Geometric Modeling

Summer Semester 2012

Blossoming and Polar Forms

Piecewise Polynomial Splines Revisited

®® -
wu“'“u“u gg;VERSITAT l l I I

max planck institut
informatik

I3 sAARLANDES

Today...

Topics:
e Introduction: Geometric Modeling
e Mathematical Background
e Interpolation & Approximation
e Splines
= Polynomial Spline Curves
= Blossoming and Polar Forms

= Rational Splines
\\ = Spline Surfaces

e Meshes

Overview...

Topics:

e Blossoming and Polar Forms
= The De Casteljau Algorithm
= Polar Forms: Idea & Definition
= Polynomial Splines Revisited
— Bezier Splines
— B-Splines

Geometric View:
The De Casteljau Algorithm

De Casteljau Algorithm

Idea of Bezier splines can be formulated differently:

e Geometric view
= Repeated linear interpolation with common parameter t
= |Implicitly creates polynomial in t
= Degree depends on number of cascaded interpolations
e Geometric interpretation: more intuitive
= Properties of the Bezier spline can be interpreted geometrically
— Derivatives
— Operations (e.g. subdivision)

e We will now look at the corresponding algorithm...

De Casteljau

[=
/N

De Casteljau Algorithm: Computes f(t) for given t
e Bisect control polygon inratio t: (1 —t)
e Connect the new dots with lines (adjacent segments)
e Interpolate again with the same ratio
e |terate, until only one point is left

De Casteljau

Algorithm:
for 7 = 0..d-1 do
for i1 = 1..d-7 do
pi(j) = (1-t) .pi(j—l) + t .pi+1(j—l)
end for
end for

return p, (¥

Properties

Properties:
e Yields same result as Bernstein basis formulation

 |[terated convex combinations of control points
= Numerically more stable than monomial evaluation
= Easy to see:
— Affine invariant
— Convex hull property

e Open questions: How to geometrically interpret
= Derivatives
= Operations (knot insertion, degree elevation etc.)

Polar Forms & Blossoms:
ldea & Definition

Affine Combinations

First: A quick recap of “linear interpolation”

e Actually, the right name should be “affine interpolation”

Definition:
e An affine combination of n points € R is given by:

= Zn:aipi with Zn:ai =1
i=1

=1

e A function fis set to be affine in its parameter x, if:

n

f[xl,...,zn:aixi(k),...]Zaf(xl x| m) for) o =1
=

=1

Affine Combinations

Examples:

e Linear (affine) interpolation of 2 points:

pa — apl + (1_ a)pZ P,

Affine Combinations

Examples: P,

e Barycentric combinations of 3 points
(“barycentric coordinates”)

p=ap,+ P, +yPs,With :a+ B+y =1
P A

Properties: P,

y=l-a-p

o = 2rea(A(p,,P3.P)) 5 area(A(py,Ps,P)) - area(A(py,Py.P))
area(A(p.,P,.P3)) © area(A(p.,p,.Ps)) - area(A(py, Pz, Ps))

Transformation to barycentric coordinates is a linear map
(heights in triangles).

Formalizing the Idea

Idea: Express (piecewise) polynomial curves as
iterated linear (affine) interpolations

First try:

e A polynomial: p(t) =at® +bt* +ct +d

e Can be written as: p(t)=a-t-t-t+b-t-t+c-t+d

e Interpret each variable t a separate parameter:

p(t, b, t)=a-t -t, -ty +b-t - t, +c-t, +d

= t, moves linearly in direction (a + b + c)
= t,in direction (a + b)
= t;in direction a

e Problems: fixed directions, many representations

Polar Forms

Improved solution: Polar Forms / Blossoms

A polar form or blossom f of a polynomial F of degree d is a
function in d variables:
F: R—>R
i R>R
with the following properties:
= Diagonality: f(t, t, ..., t) = F(t)
= Symmetry: f(ty, t;, ..., tg) = ftq)p aayeor L)
for all permutations of indices .
= Multi-affine: Xa, =1
= flty, t,, ..., 2oyt W, 1)

/

= o, f(ty, by, ..., 11, L, E)+ O f(E, Ty, ., B, T)

Polar Forms

Based on the same idea as on slide 9:

e Model polynomial as multi-affine function
(multi-affinity property)

e Plugging in a common parameter to obtain the original
polynomial

e New: Symmetry property — makes the solution unique
= There is exactly one polar form for each polynomial

= This standardization makes different polars “compatible”,
we can compare them with each other

= We will see how this works in a few slides...

Properties

Properties of polar forms:

e The mapping from polynomials to their polar forms is
one-to-one:

= For each polar form f(t,,t,,...,t.),
a unique polynomial F(t,t,...,t) exists

= For each polynomial F,
a unique polar form f(t,,t,,...,t.) exists

Properties

Properties of polar forms:

e Polar forms of monomials:
= Degree0: 151
= Degreel: 1 51t —>t

= Degree2: 11 t—>t1+t2

Ctott,

L, + L + 4t
= Degree3: 11, t? — 12 233 =3

tL+0 +1
3

t—

R RN A

Properties

Properties of polar forms:

e Polar forms of monomials:
» Degree 0: f =,

= Degree 1: f (t) =cy+Ct

t, +1,

= Degree 2: f(t,t,)=c, +c, ; +c,hby
+1, +1 4L, + LG + Ut
= Degree 3: f(tl,tz,tB)ZCO-l—Cltl ; 3 t¢, L2 233 L3 1 ettt

Properties

General Case:

: f(tl,...,tn):zn:ci[?]l S 1t

=0 Sc{l.n}, jeS
|S|=i

e The c; are the monomial coefficients.

e Idea: Use all possible subsets of t; to make it symmetric.
e This solution is unique.

e Without the symmetry property, there would be a large
number of solutions.

Generalizations

Blossoms for polynomial curves (points as output):

e Polar form of a polynomial curve of degree d:
F: R —> RI’) S—— new
f. RI>RI<

e Required Properties:
= Diagonality: f(¢t, ¢, ..., t) = F(t)

= Symmetry: f(ty, t, ..., tg) = F(t 0y tapersr tua)
for all permutations of indices 7.

= Multi-affine: 2o, =1
= f(t,, t,, ..., 2oyt W, 1)
=a,f(t, t,, ..., t10, ., t)+ .. +a f(t, t, ..., t1,..., 1)

Generalizations

Blossoms with points as arguments:
e Polar form degree d with points as input und output:
F: R"S R~
f: R>m— Rr
e Required Properties:
= Diagonality: f(t, t, ..., t) = F(t)

= Symmetry: f(t,, t,, ..., t) =t 4y, topen ty)
for all permutations of indices 7.

= Multi-affine: 2o, =1
= f(t, t,, ..., 2otk t,)

new

=a,f(t, t, ...t ., t)+ +o, f(t,t, .., t1,., t)

Generalizations

Vector arguments

e We will have to distinguish between points and vectors
(differences of points)

o Use “hat” notation vV = p — q to denote vectors
(differences of points)

e Also defined in the one dimensional case (vectors in R)
e One vector: 1=1— 0, 1= [1,...,1]"-0
e Define shorthand notation (recursive):

flt b, Vi Vi)= f (b s D1 Voren Vi)= [(Eq e b 3Gy sV e V)
I n—k k1 n—k k1

Properties

Derivatives of blossoms:

: f(tl,...,tn):izn(;ci[?]l S 1t

Sc{l.n}, jeS
IS|=i

e The c; are related to the derivatives at t = 0.
dk
d—kF(O) N o
e Hence: ¢ =4t =(ka(O 0,1...1)

K N biele
n—k K

K I A
e In general: d_kF(t): ke f(t,...t,1...10)
dt (n—k)

Example

Example:

t,+10 +13 tt, + 6t + i,

f'(t)—g coic 1+t+t+C 1t+tt+1t+c1tt ey O+t+t+CE
|0 Ta T3 2 3 3 0o tC 3 273

1 2t
=3 C,—+C, — +Citt
(Clg 273 T j

=3c,t° + 2tC, + ¢

Continuity Condition

Theorem: Continuity condition for polynomials
The following statements are equivalent:

e Fand G are Ck-continuous at t

o Vi, ... tk f(t, ..., t, ty, .. tk)—g(t t, ty, ey B
e f(t, ...,) g(t, ..., t, 1, ..., 1) *)
k-times k-times

)2 e 3 f(t, oo £,) = KL, ooy 1, (E = 0))
= t.f(t, ..., t,1) - (¢, ..., t, O)
= t.f(t, ..., t,1)

Continuity Condition

Examples:
o Vi, t,, t3: f(ty, t,, t5) = g(t,, t,, t3) = same curve
e Vi, t,: f(t, 1, t) =g(t,t,t) = C2att
o Vt,: f(t,, t,t) =g(t, t, 1) =Clatt
. f(t,t,t) =gt tt) =Clatt

Raising the Degree

Raising the degree of a blossom:

e Can we directly construct a polar form with degree
elevated by one from a lower degree one, without
changing the polynomial?

o [other than transforming to monomials, adding 0-t¢*1, and
transforming back?]

Solution:
e Given: f(t,..ty)

. 1 d+1
e We obtain: f(+l)(t11--:td+1)_

Zf(tl -1 |+1 td+1)

t leave out ¢;

Raising the Degree

Proof:
1 d+1

Vi PO) = ——> (.t bt
() d+1|z_1: (1 i—17 M+l d+1)|t1=..

by =t

= F* 1) =F(t)

Polars and Control Points

Interpretation (Examples):

e Multi-variate function: f(t,, t,, t,)
= Describes a point depending on three parameters

= Where f(t,, t,, t;) moves for changing (t,, t,, t;) depends on f
(think of storing monomial coefficients inside)

e Polynomial value: (1.5, 1.5, 1.5)
= One value of the polynomial curve: F(1.5)
e Off-curve points: f(1, 2, 3)
= Evaluate points not necessarily on the polynomial curve

= Question: What meaning do various off-curve points have?
= We will use of-curve points as control points

Polars and Control Points

Interpretation (Examples):

 Specifying f(t,, t,, t5):
= Assume, fis not know yet
= We want to determine a polar (i.e. a polynomial)

e On curve points:

{f(0,0,0) = x,, f(1,1,1) = x,, f(2,2,2) = x,, f(3,3,3) = x5}

= Degree d polynomial has d+1 degrees of freedom
= We know already how to do polynomial interpolation

e Off-curve points:
{f(1,1,1) = x;44, f(1,2,3) = x5, f(2,3,4) = X,3,4, (3,3,3) = X333}
= We can also use off-curve points to specify the polar/polynomial
= This is the main motivation for the whole formalism

Polynomial Splines Revisited:
Bezier Splines

De Casteljau Algorithm

The de Casteljau algorithm is simple to state with
blossoms:

e We just have to exchange the labels

e Then use the multi-affinity property in order to compute
intermediate points

e With this view, we can easily show that the de Casteljau
algorithm is equivalent to the formulation based on
Bernstein polynomials

De Casteljau

p(1,1,1)

Bezier control points: p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1)

Analysis

Transforming a polar to the Bernstein basis:

f(t,...t) = L—t)f(t,.,t,0) + tf(t,.,t,1)
= @-t)|[@-)F(t,..,t,0,0) + tf(t,...t,0.D) |+ t|{@ - O (t...,t,1,0) + tF (t,..,t11)]
= (1-1)*f(t,..,t,0,0) + 2t L - t)F (t,..,t,0,1) —t*F (t,..,t,11)

n

_ ZE?jti(l—t)”if(M,ih;,_lJ)

i=0 n—i I

Analysis

De Castlejau Algorithm: Performs this in reverse order

e Bezier points: pfo)(t)zf(o,..,o,LJ,)
d—i [
e Intermediate points: pi(”(t)zf(o,..,o,ﬁ,t;i)
d—i—j i j
e Recursive computation:
p(t) =£(0...,0,t,..,t,1...,1)
d-i—j] i
=@1-1t)f(0,..,0,t,..,t1..,1)+tf(0,.,0,t,..,1,1...1)
EATERCE d-] 4 L

= L-t)pU (1) +tpH Y (1)

Consequence: Bernstein / de Casteljau lead to the same result

Generalized Parameter Intervals

p(u,u,v) p(u,t,v) p(u,v,v)

p(v,v,v)

Bezier control points: p(u,u,u), p(u,u,v), p(u,v,v), p(v,v,v)

Multiple Segments

p(2,2,2)

p(1,2,2)

p(1,1,2)

Bezier control points:
p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1) = p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2)

Two Curve Segments:
{p(0,0,0), p(0,0,1), p(0,1,1), p(1,1,1)}, {p(1,1,1), p(1,1,2), p(1,2,2), p(2,2,2)}

Remark: no interpolation between different segments
(e.g.: combination of p(0,1,1) and p(2,1,1) is not defined)

More Observations

Derivatives:

. %F(t) =d F(t.tD=d(f (. ttrD) — F(t..L1) (degreed)

d-1
e C! Continuity condition follows

More Observations

p(t,t,t) = f{t)

lew

p(0,0,0) 3 p(1,1,1)

p(2,2,2)

p(1,2,2)
p(1,1,2)

Derivatives:

e De Casteljau Algorithm computes tangent vectors at any
point as a byproduct

e Proportional to last line segment that is bisected

More Observations

p(u,u,v) p(u,t,v) p(u,v,v)

p(u,u,t)
p(t,v,v)
p(u,u,u)
Subdivision: p(v,v,v)

e After each de Casteljau step, we obtain two new control
polygons left and right of f(t) describing the same curve.

e We can divide a segment into two.
e Recursive subdivision can be used for rendering

Observations

Remark: The de Casteljau algorithm for computing

e Derivatives
= at endpoints
= atinner points t

e Subdivisions
hold for Bezier curves of arbitrary degree d > 1.

(General degree derivatives: 1/d F'(t))

More Bezier Curve Properties...

General degree elevation:
e Increase the degree of a Bezier curve segment by one.
e What are the new control points?

Polar forms:
e Old curve: bDb(t,..t,)

e New curve: b(”)(tl,..,th)=—1Zb(tl,..,ti_l,ti+1,..,td+1)
|

i=1 Lt leave out t,

Degree Elevation

1 d+1

> b(0,.,0)=Db(0,.,0)

b"(0,.0)= ——
() d+14%

1 d
b"Y(1,0.,0)=——b(0,.,0)+ ——b(1,0,..,0
() d+1 (00) d+1 ()

2 d—1
b""Y(1,1,0.,0)=———Db(1,0,.,0)+ ——b(1,1,0,.,0
() d+1 () d+1 ()

d 1
b"*Y(1,1,1..1,00=——Db(1,.1,0)+ ——b(1,1,1,..1
() d+1 () d+1 ()

b“"(1,.1)=b(1,.,1)

Degree Elevation

Result: new control points

piY __1pI 1+(1—Lljp,, 1=0,..,n+1 (zero points if out of range)
n n

Repeated degree elevation:

i)

pth) = ij(](T (proof by induction)
»

Repeating degree elevation lets the control point converge to
the Bezier curve in the limit (proof using Stirling’s formula).

Variation Diminishing Property

Settings:
e Given an original curve Cl°r9inal) = R

e Given a second curve R3? o (lderived) = f(loriginal)) that is
derived from the original by some mapping (algorithm) f.

o If for any arbitrary plane P, Cl?erved) does not have more
intersections ’ with P than C(°79nd) the mapping fis called
variation diminishing.

e Formally: V planes P: #(C(derived) ~ p) < #(Cloriginal) ~ p)

Mappings of interest:

e Mapping from a control polygon to the curve segment

Easy example

Very simple mapping:
e Given a continuous curve C = p([a, b])
 The mapping f creates a linear
approximation:
the line through p(a) and p(b).
e This mapping is variation diminishing

= The line segment intersects the plane at
most once

= |f this is the case, the original curve must
have at least one intersection, too,
because of continuity

p(a)

C

f(C)

Another Example

p(b)

Piecewise linear approximation:
e Obviously, a piecewise linear approximation of a curve
(approximating with a polygon) is variation diminishing,
too.

Bezier Curves

P, p2(+1)

(e

P,

p,*!) Degree Elevation:

N | i
py™Y :—pil_"[l_ jpi
n+

Bezier curves are variation diminishing:

e The Bezier curve is the limit of the control point sequence
for infinite degree elevation.

e Every degree elevation step produces a piecewise linear
approximation of the original control polygon, which is
variation diminishing.

Bezier Curves

Consequence:

e A Bezier curve does not intersect any plane more
frequently than its control polygon.

e Therefore, it cannot have too weird oscillations.
e However

= The convergence of degree elevation is very slow
= Not useful as evaluation technique in practice

= One can approximate arbitrary smooth functions in a convergent
way using the Bernstein basis (Weierstrald approximation
theorem). But:

— The convergence rate is not satisfactory in practice.
— We do not have local control.

Polynomial Splines Revisited:
B-Splines

B-Spline Curves

(General) B-Spline Curves:

e Given:

= A degree d (constant for the whole curve)

= Aknot sequence (t,, ty, ..., t,) witht;<t, <. <t,
= Control points p,, py, -, P, (M=n—d +1)

e With this information, we want to construct the spline
curve within t = [t,...,t,]

e Each polynomial segment f(t) is defined by the d + 1
control points p,..., p.,.-

e Within each such segment / control point set, we can

apply linear interpolation based on blossoms to compute
points on the curve.

De Boor Algorithm

Blossoming version of the de Boor algorithm:

e The de Boor algorithm will appear as a generalization of
the de Casteljau algorithm
= similar structure
= de Casteljau as a special case (special knot sequence)

De Boor Algorithm

Blossoming definition of B-Splines: very simple
e The control point sequence is given as:
Po = P(tor-stys)

P; = P(tienstivga)

Pm= p(tn-d+1'""tn)
e This means: we just use consecutive knot values as
blossom arguments

e Then, we proceed as before

e Same computational scheme as de Casteljau, but different
weights (because of the different knot values)

De Boor Algorithm

For simplicity, we will first look at a single B-spline

Segment: quadratic,
Knots (t. t " interval [1,2]
nots {ty, ty, - tya) . OL234,5,6,7,8

e Control points py, Py, ---» Puss -
e B-spline segment within [t ...t]

Interpolation rule:
e Given blossoms f(a, t,, ..., t,,), f(b, t,, ..., t,4)

e We obtain f(t, t,, ..., ;) as:

b—t b—t
f(t’tl""td—l) — E f (altli"1td—1) +|:l_m:| f (b’tl""td—l)

* updated *

De Boor Algorithm

cubic,

interval [2,3]

:0,12,3,4,5

2d knots

(“middle” interval
always exists)

p(0,1,2)

p(1,2,3)

p(0,1,2)

/

1~ ~

p(1,2,3)

g

0.0

1.0

2.0

p(2,3,4)

p(3,4,5)

p(2,3,4)

3.0

4.0

5.0

* updated *

De Boor Algorithm

1
p(123) 5 PS4
l 1 1 L 5
6 4 2 4
- 3t p(t,1,2) p(O 1 2) p(3’4’5)
{1_—} 0(3,1,2) 2 -
4t _3-t e |
= p(1,2,3) {1 > }
4 P(t3,2) p(t,t,t)
{1__} 0(4,2,3) g
3 2 {PT} p(t,t,3)
5-t p(2,3,4)
3

Example: General Case

p(2,3,4) p(7,8,9)

p(1,2,3)

p(8,9,10)

p(0,1,2)

p(9,10,11)

p(4,5,6) n(6,7,8)

p(5,6,7)

Example: General Case

2,3,4) p(7,8,9)
01,23

p(8,9,10)
p(3,4,5)

p(0,1,2)

9,10,11
P(4,5,6) o678)

p(5,6,7)

Example: General Case

2,3,4) p(7,8,9)
01,23

- p(3,4,5) \

p(8,9,10)

p(0,1,2)

9,10,11
P(4,5,6) o678)

p(5,6,7)

Example: General Case

2,3,4) p(7,8,9)
01,23 P

7 N 0\PB45) ~

p(8,9,10)

p(0,1,2)

9,10,11
P(4,5,6) o678)

p(5,6,7)

De Boor Algorithm

De Boor Algorithm:
e In order to evaluate f(t) forat € [t ,,...,t)
e Compute:
P =p;

For increasing j :

P I(t) = 05(”) + (1 ai(j))pij__ll(t), ai(j): (t_ti—l)
lig_j1— G

Output p{ ~(t)

Structure

a

p(0,0,0)

p(0,0,1) p(0,1,1)

p(1,1,1)

p(1,1,1)

p(1,1,2) p(1,2,2)

p(2,2,2)

p(2,2,2)

p(3,3,3)

p(2,2,3) p(2,3,3)

Bezier Spline

A 4

1.0 2.0 3.0
B-Spline
p(0,1,2) p(1,2,3) p(2,3,4) p(3,45) p(456)
——
0.0 1.0 2.0 3.0 4.0 5.0 6.0

Structure

p(2,2,2) p(3,3,3)

Bezier Spline

p(2,2,3) p(2,3,3)

p(3,3,3)

0.0 1.0 2.0 3.0

“o p(2,3,3)

0,0,0
p(0.0.0) 0(1,1,2)
B-Spline
p(0,1,2) p(1,2,3) p(2,3,4) p(3,4,5) p(4,5,6)
Ve 0(1.2,3) p(2,3,4) p(7,8,9)
p(8,9,10)
0.0 1.0 2.0 3.0 4.0 5.0 6.0

p(0,1,2)
p(9,10,11)

p(4,5,6) p(6,7,8)

p(5,6,7)

Smoothness

Multiplied Control Points:

e Quadratic B-Spline Curve (two segments)

interval [1,2]

:0,1,2,34 p(1,2)
p(0,1)
p(2,3) _
interval [2,3]
f,: 0,1,2,3,4
p(1,2)
p(2,3)
p(0,1) p(3,4)

Smoothness

Multiplied Control Points:
e Double end points — interpolated (c.f. de Casteljau)

interval [1,2]
11,1233 p(L,2)

p(l,lT
p(1,2)

p(3,3)

p(2,3) _
interval [2,3]
f,:1,1,2,3,3
p(1,2)
p(2,3)
p(1,1) p(3,3)

p(2,3)

Smoothness

Multiplied Control Points:

e Double inner node: reduces continuity by one.

interval [1,2]
:1,1,2,2,33 p(1,2)

p(l,lT
p(1,2)
p(2,2)

p(3,3)

p(2,3)

interval [2,3]
f,:1,1,2,2,3,3

p(2,2)
p(2,3)
p(1,1) p(3,3)
interval [2,2] p(2,2)

f,:1,1,2,2,3,3

Smoothness

Multiplied Control Points: Blossoming

e Assume a control point contains one knot value v with
multiplicity k.

e Through repeated linear interpolation, we can transform
the blossoms for the left and right spline segment to:
p(v""V’Vl""Vd—k) and p(V’--’V’Vr--’Vd—k)-

— ——

k K
e This means, we have at least C%* continuity.

Example

p(0,1)

1(011) = p(O,l) f2(112) = p(llz)
(1,2)=p(1,2) £,(2,3)=p(2,3) = f(t,2)=1,(t2)
1(213) = p(213) f2(3,4) = p(314)

Smoothness

p(1,1)

1(111) = p(l,l) f2(212) = p(2,2)
1(112) = p(1,2) f2(213) = p(213) — 1(2'2) = f2(2'2)
1(212) = p(2,2) f2(313) = p(3;3)

Connection to Bezier Splines

Special case:

e We can model Bezier splines through non-uniform B-
Splines using a knot sequence [g,...,q, b,...,b].
d d
e For this knot sequence, the de Boor algorithm yields
exactly the de Castlejau Algorithm.

e Therefore: the de Boor algorithm is a generalization of the
de Casteljau algorithm.

e We can also insert Bezier segments somewhere into a B-
spline.

e Interpolating end conditions are “half a Bezier segment”.

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(2,3,4)

p(1,2,3)

p(0,1,2) p(3,4,5)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(2,3,4)

p(1,2,3)

p(1,2,2) P3,3.4)

p(0,1,2) p(3,4,5)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(2,2,3) P(23.3) 554

p(0,1,2) p(3,4,5)

Conversion to Bezier Splines

Converting a B-spline segment to a Bezier segment:

p(2,2,3) P(23.3) 554

p(0,1,2) p(3,4,5)

Knot Insertion

Problem:
e Given a B-spline curve

e Insert a new knot value & a new control point in between
two existing ones

e Without changing the curve

Very simple solution using blossoms

Quadratic Example

p(1,2)

p(0,1)
p(2,3)

o ¢
Ny
N @
we

Quadratic Example

p(1,2)

p(2,3)

...

...

Quadratic Example

p(1,2)

p(2,3)

o ¢
— @

O
N @
w e

1.5

General Algorithm

The general case:
e Interval with knot to be added: (¢, ..., t.,,4.1)
e Execute one step of the de Boor algorithm

e This creates new control points
= Keep the outer points p(t, ..., t.,44), P(ts) Tiogq)
= Replace the inner points p(t,,, ..., t.,4), p(t, ..., t.,4,) with the
newly created points from the de Boor step

e This will...

= [nsert one knot value
= And insert one additional control point
= Change the existing control points, except the outermost

Visualization of
Blossom Derivatives

De Casteljau

p(t-h,t-h,t+h) p(0,t,t+h) p(0,t+h,t+h)

p(t-h,t-h,6) p(tt) = P(¢)

p(t,t+h,t+h)

t-h,t-h,t-h)
. p(t+h,t+h,t+h)
dp(t) =~ P(t+h)—P(—h)
At heo 2h
- pt+ht+ht+h)—p(t—ht—ht—h)
= lim
h—0 2h

= lim3
h—-0 2h

