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Overview... 

Topics: 

• Subdivision Surfaces 

• Implicit Functions 

• Variational Modeling 

• Point-Based Modeling 
 Introduction 

 3D Acquisition Techniques 

 Data Processing Pipeline 

 Point Cloud Registration Algorithms 

 Moving-Least Squares Techniques 

 Point-Based Modeling 

2 / 142 



Point-Based Modeling 
Introduction 



Modeling Zoo 

 

 

 Parametric Models Primitive Meshes 

 

 

 Implicit Models Particle Models 
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3D Scanning 

3D Scanning Devices: 

• Typically based on point-wise distance measurement 

• Almost all scanners output point clouds 

• We need further processing to create a useful model 

• 3D scanning is one of the main driving forces for “point-
based modeling” research 

 Topology agnostic multi-resolution modeling is probably the 
other important one (e.g., rendering complex scenes like forests 
in real-time). 
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Problems 

Point cloud (3D scanner data) related problems: 

• Give a set of points, how does this define a continuous 
surface? 

 Surface reconstruction 

• How to assemble partial scans to a full model? 

 Surface registration 

• How to estimate normals, curvature, etc.? 

 Patch fitting, MLS 

• How to deal with noise & outliers? 

 Surface smoothing, outlier detection 

• Can we do modeling just with points? 
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Acquiring Point Clouds 
3D Scanners 



Types of 3D Scanners 

Scanning Techniques: 

• Time-of-flight 

 Time-of-flight laser scanner 

 Time-of-flight depth cameras (dynamic) 

• Triangulation 

 Laser line sweep 

 Structured light 

• Stereo / computer vision 

 Passive stereo 

 Active stereo / space time stereo 

 Other techniques 
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Time of Flight Laser Scanner (TOF) 

Measurement Principle (phase-based PB): 
• Send out laser beam 

 Modulated at about 3-30 Mhz (phase length 10-100m) 

• Measure phase difference with a photosensor (PLL) 
 Can resolve distances up to (modulo) phase length 

 Measures distance to a single point 

• Application: Outdoor scanning, buildings,  
drive-by / fly-by scanning 
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Example Scans (Similar System) 
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[data set: University of Hannover] 



Example Scans (Similar System) 
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[data set: University of Hannover] 



Example Scans (Similar System) 
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Acquisition Systems 

Acquisition Systems: 

• Rotating scanner head 

 Rotating mirror for vertical scanning (calibrated) 

 Rotating scanning head (incl. rot. mirror) for horizontal scanning 

 Mode of operation: 

– Position scanner 

– Push a button and wait a few minutes 

– A panoramic depth map is acquired 

• Drive-by systems 

 2D laser scanners (one rotating mirror) 

 Mounted on a vehicle with positioning system 
(GPS, rotation/acceleration sensors, aux. scanners) 
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Drive-by System 

Example: The “Wägele” 
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Laser scanners 
(2D sheets of distance  
measurments) 

[Biber et al. 2005] 

A pull-through measurement 

device – can acquire complete 

buildings in a few hours 



This is what you get... 

Corridor – CS Building  
University of Tübingen (6.5 GB) 
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CS Building outdoors 



Time of Flight Depth Cameras 

Real-time depth camera: 

• Sends out modulated light 
(similar frequencies, O(Mhz)) 

• Measures phase in every pixel 

• Acquire moving geometry in 
real-time 

• Quality is much worse than  
static scans (lots of noise) 
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[PMD real-time time-of-flight camera] 

photo sensors 
(chip) 

array of charges 
(switching at modulation frequency) 



Example Scenes 

“Swiss Ranger” Depth Camera 
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Triangulation Scanners 

Measurement Principle (laser sheet scanners): 

• Light the object with a light sheet 

• View with camera from an angle 

• We can compute the depth 
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Example Device 
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Example Device 
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Example Device 
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Structure Light Scanner 

Idea: 

• Replace laser by projector 

• Project log(n) binary stripe codes instead 
of n light sheets 

• Faster acquisition (exponential speedup) 

 Precision: Projector might be harder to focus 

• Coding: Gray code 

 Any single bit error leads  
only to a shift by 1 
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Computer Vision Based Techniques 

Stereo Matching 

• Match points by similar color / shading 

• Very general technique 

• But: An inherently ill-posed problem 

 Typically bad reconstruction quality 
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Stereo Data 
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multi view matching (6 cameras) 
(photo-consistent space carving) 

 
[Data set: Christan Theobald, MPII] 

multi view matching (8 cameras) 
(piecewise smooth variational surface 

on presegmented images 
solved with Bayesian belief propagation) 

 

[Data set: Zitnick et al., 
Microsoft Research, Siggraph 2004] 



Improvement: Active Illumination 

Stereo with active illumination: 

• Project random pattern on the object 

• Improves matching performance (more edges to match) 

• “Space-Time Stereo” 

 Project a new random pattern each frame 

 Capture with two or more cameras 

 Gives good results, fully dynamic (animations) 
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Space Time Stereo 
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[Data set: James Davis, University of Santa Cruz] 

[Davis et al. 2003] 



Other Techniques 

Other acquisition techniques: 

• Computer vision: 

 Shape from shading 

 Shape from defocus 

 Shape from contours 

 Fluorescent fluid immersion scan 
(reflective / transparent objects) 

• Other techniques: 

 Mechanical sampling 

 Radar (planes, satellites) 
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3D Scanner Point Cloud 
Processing 

Data Processing Pipeline 



Processing Pipeline 

We get: 

• A big cloud of sample points 

 Position, probably also color / laser intensity values 

• Typically: A set of depth images 

What we want in the end: 

• A “nice” surface representation 

• Typically: Triangle mesh 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Automatic Outlier Removal 
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Automatic Outlier Removal 

35 / 142 



Algorithm 

Very simple outlier removal algorithm: 

• For each point compute its 20 nearest neighbors 

• Compute the principal component analysis  
(plane fit with total least squares) 

• If the third eigenvalue (normal direction) is larger than 
1/(1+ ) times the second eigenvalue, delete the point as 
an outlier 
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PCA Plane Fitting (Recap) 

Reminder: 

• PCA can be interpreted as fitting a Gaussian distribution 
and computing the main axes 
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PCA Plane Fitting (Recap) 

Plane Fitting in 3: 

• Sample mean and the two 
directions of maximum eigenvalues 

• Smallest eigenvalue 

 Eigenvector points in normal direction 

 Aspect ratio (3 / 2) is a measure of “flatness” 
(quality of fit) 

• Total least squares optimal  
normal direction (up to sign) 
given by eigenvector with smallest 
eigenvalue 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Surface Registration 
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[Implementation: Martin Bokeloh (Diploma thesis)] 

more details on this later... 



Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Geometry Smoothing 

Smoothing: 

• This example: Bilateral geometry filter 

• Removes noise while preserving sharp features 

• More details on this later (MLS surface reconstruction)... 
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Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Normals for the Bunny... 

original point cloud 
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PCA normals 
(k=20 nearest neighbors) 

unified normals 
(region growing) 

final shading 



Processing Pipeline 

Processing Pipeline: 
1. Outlier removal – throw away non-surface points 

(cause by scanner noise, dark surfaces, reflections etc.) 

2. Registration – transform all scans into a common 
coordinate system 

3. Surface smoothing – remove local noise 

4. Normal direction estimation – needed for shading, 
reconstruction 

5. Unify normal directions (maybe: look up depth images) 

6. Surface reconstruction 
 Convert into triangle mesh 

 Alternatively: estimate sample spacing / resample and render 
points directly (for example tangential ellipsoid splats) 
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Surface Reconstruction 

Reconstructing Triangle Meshes: 

• Implicit methods 

 Fit an implicit surface 

 Use marching cubes 

 Postprocessing: Mesh simplification 

• “Moving least squares (MLS)” 

 Special case of implicit surface fitting 

 more on this later... 

• Voronoi methods 

 Compute Delaunay tetrahedrization  

 Filter out surface triangles (pole analysis) 
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Examples 
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from Ohtake et al.: Multi-level Partition 
of Unity Implicits, Siggraph 2003. 



Direct Point Splatting 
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points normals 

tangential frames elliptic splats  
w/shading 



Surface Registration 
Point Cloud Matching 



Point Cloud Matching 

Two problems: 

• Local matching 

 The individual scans are 
already roughly aligned 

 Need to optimize the 
alignment (“snap in”) 

 Non-linear optimization 

• Global matching 

 No initial alignment is known 

 We need to solve the problem 
globally (unconditional 
convergence) 
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Point Cloud Matching 

Two problems: 

• Often two steps:  

 Global matching yields only a rough alignment 

 Followed by local alignment to compute accurate solution 
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Local Matching Algorithms 

Local Matching Algorithms 

• The standard algorithm: Iterated Closest Points (ICP) 

 Standard algorithm is easy to understand 

 Not too hard to implement (need some data structures) 

 Many variants to improve convergence speed and reliability 

• Deformable ICP: 

 Allows deformations during matching 

 Compensate scanner calibration errors 

 Deformable matching 

– Tracking real-time animation scans (correspondences) 

• Other techniques: for example NDT (normal distribution 
transform, useful for real-time applications) 
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Iterated Closest Points (ICP) 

The main idea: 

• Pairwise matching technique 

 Registers two scans 

 Multi-part matching is a different story (more on this later) 

• We want to minimize the distance between the two parts 

 We set up a variational problem 

 Minimize distance “energy” by rigid motion of one part 
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Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 



Iterated Closest Points (ICP) 

Problem: 

• How to compute the distance 

• This is simple if we know the corresponding points. 

 Of course, we have in general no idea of what corresponds... 

• ICP-idea: set closest point as corresponding point 

• Full algorithm: 

 Compute closest point points 

 Minimize distance to these closest points by a rigid motion 

 Recompute new closest points and iterate 

54 / 142 



Closest Points 

Distances: 

 

 

Closest points distances: 
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Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 

Part A 
(stays fixed) 

Part B 
(moves, rotation & translation) 



Iteration 
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Part A 

Part B 

Part A 

Part B 

Part A 

Part B 

final result 



Variational Formulation 

Variational Formulation: 
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Numerical Solution 

Question: How to minimize this energy? 

• The energy is quadratic 

• There is only one problem... 

 Constraint optimization 

 We have to use an  
orthogonal matrix... 

• This problem can (still) be solved exactly. 
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Solution 

First step: computing the translation 

• Easy to see: average translation is optimal 
(c.f. total least squares) 

•   

• This is independent of the rotation 

Second step: compute the rotation 

• (2a) Compute optimal linear map 

• (2b) Orthogonalize 
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Optimal Linear Map 

First: 

• Subtract translation from points pi
(A) = pi

(A) – t 

• Then: Solve an unconstrained least-squares problem 

 

 

 

 

 

• Finally: compute the orthogonal matrix R that is 
closest to M. 
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Least-Squares Optimal Rotation 

How to compute a least-squares (Frobenius norm) 
orthogonal matrix that fits a general matrix: 

• Compute the SVD: M = UDVT 

• The least-squares orthogonal fit is: R = UVT 

(just set all singular values to one) 

• We can compute this in one step: 

 Solve the least-squares matrix fitting problem using SVD 

 Omit the diagonal matrix straight ahead 
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Generalizations 

Convergence speed: 

• Convergence of basic “point-to-point” ICP is not so great 

 Typically: 20-50 iterations for simple examples 

 Problem: Zero-th order method 
(flip point correspondences in each step) 

• Improvement: “point-to-plane” ICP 

 First order approximation 

 Match points to tangential planes rather than points 

 Converges much faster (3-5 iterations for similar examples) 
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Implementation 
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Implementation 

Implementation: 

• We need normals for each point (unoriented)  kNN+PCA 

• Compute closest point, project distance vector to its 
normal 

• Minimize the sum of all such distances: 
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Comparison 
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 Point-to-point: 19 iterations 

Point-to-plane: 3 iterations 
(accuracy problems) 

(much more 
accurate result) 



Implementation 

Problem: 

• No closed form solution for the optimal rotation with 
point-to-plane correspondences 

Solution: 

• Numerical solution 

• Setup non-linear optimization problem (rotation, 
translation = 6 parameters) 

• Use non-linear optimization technique 

• Remaining problem: Parametrization of the rotations 

 Trouble with singularities (spherical topology) 

66 / 142 



Local Linearization 

Standard technique: local linearization 

• Transformation: T(x) = Rx + t 

• Linearize rotations: 
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Local Linearization 

Standard technique: local linearization 

• Numerical solution: iterative solver 

• We have a current rotation R(i – 1)  from the last iteration: 

 

 

 

 

• Solve for t, , ,   (linear expressison  quadratic opt.) 
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Local Linearization 

Then: 

• Project R(i) back on the manifold of orthogonal matrices. 
(for example using the SVD-based algorithm discussed 
before) 

• Then iterate, until convergence. 

Why does this work? 

• The parametrization is non-degenerate 

 For large , , , the norm of the matrix increases arbitrarily 
(i.e.: the object size increases, away from the data) 

 Therefore, the least-squares optimization will perform a number 
of small steps rather than collapse. 

69 / 142 



More Tricks & Tweaks 

ICP Problems: 

• Partial matching might lead to distortions / bias 

 Remove outliers (M-estimator, delete “far away points”, e.g. 
20% percentile in point-to-point distance) 

 Remove normal outliers  
(if connection direction deviates from normal direction) 

• Sampling problems 

 Problem: for example flat surface with engraved letters 

 No convergence in that case 

 Improvement: Sample correspondence points with distribution 
to cover unit sphere of normal directions as uniformly as 
possible 
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Deformable ICP 

Deformable ICP: 

• Scanners are not perfectly calibrated 

• Some deformation might be necessary in order to match 
objects 

• Related problem: acquiring deformable shapes 
(e.g. humans in different poses) 
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Deformable ICP 

Solution: 

• Use a variational deformation model in combination with 
point-to-point or point-to-plane (preferable) constraints 

• Regularization term:  f: 3  3 (isometric deformation) 

 

 

• Data matching term: 

 

 

• Minimize: 
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Example 

Example: 

• Two frames 

• Stereo vision scan 
of a ballet dancer 
(8 cameras) 

• Deformable shape 
matching: 

 A to B and 

 B to A 

 (repeating) 
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[data from Zitnick et al.,  
Microsoft Research, 2004] 



Global Matching 

How to assemble the bunny (globally)? 

Pipeline (rough sketch): 

• Feature detection 

• Feature descriptors 

• Spectral validation 
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Feature Detection 

Feature points (keypoints) 

• Regions that can be identified locally 

• “Bumps”, i.e. points with maximum principal curvatures 

 Fitting a quadratic heightfield to point cloud data (MLS) to 
compute curvatures 

 “SIFT” features – compute bumps at multiple scales: 

– Radius of geometry used for the fit as an additional 
parameter 

– Search for maxima in 3D surface-scale space 

 Output: list of keypoints 
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Descriptors 

Feature descriptors: 

• Rotation invariant description of local neighborhood 
(within scale of the feature point) 

 Translation already fixed by feature point 

• In the bunny-case: histograms of principal curvature 
values 

• Used to find match candidates 

• Not 100% reliable (typically 3x – 5x outlier ratio) 
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Spectral Correspondence Validation 

We have: 

• Candidate matches 

• But every keypoint matches 
5 others on average 

• At most one of these 
is correct 

Validation Criterion: 

• Euclidian distance should be preserved 
(Deformable models: preserve geodesic distance) 
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Spectral Validation 

Find largest set of correspondences that are all 
compatible: 

• Form a vector with one entry for each correspondence 
(connecting two features) 

• Build a matrix: 

 Write descriptor matching score  [0..1] on diagonal 
(1 = perfect match, 0 = unlikely) 

 Write pairwise compatibility  [0..1] on off-diagonals 

– Score decreases if correspondences do not preserve 
distances 

• Compute largest eigenvalue of this matrix 

• Approximation for largest consistent cluster 
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Consistency Check 

79 / 142 

inconsistent 

consistent 























7.025.02.03.0

25.09.011

2.019.01

3.01195.0

M

1 

2 
3 

4 

1 2 3 4 

1 

2 

3 

4 



Quantization 

Final Quantization: 

• Set largest eigenvector entry to one 

• Set all others to zero that are not compatible (fixed 
threshold) 

• Repeat until all entries are quantized 

Reference: M. Leordeanu, M. Hebert, A Spectral Technique 
for Correspondence Problems Using Pairwise Constraints, 
ICCV 2005. 
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Deformable Global Matching 

This technique also works for deformable matching: 

• Replace Euclidian distance 
by geodesic (intrinsic, 
on-the-surface) distance 

• Computed by Dijkstra 
algorithm on nearest 
neighbor graph of 
point samples. 
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Deformable Global Matching 

Compute correspondences of two deformed shapes: 

• Assume isometric deformation  

• Loop n times: 

 Initialize k initial correspondences (local shape similarity) 

 Randomly select best next correspondence  

– Consider candidates which preserve isometry invariance 

 If no more can be selected output as a possible solution 

• Compute solution score based on isometry error 

• Output solution with the lowest score 

Reference: A. Tevs, M. Bokeloh, M. Wand, A. Schilling, H.-P. 
Seidel, Isometric Registration of Ambiguous and Partial Data, 
CVPR 2009. 



Given initial set of 

correspondences 

source target 

Randomized correspondence estimation  



Sample randomly a small set of 

initial correspondences, based on 

local shape similarity 

source target 

Randomized correspondence estimation  



source target 

Remove invalid correspondences 

Sample randomly a small set of 

initial correspondences, based on 

local shape similarity 

Randomized correspondence estimation  



Based on geodesic distance 

sample next best 

correspondence 

source target 

Randomized correspondence estimation  



Based on geodesic distance 

sample next best 

correspondence 

source target 

Randomized correspondence estimation  



Based on geodesic distance 

sample next best 

correspondence 
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Randomized correspondence estimation  



Iterate while there are still 

correspondences to sample 

source target 

Randomized correspondence estimation  



Iterate while there are still 

correspondences to sample 

source target 

Randomized correspondence estimation  



The search is repeated n times to compute n solutions. Finally 

k solutions with most matches are chosen 

Randomized correspondence estimation  



Randomized correspondence estimation  



Spectral Matching [Leordeanu et al.] Our solution 

Randomized correspondence estimation  



Spectral Matching [Leordeanu et al.] Our solution 

Randomized correspondence estimation  



Surface Reconstruction 
Moving Least Squares 

Techniques 



Moving Least Squares 

Motivation: 

• Point sets sample the object they describe only sparsely. 

• There is an infinite amount of emptiness in between the 
finite sample set. 

• How can we fill in surface points? 

Goals: 

• Compute surface representations locally. 

• We do not want to solve a global approximation problem. 

• Create smooth surfaces. 

• Determine differential properties. 
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Moving Least Squares 

Moving least squares (MLS): 

• MLS is a standard technique for scattered data 
interpolation. 

• We will consider: 

 The standard interpolation scheme. 

 How to define surface projection operators. 
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Weighted Least-Squares 

Least Squares Approximation: 
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target values basis functions 

B1 B2 B3 

least squares fit 

pi = (xi, yi) 

(x) 

weighting functions 



Least-Squares 

Least Squares Approximation: 
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Least-Squares 

Notation: 
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Moving Least-Squares 

Moving Least Squares Approximation: 

101 / 142 

target values 

move basis and weighting function, 
recompute approximation y(x) ~ 



Moving Least-Squares 

Moving Least Squares Approximation: 
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target values 

approximation 



Summary: MLS 

Standard MLS approximation: 

• Choose set of basis functions 

 Typically monomials of degree 0,1,2 

• Choose weighting function 

 Typicall choices: Gaussian, Wendland function, B-Splines 

 Solution will have the same continuity as the weighting function. 

• Solve a weighted least squares problem at each point: 

 

 

• Need to invert the “moment matrix” at each evaluation. 

• Use SVD if sampling requirements are not guaranteed. 
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Surface Definition 

Question: How to define surfaces via MLS? 

• Two alternatives (as examples) 

 Implicit function definition for points with oriented normals. 

 Surface fitting for points without normals 

• Many more variants known in literature... 
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Implicit Function Definition 

Basic Idea: 
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Projection Operator 

Problem: 

• We want to insert additional points in the proximity of 
other points 

• Define a “projection operator”: 

 Compute implicit function 

 Add a new point somewhere 

 Move (gradient decent, or Newton’s method) point onto zero-
level set 

 Move in normal direction  
(i.e. gradient of approximated implicit function) 

 The operation that maps a point to the local zero level set by 
following the gradient (stationary point of an ODE) is called the 
“projection operator”. 
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Implicit Function Definition 

Projection: 
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Unoriented Point Sets 

Problem: 

• This requires normals with consistent orientation. 

• Hard to get, in particular locally. 

• For the general case, there is another MLS scheme that 
does not construct a signed implicit function. 
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Point Set Surfaces 

Point Set Surfaces: 

• Discussed here: a variant of [Alexa et al. 2001]. 

• Start with just points in space. 

• Again use a weighting function. 

• Then perform three steps: 

 First, compute a coordinate system 

 Second, compute a weighted least squares fit for higher order 
consistency. 

 Third, project point on the computed function fit. 
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1. Coordinate system 

Establishing an MLS coordinates frame 
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x 

 (x, xi) 

x1 

x2 

x3 

Implementation: 
• This can be done using weighted total least squares (PCA) 

• The original paper uses a non-linear optimization 



2. Basis Function Fit 

Weighted least-squares fit to a moving basis system:  
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 (x, xi) 

x1 

x2 

x3 

Implementation: 
• Ordinary weighted least squares. 

• Use the same spatial windowing function   for continuity. 



3. Projection 

Projection Step: 

• Project evaluation point on surface 
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Continuity Control 

Approximation / Interpolation: 

• Weighting function shape & support determine tightness 
of fit. 

• Special case: Integrable, singular weighting functions 
allow for interpolation 

• Example: Fitting an MLS surface to a polynomial surface 
[Shen et al., Siggraph 2004] 
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Weighting Function 

Weighting Function: 

 

 

 

 

Vary   to adjust tightness of fit. 
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