,4) = p(3,4)

 f1(t,2) = f2(t,2)

Smoothness

p(1,1)
p(2,2)

p(1,2)

p(2,3)

p(3,3)

f1(1,1) = p(1,1)
f1(1,2) = p(1,2)
f1(2,2) = p(2,2)

f2(2,2) = p(2,2)
f2(2,3) = p(2,3)
f2(3,3) = p(3,3)

 f1(2,2) = f2(2,2)

Connection to Bezier Splines

Special case:

• We can model Bezier splines through non-uniform B-
Splines using a knot sequence [a,...,a, b,...,b].

• For this knot sequence, the de Boor algorithm yields
exactly the de Castlejau Algorithm.

• Therefore: the de Boor algorithm is a generalization of the
de Casteljau algorithm.

• We can also insert Bezier segments somewhere into a B-
spline.

• Interpolating end conditions are “half a Bezier segment”.

d

d

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(1,2,2) p(3,3,4)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(1,2,2) p(3,3,4)

p(2,2,3) p(2,3,3)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(0,1,2)

p(1,2,3)
p(2,3,4)

p(3,4,5)

p(1,2,2) p(3,3,4)

p(2,2,3) p(2,3,3)

p(2,2,2) p(3,3,3)

Knot Insertion

Problem:

• Given a B-spline curve

• Insert a new knot value & a new control point in between
two existing ones

• Without changing the curve

Very simple solution using blossoms

Quadratic Example

p(0,1)
p(2,3)

p(1,2)

0 1 2 3

Quadratic Example

p(0,1)
p(2,3)

p(1,2)

0 1 2 3 1.5

p(1,1.5) p(2,1.5)

p(1,1.5) p(2,1.5)

Quadratic Example

p(0,1)
p(2,3)

p(1,2)

p(1,1.5)

0 1 2 3 1.5

p(2,1.5)
4

1

4

1

4

3

4

3

General Algorithm

The general case:

• Interval with knot to be added: (ti, ..., ti+2d-1)

• Execute one step of the de Boor algorithm

• This creates new control points

 Keep the outer points p(ti, ..., ti+d-1), p(ti+1, ..., ti+2d-1)

 Replace the inner points p(ti+1, ..., ti+d), p(ti, ..., ti+d-2) with the
newly created points from the de Boor step

• This will...

 Insert one knot value

 And insert one additional control point

 Change the existing control points, except the outermost

Visualization of
Blossom Derivatives

De Casteljau

p(t-h,t-h,t-h)

p(t-h,t-h,t+h) p(0,t+h,t+h)

p(t+h,t+h,t+h)

p(t-h,t-h,t)

p(0,t,t+h)

p(t,t+h,t+h)

p(t-h,t,t) p(t,t,t+h)

p(t,t,t) = P(t)

𝑑𝐏 𝑡

𝑑𝑡
= lim

ℎ→0

𝐏 𝑡 + ℎ − 𝐏 𝑡 − ℎ

2ℎ

= lim
ℎ→0

𝐩 𝑡 + ℎ, 𝑡 + ℎ, 𝑡 + ℎ − 𝐩 𝑡 − ℎ, 𝑡 − ℎ, 𝑡 − ℎ

2ℎ

= lim
ℎ→0

3
𝐩 𝑡, 𝑡, 𝑡 + ℎ − 𝐩 𝑡, 𝑡, 𝑡 − ℎ

2ℎ

