
Geometric Modeling
Summer Semester 2012

Point-Based Modeling
3D Scanning · MLS-Surfaces · Reconstruction & Registration

Overview...

Topics:

• Subdivision Surfaces

• Implicit Functions

• Variational Modeling

• Point-Based Modeling
 Introduction

 3D Acquisition Techniques

 Data Processing Pipeline

 Point Cloud Registration Algorithms

 Moving-Least Squares Techniques

 Point-Based Modeling

2 / 142

Point-Based Modeling
Introduction

Modeling Zoo

 Parametric Models Primitive Meshes

 Implicit Models Particle Models

4 / 142

3D Scanning

3D Scanning Devices:

• Typically based on point-wise distance measurement

• Almost all scanners output point clouds

• We need further processing to create a useful model

• 3D scanning is one of the main driving forces for “point-
based modeling” research

 Topology agnostic multi-resolution modeling is probably the
other important one (e.g., rendering complex scenes like forests
in real-time).

5 / 142

Problems

Point cloud (3D scanner data) related problems:

• Give a set of points, how does this define a continuous
surface?

 Surface reconstruction

• How to assemble partial scans to a full model?

 Surface registration

• How to estimate normals, curvature, etc.?

 Patch fitting, MLS

• How to deal with noise & outliers?

 Surface smoothing, outlier detection

• Can we do modeling just with points?

6 / 142

Acquiring Point Clouds
3D Scanners

Types of 3D Scanners

Scanning Techniques:

• Time-of-flight

 Time-of-flight laser scanner

 Time-of-flight depth cameras (dynamic)

• Triangulation

 Laser line sweep

 Structured light

• Stereo / computer vision

 Passive stereo

 Active stereo / space time stereo

 Other techniques

8 / 142

Time of Flight Laser Scanner (TOF)

Measurement Principle (phase-based PB):
• Send out laser beam

 Modulated at about 3-30 Mhz (phase length 10-100m)

• Measure phase difference with a photosensor (PLL)
 Can resolve distances up to (modulo) phase length

 Measures distance to a single point

• Application: Outdoor scanning, buildings,
drive-by / fly-by scanning

9 / 142

laser

photosensor
object

10

Time of Flight Laser Scanner

Video

Example Scans (Similar System)

11 / 142

[data set: University of Hannover]

Example Scans (Similar System)

12 / 142

[data set: University of Hannover]

Example Scans (Similar System)

13 / 142

Acquisition Systems

Acquisition Systems:

• Rotating scanner head

 Rotating mirror for vertical scanning (calibrated)

 Rotating scanning head (incl. rot. mirror) for horizontal scanning

 Mode of operation:

– Position scanner

– Push a button and wait a few minutes

– A panoramic depth map is acquired

• Drive-by systems

 2D laser scanners (one rotating mirror)

 Mounted on a vehicle with positioning system
(GPS, rotation/acceleration sensors, aux. scanners)

14 / 142

Drive-by System

Example: The “Wägele”

15 / 142

Laser scanners
(2D sheets of distance
measurments)

[Biber et al. 2005]

A pull-through measurement

device – can acquire complete

buildings in a few hours

This is what you get...

Corridor – CS Building
University of Tübingen (6.5 GB)

16 / 142

CS Building outdoors

Time of Flight Depth Cameras

Real-time depth camera:

• Sends out modulated light
(similar frequencies, O(Mhz))

• Measures phase in every pixel

• Acquire moving geometry in
real-time

• Quality is much worse than
static scans (lots of noise)

17 / 142

[PMD real-time time-of-flight camera]

photo sensors
(chip)

array of charges
(switching at modulation frequency)

Example Scenes

“Swiss Ranger” Depth Camera

18 / 142

Triangulation Scanners

Measurement Principle (laser sheet scanners):

• Light the object with a light sheet

• View with camera from an angle

• We can compute the depth

19 / 142

laser
w/rotating mirror

video
camera

object 

sweep

Example Device

20 / 142

Example Device

21 / 142

Example Device

22 / 142

Structure Light Scanner

Idea:

• Replace laser by projector

• Project log(n) binary stripe codes instead
of n light sheets

• Faster acquisition (exponential speedup)

 Precision: Projector might be harder to focus

• Coding: Gray code

 Any single bit error leads
only to a shift by 1

23 / 142
[source Wikipedia]

Computer Vision Based Techniques

Stereo Matching

• Match points by similar color / shading

• Very general technique

• But: An inherently ill-posed problem

 Typically bad reconstruction quality

24 / 142

video
camera #2

video
camera #1

object

Stereo Data

25 / 142

multi view matching (6 cameras)
(photo-consistent space carving)

[Data set: Christan Theobald, MPII]

multi view matching (8 cameras)
(piecewise smooth variational surface

on presegmented images
solved with Bayesian belief propagation)

[Data set: Zitnick et al.,
Microsoft Research, Siggraph 2004]

Improvement: Active Illumination

Stereo with active illumination:

• Project random pattern on the object

• Improves matching performance (more edges to match)

• “Space-Time Stereo”

 Project a new random pattern each frame

 Capture with two or more cameras

 Gives good results, fully dynamic (animations)

26 / 142

Space Time Stereo

27 / 142

[Data set: James Davis, University of Santa Cruz]

[Davis et al. 2003]

Other Techniques

Other acquisition techniques:

• Computer vision:

 Shape from shading

 Shape from defocus

 Shape from contours

 Fluorescent fluid immersion scan
(reflective / transparent objects)

• Other techniques:

 Mechanical sampling

 Radar (planes, satellites)

29 / 142

3D Scanner Point Cloud
Processing

Data Processing Pipeline

Processing Pipeline

We get:

• A big cloud of sample points

 Position, probably also color / laser intensity values

• Typically: A set of depth images

What we want in the end:

• A “nice” surface representation

• Typically: Triangle mesh

31 / 142

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

32 / 142

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

33 / 142

Automatic Outlier Removal

34 / 142

Automatic Outlier Removal

35 / 142

Algorithm

Very simple outlier removal algorithm:

• For each point compute its 20 nearest neighbors

• Compute the principal component analysis
(plane fit with total least squares)

• If the third eigenvalue (normal direction) is larger than
1/(1+) times the second eigenvalue, delete the point as
an outlier

36 / 142

PCA Plane Fitting (Recap)

Reminder:

• PCA can be interpreted as fitting a Gaussian distribution
and computing the main axes

37 / 142

x0

11 v

12 v

  

















n

i
ii

n

i
i

nn

d
n

1

T

00

1
0

1

1

1

1~

1

xdxdSΣ

xμ

   







  μxΣμx

Σ
xμΣ

1

212,
2

1
exp

)det(π)2(

1
)(

d
N

)(, xμΣN

PCA Plane Fitting (Recap)

Plane Fitting in 3:

• Sample mean and the two
directions of maximum eigenvalues

• Smallest eigenvalue

 Eigenvector points in normal direction

 Aspect ratio (3 / 2) is a measure of “flatness”
(quality of fit)

• Total least squares optimal
normal direction (up to sign)
given by eigenvector with smallest
eigenvalue

38 / 142

x0

(2 / 1) small

(2 / 1) larger

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

39 / 142

Surface Registration

40 / 142

[Implementation: Martin Bokeloh (Diploma thesis)]

more details on this later...

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

41 / 142

Geometry Smoothing

Smoothing:

• This example: Bilateral geometry filter

• Removes noise while preserving sharp features

• More details on this later (MLS surface reconstruction)...

42 / 142

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

43 / 142

Normals for the Bunny...

original point cloud

44 / 142

PCA normals
(k=20 nearest neighbors)

unified normals
(region growing)

final shading

Processing Pipeline

Processing Pipeline:
1. Outlier removal – throw away non-surface points

(cause by scanner noise, dark surfaces, reflections etc.)

2. Registration – transform all scans into a common
coordinate system

3. Surface smoothing – remove local noise

4. Normal direction estimation – needed for shading,
reconstruction

5. Unify normal directions (maybe: look up depth images)

6. Surface reconstruction
 Convert into triangle mesh

 Alternatively: estimate sample spacing / resample and render
points directly (for example tangential ellipsoid splats)

45 / 142

Surface Reconstruction

Reconstructing Triangle Meshes:

• Implicit methods

 Fit an implicit surface

 Use marching cubes

 Postprocessing: Mesh simplification

• “Moving least squares (MLS)”

 Special case of implicit surface fitting

 more on this later...

• Voronoi methods

 Compute Delaunay tetrahedrization

 Filter out surface triangles (pole analysis)

46 / 142

Examples

47 / 142

from Ohtake et al.: Multi-level Partition
of Unity Implicits, Siggraph 2003.

Direct Point Splatting

48 / 142

points normals

tangential frames elliptic splats
w/shading

Surface Registration
Point Cloud Matching

Point Cloud Matching

Two problems:

• Local matching

 The individual scans are
already roughly aligned

 Need to optimize the
alignment (“snap in”)

 Non-linear optimization

• Global matching

 No initial alignment is known

 We need to solve the problem
globally (unconditional
convergence)

50 / 142

Point Cloud Matching

Two problems:

• Often two steps:

 Global matching yields only a rough alignment

 Followed by local alignment to compute accurate solution

51 / 142

Local Matching Algorithms

Local Matching Algorithms

• The standard algorithm: Iterated Closest Points (ICP)

 Standard algorithm is easy to understand

 Not too hard to implement (need some data structures)

 Many variants to improve convergence speed and reliability

• Deformable ICP:

 Allows deformations during matching

 Compensate scanner calibration errors

 Deformable matching

– Tracking real-time animation scans (correspondences)

• Other techniques: for example NDT (normal distribution
transform, useful for real-time applications)

52 / 142

Iterated Closest Points (ICP)

The main idea:

• Pairwise matching technique

 Registers two scans

 Multi-part matching is a different story (more on this later)

• We want to minimize the distance between the two parts

 We set up a variational problem

 Minimize distance “energy” by rigid motion of one part

53 / 142

Part A
(stays fixed)

Part B
(moves, rotation & translation)

Iterated Closest Points (ICP)

Problem:

• How to compute the distance

• This is simple if we know the corresponding points.

 Of course, we have in general no idea of what corresponds...

• ICP-idea: set closest point as corresponding point

• Full algorithm:

 Compute closest point points

 Minimize distance to these closest points by a rigid motion

 Recompute new closest points and iterate

54 / 142

Closest Points

Distances:

Closest points distances:

55 / 142

Part A
(stays fixed)

Part B
(moves, rotation & translation)

Part A
(stays fixed)

Part B
(moves, rotation & translation)

Iteration

56 / 142

Part A

Part B

Part A

Part B

Part A

Part B

final result

Variational Formulation

Variational Formulation:

57 / 142

 











n

i

B
inearest

A
i

SOBSO

dAdist
1

2)(
)(

)(

),3(

2

),3(
33

minarg),(minarg ptRpxtRx

t

R

t

R



Variables: Orthogonal matrix R, translation vector t

Numerical Solution

Question: How to minimize this energy?

• The energy is quadratic

• There is only one problem...

 Constraint optimization

 We have to use an
orthogonal matrix...

• This problem can (still) be solved exactly.

58 / 142

Solution

First step: computing the translation

• Easy to see: average translation is optimal
(c.f. total least squares)

•

• This is independent of the rotation

Second step: compute the rotation

• (2a) Compute optimal linear map

• (2b) Orthogonalize

59 / 142





n

i

B
inearest

A
i

n 1

)(
)(

)(1
ppt

Optimal Linear Map

First:

• Subtract translation from points pi
(A) = pi

(A) – t

• Then: Solve an unconstrained least-squares problem

• Finally: compute the orthogonal matrix R that is
closest to M.

60 / 142

)(
)(

)(~:..1 B
inearest

A
ini ppM 

~

)(
)(

)(

3,33,23,1

2,32,22,1

1,31,21,1

~:..1 B
inearest

A
i

mmm

mmm

mmm

ni pp 


















unknowns
 (9 variables)

Least-Squares Optimal Rotation

How to compute a least-squares (Frobenius norm)
orthogonal matrix that fits a general matrix:

• Compute the SVD: M = UDVT

• The least-squares orthogonal fit is: R = UVT

(just set all singular values to one)

• We can compute this in one step:

 Solve the least-squares matrix fitting problem using SVD

 Omit the diagonal matrix straight ahead

61 / 142

Generalizations

Convergence speed:

• Convergence of basic “point-to-point” ICP is not so great

 Typically: 20-50 iterations for simple examples

 Problem: Zero-th order method
(flip point correspondences in each step)

• Improvement: “point-to-plane” ICP

 First order approximation

 Match points to tangential planes rather than points

 Converges much faster (3-5 iterations for similar examples)

62 / 142

Implementation

63 / 142

Part A

Part B


















n

i

B
inearest

B
inearest

A
i

SO

BSO

dAnearestAnearest

1

2
)(

)(
)(

)(
)(

),3(

2

),3(

,minarg

))((),(minarg

3

3

nptRp

xntRx

t

R

t

R





Implementation

Implementation:

• We need normals for each point (unoriented)  kNN+PCA

• Compute closest point, project distance vector to its
normal

• Minimize the sum of all such distances:

64 / 142

Part A

Part B









n

i

B
inearest

B
inearest

A
i

SO 1

2
)(

)(
)(

)(
)(

),3(

,minarg

3

nptRp

t

R



Comparison

65 / 142

 Point-to-point: 19 iterations

Point-to-plane: 3 iterations
(accuracy problems)

(much more
accurate result)

Implementation

Problem:

• No closed form solution for the optimal rotation with
point-to-plane correspondences

Solution:

• Numerical solution

• Setup non-linear optimization problem (rotation,
translation = 6 parameters)

• Use non-linear optimization technique

• Remaining problem: Parametrization of the rotations

 Trouble with singularities (spherical topology)

66 / 142

Local Linearization

Standard technique: local linearization

• Transformation: T(x) = Rx + t

• Linearize rotations:

67 / 142

xIxx











































































































1

0

0

)(

0

0

0

)cos()sin(0

)sin()cos(0

001

)cos(0)sin(

010

)sin(0)cos(

100

0)cos()sin(

0)sin()cos(

,,,,

,,

,,

y

TxT

y

T

T































Local Linearization

Standard technique: local linearization

• Numerical solution: iterative solver

• We have a current rotation R(i – 1) from the last iteration:

• Solve for t, , ,  (linear expressison  quadratic opt.)

68 / 142

xRIx)1()(
,,

1

0

0

)(




































 ii

y

T

















n

j

B
jnearest

B
jnearest

A
j

i

1

2
)(

)(
)(

)(
)()(

,,

,minarg

3

nptpR

t 


Local Linearization

Then:

• Project R(i) back on the manifold of orthogonal matrices.
(for example using the SVD-based algorithm discussed
before)

• Then iterate, until convergence.

Why does this work?

• The parametrization is non-degenerate

 For large , , , the norm of the matrix increases arbitrarily
(i.e.: the object size increases, away from the data)

 Therefore, the least-squares optimization will perform a number
of small steps rather than collapse.

69 / 142

More Tricks & Tweaks

ICP Problems:

• Partial matching might lead to distortions / bias

 Remove outliers (M-estimator, delete “far away points”, e.g.
20% percentile in point-to-point distance)

 Remove normal outliers
(if connection direction deviates from normal direction)

• Sampling problems

 Problem: for example flat surface with engraved letters

 No convergence in that case

 Improvement: Sample correspondence points with distribution
to cover unit sphere of normal directions as uniformly as
possible

70 / 142

Deformable ICP

Deformable ICP:

• Scanners are not perfectly calibrated

• Some deformation might be necessary in order to match
objects

• Related problem: acquiring deformable shapes
(e.g. humans in different poses)

71 / 142

Deformable ICP

Solution:

• Use a variational deformation model in combination with
point-to-point or point-to-plane (preferable) constraints

• Regularization term: f: 3  3 (isometric deformation)

• Data matching term:

• Minimize:

72 / 142

 


 xIfff dE
F

deform
2

T)()(





n

i

B
jnearest

B
jnearest

A
j

dataE
1

2
)(

)(
)(

)(
)()(,)(nppf

)()()(minarg)()()(

 nsdeformatio

fff
f

deformdatamatch EEE 

Example

Example:

• Two frames

• Stereo vision scan
of a ballet dancer
(8 cameras)

• Deformable shape
matching:

 A to B and

 B to A

 (repeating)

73 / 142

[data from Zitnick et al.,
Microsoft Research, 2004]

Global Matching

How to assemble the bunny (globally)?

Pipeline (rough sketch):

• Feature detection

• Feature descriptors

• Spectral validation

74 / 142

Feature Detection

Feature points (keypoints)

• Regions that can be identified locally

• “Bumps”, i.e. points with maximum principal curvatures

 Fitting a quadratic heightfield to point cloud data (MLS) to
compute curvatures

 “SIFT” features – compute bumps at multiple scales:

– Radius of geometry used for the fit as an additional
parameter

– Search for maxima in 3D surface-scale space

 Output: list of keypoints

75 / 142

Descriptors

Feature descriptors:

• Rotation invariant description of local neighborhood
(within scale of the feature point)

 Translation already fixed by feature point

• In the bunny-case: histograms of principal curvature
values

• Used to find match candidates

• Not 100% reliable (typically 3x – 5x outlier ratio)

76 / 142

Spectral Correspondence Validation

We have:

• Candidate matches

• But every keypoint matches
5 others on average

• At most one of these
is correct

Validation Criterion:

• Euclidian distance should be preserved
(Deformable models: preserve geodesic distance)

77 / 142

Spectral Validation

Find largest set of correspondences that are all
compatible:

• Form a vector with one entry for each correspondence
(connecting two features)

• Build a matrix:

 Write descriptor matching score  [0..1] on diagonal
(1 = perfect match, 0 = unlikely)

 Write pairwise compatibility  [0..1] on off-diagonals

– Score decreases if correspondences do not preserve
distances

• Compute largest eigenvalue of this matrix

• Approximation for largest consistent cluster

78 / 142

Consistency Check

79 / 142

inconsistent

consistent























7.025.02.03.0

25.09.011

2.019.01

3.01195.0

M

1

2
3

4

1 2 3 4

1

2

3

4

Quantization

Final Quantization:

• Set largest eigenvector entry to one

• Set all others to zero that are not compatible (fixed
threshold)

• Repeat until all entries are quantized

Reference: M. Leordeanu, M. Hebert, A Spectral Technique
for Correspondence Problems Using Pairwise Constraints,
ICCV 2005.

80 / 142

Deformable Global Matching

This technique also works for deformable matching:

• Replace Euclidian distance
by geodesic (intrinsic,
on-the-surface) distance

• Computed by Dijkstra
algorithm on nearest
neighbor graph of
point samples.

81 / 142

Deformable Global Matching

Compute correspondences of two deformed shapes:

• Assume isometric deformation

• Loop n times:

 Initialize k initial correspondences (local shape similarity)

 Randomly select best next correspondence

– Consider candidates which preserve isometry invariance

 If no more can be selected output as a possible solution

• Compute solution score based on isometry error

• Output solution with the lowest score

Reference: A. Tevs, M. Bokeloh, M. Wand, A. Schilling, H.-P.
Seidel, Isometric Registration of Ambiguous and Partial Data,
CVPR 2009.

Given initial set of

correspondences

source target

Randomized correspondence estimation

Sample randomly a small set of

initial correspondences, based on

local shape similarity

source target

Randomized correspondence estimation

source target

Remove invalid correspondences

Sample randomly a small set of

initial correspondences, based on

local shape similarity

Randomized correspondence estimation

Based on geodesic distance

sample next best

correspondence

source target

Randomized correspondence estimation

Based on geodesic distance

sample next best

correspondence

source target

Randomized correspondence estimation

Based on geodesic distance

sample next best

correspondence

source target

Randomized correspondence estimation

Iterate while there are still

correspondences to sample

source target

Randomized correspondence estimation

Iterate while there are still

correspondences to sample

source target

Randomized correspondence estimation

The search is repeated n times to compute n solutions. Finally

k solutions with most matches are chosen

Randomized correspondence estimation

Randomized correspondence estimation

Spectral Matching [Leordeanu et al.] Our solution

Randomized correspondence estimation

Spectral Matching [Leordeanu et al.] Our solution

Randomized correspondence estimation

Surface Reconstruction
Moving Least Squares

Techniques

Moving Least Squares

Motivation:

• Point sets sample the object they describe only sparsely.

• There is an infinite amount of emptiness in between the
finite sample set.

• How can we fill in surface points?

Goals:

• Compute surface representations locally.

• We do not want to solve a global approximation problem.

• Create smooth surfaces.

• Determine differential properties.

96 / 142

Moving Least Squares

Moving least squares (MLS):

• MLS is a standard technique for scattered data
interpolation.

• We will consider:

 The standard interpolation scheme.

 How to define surface projection operators.

97 / 142

Weighted Least-Squares

Least Squares Approximation:

98 / 142

target values basis functions

B1 B2 B3

least squares fit

pi = (xi, yi)

(x)

weighting functions

Least-Squares

Least Squares Approximation:

99 / 142

)()(~

1

xBxy i

n

i

i


 

 



n

i

iii

i

xyxy
c 1

2
)()(~argmin 

Best Fit (weighted):

Least-Squares

Notation:

100 / 142

 nBB ,...,: 1b























)(

)(

:
1

nx

x

b

b

B 



















ny

y


1

:y

)(

)(

:
1

nx

x























W

   yWBλBWB 22 TT Normal Equations:

  yWBBWBλ 212 TT 
Solution:

  yWBBWBbλb 2T12TT)(),()(~ 
 xxxyEvaluation:

MLS approximation

Moving Least-Squares

Moving Least Squares Approximation:

101 / 142

target values

move basis and weighting function,
recompute approximation y(x) ~

Moving Least-Squares

Moving Least Squares Approximation:

102 / 142

target values

approximation

Summary: MLS

Standard MLS approximation:

• Choose set of basis functions

 Typically monomials of degree 0,1,2

• Choose weighting function

 Typicall choices: Gaussian, Wendland function, B-Splines

 Solution will have the same continuity as the weighting function.

• Solve a weighted least squares problem at each point:

• Need to invert the “moment matrix” at each evaluation.

• Use SVD if sampling requirements are not guaranteed.

103 / 142

moment matrix

  yWBBWBb 2T12TT)()()()()()()(~ xxxxxxxy




Surface Definition

Question: How to define surfaces via MLS?

• Two alternatives (as examples)

 Implicit function definition for points with oriented normals.

 Surface fitting for points without normals

• Many more variants known in literature...

109 / 142

Implicit Function Definition

Basic Idea:

110 / 142

x

 (x, xi)

x1

x2

x3

n1

n2

n3

  yxWxBxBxWxBxbx 2T12TT)()()()()()()(


f


















)(

)(1

x

x

y

nf

f



f1

f2

f3

Projection Operator

Problem:

• We want to insert additional points in the proximity of
other points

• Define a “projection operator”:

 Compute implicit function

 Add a new point somewhere

 Move (gradient decent, or Newton’s method) point onto zero-
level set

 Move in normal direction
(i.e. gradient of approximated implicit function)

 The operation that maps a point to the local zero level set by
following the gradient (stationary point of an ODE) is called the
“projection operator”.

111 / 142

Implicit Function Definition

Projection:

112 / 142

x

 (x, xi)

x1

x2

x3

n1

n2

n3

f1

f2

f3

Unoriented Point Sets

Problem:

• This requires normals with consistent orientation.

• Hard to get, in particular locally.

• For the general case, there is another MLS scheme that
does not construct a signed implicit function.

113 / 142

Point Set Surfaces

Point Set Surfaces:

• Discussed here: a variant of [Alexa et al. 2001].

• Start with just points in space.

• Again use a weighting function.

• Then perform three steps:

 First, compute a coordinate system

 Second, compute a weighted least squares fit for higher order
consistency.

 Third, project point on the computed function fit.

114 / 142

1. Coordinate system

Establishing an MLS coordinates frame

115 / 142

x

 (x, xi)

x1

x2

x3

Implementation:
• This can be done using weighted total least squares (PCA)

• The original paper uses a non-linear optimization

2. Basis Function Fit

Weighted least-squares fit to a moving basis system:

116 / 142

x

 (x, xi)

x1

x2

x3

Implementation:
• Ordinary weighted least squares.

• Use the same spatial windowing function  for continuity.

3. Projection

Projection Step:

• Project evaluation point on surface

117 / 142

x

 (x, xi)

x1

x2

x3

Continuity Control

Approximation / Interpolation:

• Weighting function shape & support determine tightness
of fit.

• Special case: Integrable, singular weighting functions
allow for interpolation

• Example: Fitting an MLS surface to a polynomial surface
[Shen et al., Siggraph 2004]

118 / 142

Weighting Function

Weighting Function:

Vary  to adjust tightness of fit.

119 / 142

