
Geometric Modeling 
Summer Semester 2012 

Blossoming and Polar Forms 

Piecewise Polynomial Splines Revisited 



Today... 

Topics: 

• Introduction: Geometric Modeling 

• Mathematical Background 

• Interpolation & Approximation 

• Splines 

 Polynomial Spline Curves 

 Blossoming and Polar Forms 

 Rational Splines 

 Spline Surfaces 

• Meshes 



Overview... 

Topics: 

• Blossoming and Polar Forms 

 The De Casteljau Algorithm 

 Polar Forms: Idea & Definition 

 Polynomial Splines Revisited 

– Bezier Splines 

– B-Splines 



Geometric View: 
The De Casteljau Algorithm 



De Casteljau Algorithm 

Idea of Bezier splines can be formulated differently: 

• Geometric view 

 Repeated linear interpolation with common parameter t 

 Implicitly creates polynomial in t 

 Degree depends on number of cascaded interpolations 

• Geometric interpretation: more intuitive 

 Properties of the Bezier spline can be interpreted geometrically 

– Derivatives 

– Operations (e.g. subdivision) 

– ... 

• We will now look at the corresponding algorithm... 



De Casteljau 

De Casteljau Algorithm: Computes f (t) for given t 

• Bisect control polygon in ratio t : (1 – t) 

• Connect the new dots with lines (adjacent segments) 

• Interpolate again with the same ratio 

• Iterate, until only one point is left 



De Casteljau 

Algorithm: 
for j = 0..d-1 do 

   for i = 1..d-j do 

      pi
(j) = (1-t)·pi

(j-1) + t·pi+1
(j-1)  

   end for 

end for 

return p1
(d) 

p1
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p3
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p2
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(1) 

p1
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p1
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p1
(3) = f(t) 



Properties 

Properties: 

• Yields same result as Bernstein basis formulation 

• Iterated convex combinations of control points 
 Numerically more stable than monomial evaluation 
 Easy to see: 

– Affine invariant 
– Convex hull property 

• Open questions: How to geometrically interpret 
 Derivatives 
 Operations (knot insertion, degree elevation etc.) 
 ... 



Polar Forms & Blossoms: 
Idea & Definition 



Affine Combinations 

First: A quick recap of “linear interpolation” 

• Actually, the right name should be “affine interpolation” 

Definition: 

• An affine combination of n points  d is given by: 

 

 

• A function f is set to be affine in its parameter xi, if: 
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Affine Combinations 

Examples: 

• Linear (affine) interpolation of 2 points: 
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Affine Combinations 

Examples: 

• Barycentric combinations of 3 points 
(“barycentric coordinates”) 

 

 Properties: 

 

  
 Transformation to barycentric coordinates is a linear map 

(heights in triangles). 
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Formalizing the Idea 

Idea: Express (piecewise) polynomial curves as 
 iterated linear (affine) interpolations 

First try: 

• A polynomial:  

• Can be written as:  

• Interpret each variable t a separate parameter: 

 

 t1 moves linearly in direction (a + b + c) 

 t2 in direction (a + b) 

 t3 in direction a 

• Problems: fixed directions, many representations 
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Polar Forms 

Improved solution: Polar Forms / Blossoms 

A polar form or blossom f of a polynomial F of degree d is a 
function in d variables: 
  F:    

  f: d   

 with the following properties: 

 Diagonality: f (t, t, ..., t) = F(t) 

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d)) 
   for all permutations of indices . 

 Multi-affine: k = 1 

       f (t1, t2, ..., kti
(k),..., td)  

                      = 1f (t1, t2, ..., ti
(1), ..., td)+ ... +n f (t1, t2, ..., ti

(n),,..., td) 



Polar Forms 

Based on the same idea as on slide 9: 

• Model polynomial as multi-affine function 
(multi-affinity property) 

• Plugging in a common parameter to obtain the original 
polynomial 

• New: Symmetry property – makes the solution unique 

 There is exactly one polar form for each polynomial 

 This standardization makes different polars “compatible”, 
we can compare them with each other 

 We will see how this works in a few slides... 



Properties 

Properties of polar forms: 

• The mapping from polynomials to their polar forms is 
one-to-one: 

 For each polar form f (t1,t2,...,tn), 
a unique polynomial F (t,t,...,t) exists 

 For each polynomial F, 
 a unique polar form f (t1,t2,...,tn) exists 



Properties 

Properties of polar forms: 

• Polar forms of monomials: 

 Degree 0: 

 

 Degree 1: 

 

 Degree 2: 

 

 Degree 3: 
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Properties 

Properties of polar forms: 

• Polar forms of monomials: 

 Degree 0: 

 

 Degree 1: 

 

 Degree 2: 

 

 Degree 3: 

0cf 
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Properties 

General Case: 

•   

• The ci are the monomial coefficients. 

• Idea: Use all possible subsets of ti to make it symmetric. 

• This solution is unique. 

• Without the symmetry property, there would be a large 
number of solutions. 
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new 

Generalizations 

Blossoms for polynomial curves (points as output): 

• Polar form of a polynomial curve of degree d: 
    F:     n 

    f:    d  n 

• Required Properties: 

 Diagonality: f(t, t, ..., t) = F(t) 

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d)) 
  for all permutations of indices . 

 Multi-affine: k = 1  

 f (t1, t2, ..., kti
(k),..., td) 

                  = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td) 



new 

Generalizations 

Blossoms with points as arguments: 

• Polar form degree d with points as input und output: 
  F: m  n 

  f: dm  n 

• Required Properties: 

 Diagonality: f(t, t, ..., t) = F(t) 

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d)) 
  for all permutations of indices . 

 Multi-affine: k = 1  

 f (t1, t2, ..., kti
(k),..., td) 

                  = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td) 



Generalizations 

Vector arguments 

• We will have to distinguish between points and vectors 
(differences of points) 

• Use “hat” notation v = p – q to denote vectors 
(differences of points) 

• Also defined in the one dimensional case (vectors in ) 

• One vector: 1 = 1 – 0, 1 = [1,...,1]T – 0 

• Define shorthand notation (recursive): 
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Properties 

Derivatives of blossoms: 

•   

• The ci are related to the derivatives at t = 0. 

 
• Hence: 

 

• In general: 
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Example 

Example: 
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Continuity Condition 

Theorem: Continuity condition for polynomials 
The following statements are equivalent: 

• F and G are Ck-continuous at t 

• t1, ..., tk: f (t, ..., t, t1, ..., tk) = g(t, ..., t, t1, ..., tk) 

• f (t, ..., t, 1, ..., 1) = g(t, ..., t, 1, ..., 1) *) 

 

*) 2  3: f(t, ..., t, t1) = f(t, ..., t,(t1 – 0)) 

  = t1f(t, ..., t,1) - f(t, ..., t, 0) 

  = t1f(t, ..., t,1) 

 
k-times k-times 

^ ^ ^ ^ 

^ 



Continuity Condition 

Examples: 

• t1, t2, t3: f(t1, t2, t3) = g(t1, t2, t3)  same curve 

• t1, t2:  f(t1, t2, t) = g(t1, t2, t)  C2 at t 

• t1: f(t1, t, t) = g(t1, t, t)  C1 at t 

•  f(t, t, t) = g(t, t, t)  C0 at t 



Raising the Degree 

Raising the degree of a blossom: 

• Can we directly construct a polar form with degree 
elevated by one from a lower degree one, without 
changing the polynomial? 

• [other than transforming to monomials, adding 0·td+1, and 
transforming back?] 

Solution: 

• Given: 

• We obtain: 
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Raising the Degree 

Proof: 
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Polars and Control Points 

Interpretation (Examples): 

• Multi-variate function: f(t1, t2, t3) 

 Describes a point depending on three parameters 

 Where f(t1, t2, t3) moves for changing (t1, t2, t3) depends on f 
(think of storing monomial coefficients inside) 

• Polynomial value: f(1.5, 1.5, 1.5) 

 One value of the polynomial curve: F(1.5) 

• Off-curve points: f(1, 2, 3) 

 Evaluate points not necessarily on the polynomial curve 

 Question: What meaning do various off-curve points have? 

 We will use of-curve points as control points 



Polars and Control Points 

Interpretation (Examples): 

• Specifying f(t1, t2, t3): 

 Assume, f is not know yet 

 We want to determine a polar (i.e. a polynomial) 

• On curve points: 
{f(0,0,0) = x0, f(1,1,1) = x1, f(2,2,2) = x2, f(3,3,3) = x3} 

 Degree d polynomial has d+1 degrees of freedom 

 We know already how to do polynomial interpolation 

• Off-curve points: 
 {f(1,1,1) = x111, f(1,2,3) = x123, f(2,3,4) = x234, f(3,3,3) = x333} 

 We can also use off-curve points to specify the polar/polynomial 

 This is the main motivation for the whole formalism 



Polynomial Splines Revisited: 
Bezier Splines 



De Casteljau Algorithm 

The de Casteljau algorithm is simple to state with 
blossoms: 

• We just have to exchange the labels 

• Then use the multi-affinity property in order to compute 
intermediate points 

• With this view, we can easily show that the de Casteljau 
algorithm is equivalent to the formulation based on 
Bernstein polynomials 



De Casteljau 

p(0,0,0)  

p(0,0,1)  p(0,1,1)  

p(1,1,1) 

p(0,0,t) 

p(0,t,1) 

p(t,1,1) 

p(0,t,t) p(t,t,1) 

p(t,t,t) = f(t) 

Bezier control points: p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1) 



Analysis 

Transforming a polar to the Bernstein basis: 
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Analysis 

De Castlejau Algorithm: Performs this in reverse order 

• Bezier points: 

• Intermediate points: 

• Recursive computation: 

 

 

Consequence: Bernstein / de Casteljau lead to the same result 
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Generalized Parameter Intervals 

p(u,u,u)  

p(u,u,v)  p(u,v,v)  

p(v,v,v) 

p(u,u,t) 

p(u,t,v) 

p(t,v,v) 

p(u,t,t) p(t,t,v) 

p(t,t,t) = f(t) 

Bezier control points: p(u,u,u), p(u,u,v), p(u,v,v), p(v,v,v) 



Multiple Segments 

p(0,0,0)  

p(0,0,1)  p(0,1,1)  

p(1,1,1) 

p(0,0,t) 

p(0,t,1) 

p(t,1,1) 

p(0,t,t) p(t,t,1) 

p(t,t,t) = f(t) 
p(2,2,2)  

p(1,2,2)  
p(1,1,2)  

Bezier control points:  
p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1) = p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2) 

Two Curve Segments: 
{p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1)}, {p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2)} 

Remark: no interpolation between different segments 
(e.g.: combination of p(0,1,1) and p(2,1,1) is not defined) 

p(1,1,1) 



More Observations 

Derivatives: 

•   
 

• C1 Continuity condition follows 

p(0,0,0)  

p(0,0,1)  p(0,1,1)  

p(1,1,1) 

p(0,0,t) 

p(0,t,1) 

p(t,1,1) 

p(0,t,t) p(t,t,1) 

p(t,t,t) = f(t) 
p(2,2,2)  

p(1,2,2)  
p(1,1,2)  

p(1,1,1) 
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More Observations 

Derivatives: 

• De Casteljau Algorithm computes tangent vectors at any 
point as a byproduct 

• Proportional to last line segment that is bisected 

p(0,0,0)  

p(0,0,1)  p(0,1,1)  

p(1,1,1) 

p(0,0,t) 

p(0,t,1) 

p(t,1,1) 

p(0,t,t) p(t,t,1) 

p(t,t,t) = f(t) 
p(2,2,2)  

p(1,2,2)  
p(1,1,2)  

p(1,1,1) 
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More Observations 

Subdivision: 

• After each de Casteljau step, we obtain two new control 
polygons left and right of f(t) describing the same curve. 

• We can divide a segment into two. 

• Recursive subdivision can be used for rendering 

p(u,u,u)  

p(u,u,v)  p(u,v,v)  

p(v,v,v) 

p(u,u,t) 

p(u,t,v) 

p(t,v,v) 

p(u,t,t) p(t,t,v) 

p(t,t,t) 



Observations 

Remark: The de Casteljau algorithm for computing 

• Derivatives 

 at endpoints 

 at inner points t 

• Subdivisions 

hold for Bezier curves of arbitrary degree d  1. 

(General degree derivatives: 1/d F’(t)) 



More Bezier Curve Properties... 

General degree elevation: 

• Increase the degree of a Bezier curve segment by one. 

• What are the new control points? 

Polar forms: 

• Old curve: 

• New curve: 
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Degree Elevation 
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Degree Elevation 

Result: new control points 

 

Repeated degree elevation: 

 

 

Repeating degree elevation lets the control point converge to 
the Bezier curve in the limit (proof using Stirling’s formula). 
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Variation Diminishing Property 

Settings: 

• Given an original curve C(original)  3 

• Given a second curve 3  C(derived) = f (C(original)) that is 
derived from the original by some mapping (algorithm) f. 

• If for any arbitrary plane P, C(derived) does not have more 
intersections*) with P than C(original), the mapping f is called 
variation diminishing. 

• Formally:   planes P: #(C(derived)  P)  #(C(original)  P) 

Mappings of interest: 

• Mapping from a control polygon to the curve segment 

*) Intersection = crossing the plane 



Easy example 

Very simple mapping: 

• Given a continuous curve C = p([a, b]) 

• The mapping f creates a linear 
approximation: 
the line through p(a) and p(b). 

• This mapping is variation diminishing 

 The line segment intersects the plane at 
most once 

 If this is the case, the original curve must 
have at least one intersection, too, 
because of continuity 

p(a) 

p(b) 

C 
f (C) P 



Another Example 

Piecewise linear approximation: 

• Obviously, a piecewise linear approximation of a curve 
(approximating with a polygon) is variation diminishing, 
too. 

p(a) 

p(b) 

C 

f (C) P 



Bezier Curves 

Bezier curves are variation diminishing: 

• The Bezier curve is the limit of the control point sequence 
for infinite degree elevation. 

• Every degree elevation step produces a piecewise linear 
approximation of the original control polygon, which is 
variation diminishing. 
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Degree Elevation: p1
(+1) 

p2
(+1) 

p3
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p0
 

p1
 

p2
 

p3
 

p0
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Bezier Curves 

Consequence: 

• A Bezier curve does not intersect any plane more 
frequently than its control polygon. 

• Therefore, it cannot have too weird oscillations. 

• However 

 The convergence of degree elevation is very slow 

 Not useful as evaluation technique in practice 

 One can approximate arbitrary smooth functions in a convergent 
way using the Bernstein basis (Weierstraß approximation 
theorem). But: 

– The convergence rate is not satisfactory in practice. 

– We do not have local control. 



Polynomial Splines Revisited: 
B-Splines 



B-Spline Curves 

(General) B-Spline Curves:  

• Given: 

 A degree d (constant for the whole curve) 

 A knot sequence (t0, t1, ..., tn) with t0  t1  ...  tn 

 Control points p0, p1, ..., pm (m = n – d + 1) 

• With this information, we want to construct the spline 
curve within t = [td,...,tn-d] 

• Each polynomial segment fi(t) is defined by the d + 1 
control points pi,..., pi+d. 

• Within each such segment / control point set, we can 
apply linear interpolation based on blossoms to compute 
points on the curve. 



De Boor Algorithm 

Blossoming version of the de Boor algorithm: 

• The de Boor algorithm will appear as a generalization of 
the de Casteljau algorithm 

 similar structure 

 de Casteljau as a special case (special knot sequence) 



De Boor Algorithm 

Blossoming definition of B-Splines: very simple 

• The control point sequence is given as: 
p0 = p(t0,...,td-1) 
 ... 

pi = p(ti,...,ti+d-1) 
 ... 

pm = p(tn-d+1,...,tn) 

• This means: we just use consecutive knot values as 
blossom arguments 

• Then, we proceed as before 

• Same computational scheme as de Casteljau, but different 
weights (because of the different knot values) 
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De Boor Algorithm 

For simplicity, we will first look at a single B-spline 
segment: 

• Knots (t1, t1, ..., t2d) 

• Control points p1, p1, ..., pd+1 

• B-spline segment within [td...td+1] 

Interpolation rule: 

• Given blossoms f(a, t1, ..., td-1), f(b, t1, ..., td-1) 

• We obtain f(t, t1, ..., td-1) as: 

f: 0,1,2,3,4,5,6,7,8 

quadratic, 
interval [1,2] 

* updated * 



De Boor Algorithm 

f: 0,1,2,3,4,5 

cubic, 
interval [2,3] 

0.0 1.0 2.0 3.0 4.0 5.0 

p(1,2,3) p(2,3,4) p(3,4,5) p(0,1,2) 

p(0,1,2) 

p(1,2,3) 
p(2,3,4) 

p(3,4,5) 

2d knots 
(“middle” interval 

always exists) 

* updated * 



De Boor Algorithm 

p(3,1,2) 

p(0,1,2) 
p(t,1,2) 

p(4,2,3) 

p(1,2,3) 
p(t,3,2) 

3

3 t

p(5,3,4) 

p(2,3,4) 
p(t,3,4) 

p(t,t,2) 

p(t,t,3) 

p(t,t,t) 
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Example: General Case 

p(0,1,2) 

p(1,2,3) 
p(2,3,4) 

p(3,4,5) 

p(4,5,6) 

p(5,6,7) 

p(6,7,8) 

p(7,8,9) 

p(8,9,10) 

p(9,10,11) 



Example: General Case 

p(0,1,2) 
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De Boor Algorithm 

De Boor Algorithm: 

• In order to evaluate f (t) for a t  [ti-1,...,ti) 

• Compute: 
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Structure 

Bezier Spline 
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Structure 

Bezier Spline 

B-Spline 
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Smoothness 

Multiplied Control Points: 

• Quadratic B-Spline Curve (two segments) 
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Smoothness 

Multiplied Control Points: 

• Double end points  interpolated (c.f. de Casteljau) 
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Smoothness 

Multiplied Control Points: 

• Double inner node: reduces continuity by one. 
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Smoothness 

Multiplied Control Points: Blossoming 

• Assume a control point contains one knot value v with 
multiplicity k. 

• Through repeated linear interpolation, we can transform 
the blossoms for the left and right spline segment to: 
 
 

• This means, we have at least Cd-k continuity. 
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Example 
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Connection to Bezier Splines 

Special case: 

• We can model Bezier splines through non-uniform B-
Splines using a knot sequence [a,...,a, b,...,b]. 

• For this knot sequence, the de Boor algorithm yields 
exactly the de Castlejau Algorithm. 

• Therefore: the de Boor algorithm is a generalization of the 
de Casteljau algorithm. 

• We can also insert Bezier segments somewhere into a B-
spline. 

• Interpolating end conditions are “half a Bezier segment”. 
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Conversion to Bezier Splines 

Converting a B-spline segment to a Bezier segment: 
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Conversion to Bezier Splines 
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Knot Insertion 

Problem: 

• Given a B-spline curve 

• Insert a new knot value & a new control point in between 
two existing ones 

• Without changing the curve 

Very simple solution using blossoms 



Quadratic Example 
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Quadratic Example 
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Quadratic Example 
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General Algorithm 

The general case: 

• Interval with knot to be added: (ti, ..., ti+2d-1) 

• Execute one step of the de Boor algorithm 

• This creates new control points 

 Keep the outer points p(ti, ..., ti+d-1), p(ti+1, ..., ti+2d-1) 

 Replace the inner points p(ti+1, ..., ti+d), p(ti, ..., ti+d-2) with the 
newly created points from the de Boor step 

• This will... 

 Insert one knot value 

 And insert one additional control point 

 Change the existing control points, except the outermost 



Visualization of 
Blossom Derivatives 



De Casteljau 
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