Geometric Modeling

Summer Semester 2012

Rational Spline Curves

Projective Geometry · Rational Bezier Curves · NURBS

Overview...

Topics:

- Polynomial Spline Curves
- Blossoming and Polars
- Rational Spline Curves
 - Some projective geometry
 - Conics and quadrics
 - Rational Bezier Curves
 - Rational B-Splines: NURBS
- Spline Surfaces

Some Projective Geometry

Projective Geometry

A very short overview of projective geometry

- The computer graphics perspective
- Formal definition

Homogeneous Coordinates

Problem:

- Linear maps (matrix multiplication in \mathbb{R}^d) can represent...
 - Rotations
 - Scaling
 - Sheering
 - Orthogonal projections
- ...but not:
 - Translations
 - Perspective projections
- This is a problem in computer graphics:
 - We would like to represent compound operations in a single, closed representation

Translations

"Quick Hack" #1: Translations

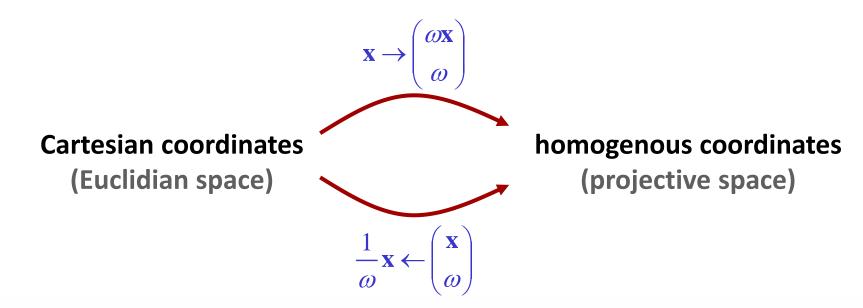
- Linear maps cannot represent translations:
 - Every linear map maps the zero vector to zero M0 = 0
 - Thus, non-trivial translations are non-linear
- Solution:
 - Add one dimension to each vector
 - Fill in a one
 - Now we can do translations by adding multiples of the one:

$$\mathbf{Mx} = \begin{pmatrix} r_{11} & r_{21} & t_x \\ r_{12} & r_{22} & t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} r_{11} & r_{21} \\ r_{12} & r_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Normalization

Problem: What if the last entry is not 1?

- It's not a bug, it's a feature...
- If the last component is not 1, divide everything by it before using the result



Notation

Notation:

- The extra component is called the homogenous component of the vector.
- It is usually denoted by ω:
 - 2D case:

$$\begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \omega x \\ \omega y \\ \omega \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} \omega x \\ \omega y \\ \omega z \\ \omega \end{pmatrix}$$

• 3D case:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} \omega x \\ \omega y \\ \omega z \\ \omega \end{pmatrix}$$

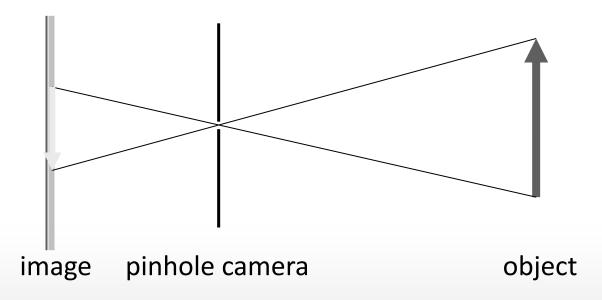
• General case:

$$\mathbf{x} \to \begin{pmatrix} \omega \mathbf{x} \\ \omega \end{pmatrix}$$

Perspective Projections

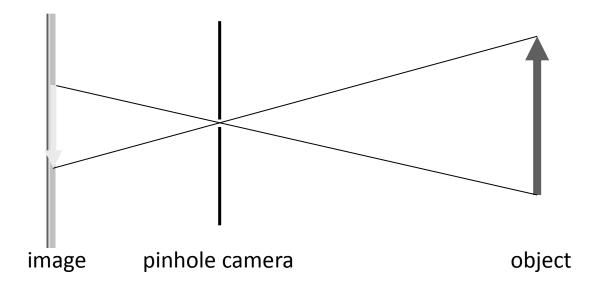
New Feature: Perspective projections

- Very useful for 3D computer graphics
- Perspective projection (central projection)
 - involves divisions
 - can be packaged into homogeneous component

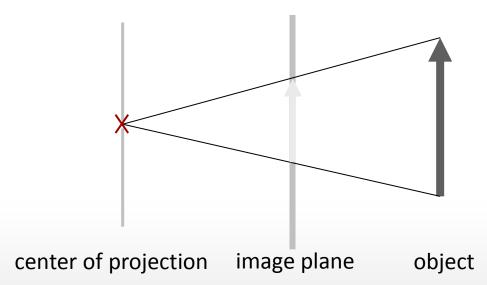


Perspective Projection

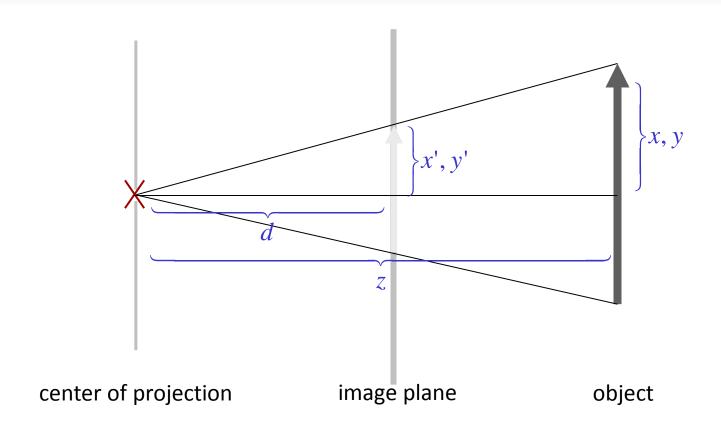
Physical camera:



Virtual camera:



Perspective Projection



Perpective projection: $x' = d \frac{x}{z}$, $y' = d \frac{y}{z}$

Homogenous Transformation

Projection as linear transformation in homogenous coordinates:

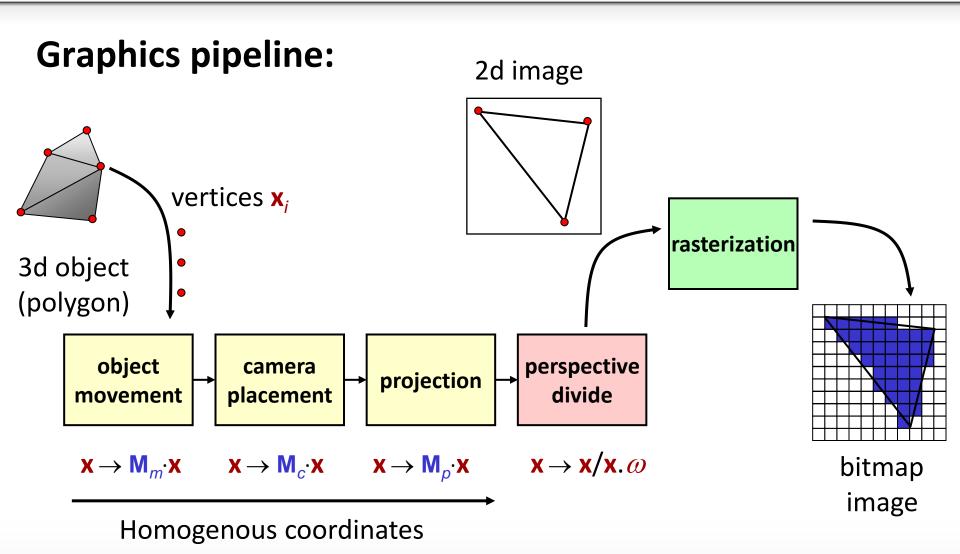
• Trick: Put the denominator into the *oc* component.

$$x' = d\frac{x}{z}, \quad y' = d\frac{y}{z}$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ \omega' \end{pmatrix} = \begin{pmatrix} d & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ \omega \end{pmatrix}$$

Camera placement: move scene in opposite direction

Graphics Pipeline



OpenGL Graphics Pipeline

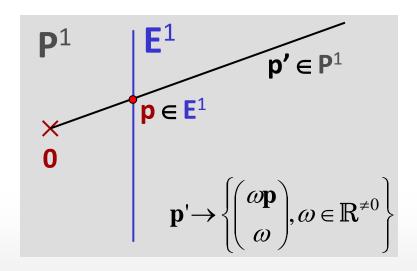
Example: OpenGL Pipeline

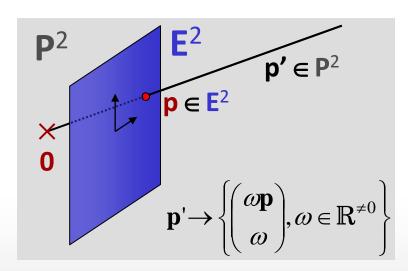
- Polygon primitives (triangles)
- Vertices specified by homogenous coordinates (4 floats)
- Transformation pipeline:
 - Corresponds to a 4x4 matrix transformation
 - (more or less; clipping etc. separate)
- Hardware accelerated
 - Special purpose hardware
 - Supports rapid 4D vector operations ("vertex shader")

Formal Definition

Projective Space P^d:

- Embed Euclidian space E^d
 - into d+1 dimensional Euclidian space at $\omega = 1$
 - Additional dimension usually named
- Identify all points on lines through the origin
 - representing the same Euclidian point





Properties

Properties:

- Points represented by lines through the origin
- Consequence:
 - scaling by common factor does not change the point
 - Euclidian(λx) = Euclidian(x), $\lambda \neq 0$
 - We can scale the points arbitrarily
- Hence:
 - When multiple projective operations are performed on the projective points.
 - Division by \(\omega \) can be done at any time
- "Projective transformation":
 - Map lines through the origin to lines through the origin

Properties

Projective Maps:

- Represented by linear maps in the higher dimensional space
- Scale at any time:

$$\mathbf{y} = \mathbf{M}\mathbf{x} = \frac{\mathbf{M}\mathbf{x}}{\mathbf{y}.\omega} = \mathbf{M}\frac{\mathbf{x}}{\mathbf{x}.\omega}$$
 (for $\omega \neq 0$)

Important: We have $\mathbf{x} = \alpha \mathbf{x}$, but in general: $\mathbf{x} + \mathbf{y} \neq \mathbf{x} + \alpha \mathbf{y}$

Directions

Problem: What if $\omega = 0$?

- Again it's not a bug, it's a feature
- Projective points with $\omega = 0$ do not correspond to Euclidian points
- They represent *directions*, or *points at infinity*.
- This gives a natural distinction:
 - Euclidian points: $\omega \neq 0$ in homogenous coordinates.
 - Euclidian vectors: $\omega = 0$ in homogenous coordinates.
- The difference of points yields a vector.
 - Vectors can be added to points
 - But not (not really) points to points.

Quadrics and Conics

Modeling Wish List

We want to model:

- Circles (Surfaces: Spheres)
- Ellipses (Surfaces: Ellipsoids)
- And segments of those
- Surfaces: Objects with circular cross section
 - Cylinders
 - Cones
 - Surfaces of revolution (lathing)

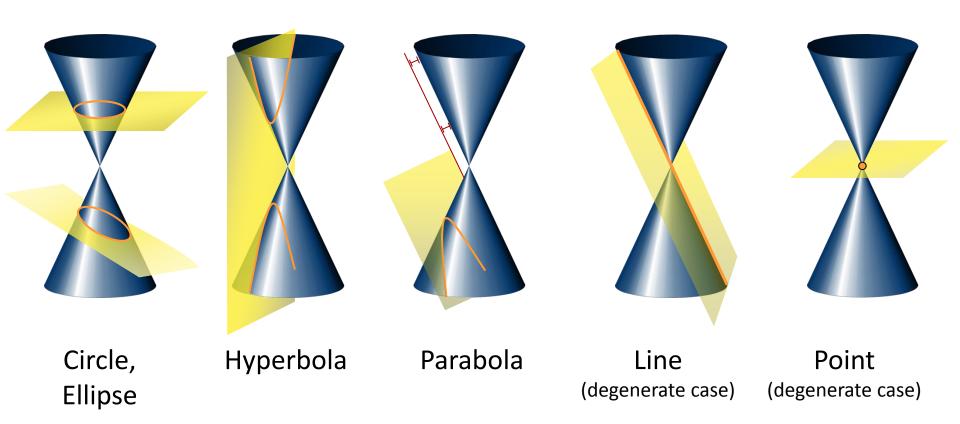
These objects cannot be represented exactly (only approximated) by piecewise polynomials

Conical Sections

Classic description of such objects:

- Conical sections (conics)
- Intersections of a cone and a plane
- Resulting objects:
 - Circles
 - Ellipses
 - Hyperbolas
 - Parabolas
 - Points
 - Lines

Conic Sections



Implicit Form

Implicit quadrics:

 Conic sections can be expressed as zero set of a quadratic function:

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

$$\Leftrightarrow \mathbf{x}^{T} \begin{pmatrix} a & 1/2 \cdot b \\ 1/2 \cdot b & c \end{pmatrix} \mathbf{x} + \begin{bmatrix} d & e \end{bmatrix} \mathbf{x} + f = 0$$

Easy to see why:

Implicit eq. for a cone: $Ax^2 + By^2 = z^2$

Explicit eq. for a plane: z = Dx + Ey + F

Conical Section: $Ax^2 + By^2 = (Dx + Ey + F)^2$

Quadrics & Conics

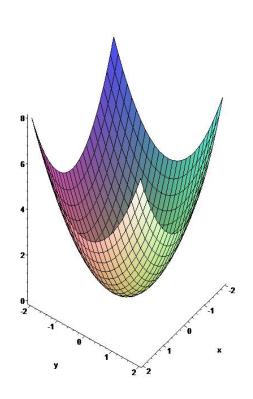
Quadrics:

 Zero sets of quadratic functions (any dimension) are called *quadrics*:

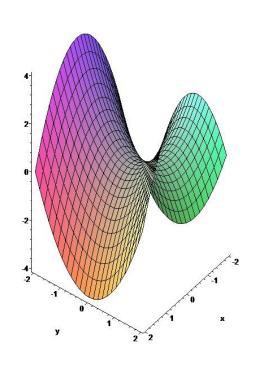
$$\left\{ \mathbf{x} \in \mathbb{R}^{d} \mid \mathbf{x}^{T} \mathbf{M} \mathbf{x} + \mathbf{b}^{T} \mathbf{x} + \mathbf{c} = 0 \right\}$$

• Conics are the special case for d = 2.

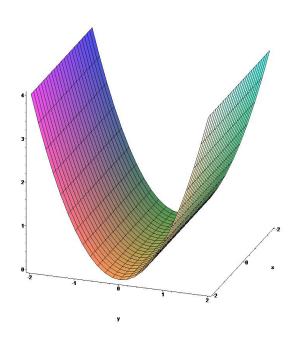
Shapes of Quadratic Polynomials



$$\lambda_1 = 1$$
, $\lambda_2 = 1$



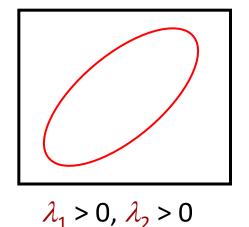
$$\lambda_1 = 1$$
, $\lambda_2 = -1$



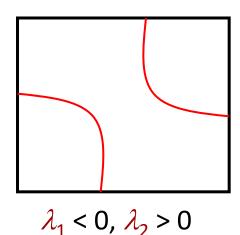
$$\lambda_1 = 1$$
, $\lambda_2 = 0$

The Iso-Lines: Quadrics

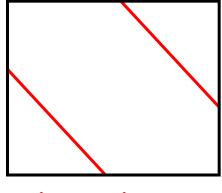
elliptic



hyperbolic



degenerate case



$$\lambda_1 = 0, \ \lambda_2 \neq 0$$

Characterization

Determining the type of Conic from the implicit form:

Implicit function: quadratic polynomial

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

$$\Leftrightarrow \mathbf{x}^{T} \begin{bmatrix} a & 1/2 \cdot b \\ 1/2 \cdot b & c \end{bmatrix} \mathbf{x} + \begin{bmatrix} d & e \end{bmatrix} \mathbf{x} + f = 0$$

Eigenvalues of M:

$$\lambda_{1|2} = \frac{a+c}{2} \pm \frac{1}{2} \sqrt{(a-c)^2 + b^2}$$

Cases

We obtain the following cases:

implicit function:

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0$$

- Ellipse: $b^2 < 4ac$
 - Circle: b = 0, a = c
 - Otherwise: general ellipse
- Hyperbola: $b^2 > 4ac$
- Parabola: $b^2 = 4ac$ (border case)

Cases

implicit function:

 $ax^{2} + bxy + cy^{2} + dx + ey + f = 0$

Explanation:

$$b^{2} = 4ac \implies \lambda_{1|2} = \frac{a+c}{2} \pm \frac{1}{2} \sqrt{(a-c)^{2} + 4ac}$$

$$= \frac{a+c}{2} \pm \sqrt{a^{2} - 2ac + c^{2} + 4ac}$$

$$= \frac{a+c}{2} \pm \frac{1}{2} \sqrt{a^{2} + 2ac + c^{2}}$$

$$= \frac{a+c}{2} \pm \frac{1}{2} \sqrt{(a+c)^{2}}$$

$$= \frac{a+c}{2} \pm \frac{a+c}{2}$$

 $= \{0, a+c\}$

Parametrization

We want to represent conics with parametric curves:

- How can we represent (pieces) of conics as parametric curves?
- How can we generalize our framework of piecewise polynomial curves to include conical sections?

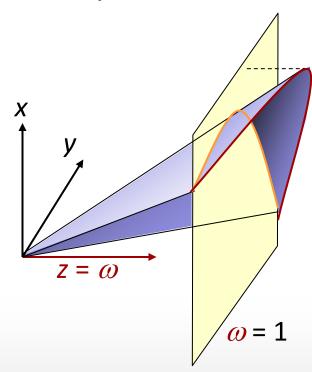
Projections of Parabolas:

- We will look at a certain class of parametric functions projections of parabolas.
- This class turns out to be general enough,
- and can be expressed easily with the tools we know.

Projections of Parabolas

Definition: Projection of a Parabola

- We start with a quadratic space curve.
- Interpret the z-coordinate as homogenous component o.
- Project the curve on the plane $\omega = 1$.



Projected Parabola

Formal Definition:

- Quadratic polynomial curve in three space
- Project by dividing by third coordinate

$$\mathbf{f}^{(hom)}(t) = \mathbf{p}_0 + t\,\mathbf{p}_1 + t^2\,\mathbf{p}_2 = \begin{pmatrix} \mathbf{p}_0.x \\ \mathbf{p}_0.y \\ \mathbf{p}_0.\omega \end{pmatrix} + t \begin{pmatrix} \mathbf{p}_1.x \\ \mathbf{p}_1.y \\ \mathbf{p}_1.\omega \end{pmatrix} + t^2 \begin{pmatrix} \mathbf{p}_2.x \\ \mathbf{p}_2.y \\ \mathbf{p}_2.\omega \end{pmatrix}$$

$$\mathbf{f}^{(eucl)}(t) = \frac{\begin{pmatrix} \mathbf{p}_0.x \\ \mathbf{p}_0.y \end{pmatrix} + t \begin{pmatrix} \mathbf{p}_1.x \\ \mathbf{p}_1.y \end{pmatrix} + t^2 \begin{pmatrix} \mathbf{p}_2.x \\ \mathbf{p}_2.y \end{pmatrix}}{\mathbf{p}_0.\omega + t \mathbf{p}_1.\omega + t^2 \mathbf{p}_2.\omega}$$

Bernstein Basis

Alternatively: Represent in Bernstein basis

Rational quadratic Bezier curves:

$$\mathbf{f}^{(hom)}(t) = B_0^{(2)}(t)\mathbf{p}_0 + B_1^{(2)}(t)\mathbf{p}_1 + B_2^{(2)}(t)\mathbf{p}_2$$

$$\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(t) \begin{pmatrix} \mathbf{p}_0.x \\ \mathbf{p}_0.y \end{pmatrix} + B_1^{(2)}(t) \begin{pmatrix} \mathbf{p}_1.x \\ \mathbf{p}_1.y \end{pmatrix} + B_2^{(2)}(t) \begin{pmatrix} \mathbf{p}_2.x \\ \mathbf{p}_2.y \end{pmatrix}}{B_0^{(2)}(t)\mathbf{p}_0.\omega + B_1^{(2)}(t)\mathbf{p}_1.\omega + B_2^{(2)}(t)\mathbf{p}_2.\omega}$$

Properties

Projective invariance:

- Quadratic Bezier curves are invariant under projective maps
- The following operations yield the same result
 - Applying a projective map to the control points, then evaluate the curve
 - Applying the same projective map to the curve
- Proof:
 - 3D curve is invariant under linear maps
 - Scaling does not matter for projections
 (divide by \(\omega \) before or after applying a projection matrix does not matter)

Parametrizing Conics

Conics can be parameterized using projected parabolas:

- We show that we can represent (piecewise):
 - Points and lines (obvious √)
 - A unit parabola
 - A unit circle
 - A unit hyperbola
- General cases (ellipses etc.) can be obtained by affine mappings of the control points (which leads to affine maps of the curve)

Parametrizing Parabolas

Parabolas as rational parametric curves:

$$\mathbf{f}^{(eucl)}(t) = \frac{\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{1 + 0t + 0t^2}$$

$$\mathbf{f}^{(eucl)}(t) = \frac{\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \end{pmatrix} + t^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{1 + 0t + 0t^2} \qquad \begin{pmatrix} x(t) = t \\ y(t) = t^2 \end{pmatrix} \qquad \text{(pretty obvious as well)}$$

Circle

Let's try to find a rational parametrization of a (piece of a) unit circle:

$$\mathbf{f}^{(eucl)}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

$$\cos \varphi = \frac{1 - \tan^2 \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}}, \quad \sin \varphi = \frac{2 \tan \frac{\varphi}{2}}{1 + \tan^2 \frac{\varphi}{2}} \quad \text{(tangent half-angle formula)}$$

$$t := \tan \frac{\varphi}{2} \Rightarrow \mathbf{f}^{(eucl)}(\varphi) = \begin{bmatrix} \frac{1-t^2}{1+t^2} \\ \frac{2t}{1+t^2} \end{bmatrix}$$

Circle

Let's try to find a rational parametrization of a (piece of a) unit circle:

$$\mathbf{f}^{(eucl)}(\varphi) = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} = \begin{pmatrix} \frac{1 - t^2}{1 + t^2} \\ \frac{2t}{1 + t^2} \end{pmatrix} \text{ with } t := \tan \frac{\varphi}{2}$$

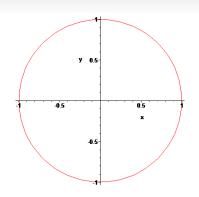
$$\Rightarrow \mathbf{f}^{(hom)}(t) = \begin{pmatrix} 1 - t^2 \\ 2t \\ 1 + t^2 \end{pmatrix}$$
 parametrization for $\varphi \in (-90^\circ..90^\circ)$ \Rightarrow we need at least three segments

to parametrize a full circle

Hyperbolas

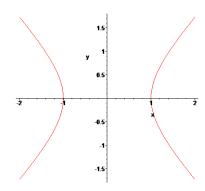
Unit Circle: $x^2 + y^2 = 1$

$$\Rightarrow x(t) = \frac{1-t^2}{1+t^2}, y(t) = \frac{2t}{1+t^2} \quad (t \in \mathbb{R})$$



Unit Hyperbola: $x^2 - y^2 = 1$

$$\Rightarrow x(t) = \frac{1+t^2}{1-t^2}, y(t) = \frac{2t}{1-t^2} \quad (t \in [0..1))$$



Rational Bezier Curves

Rational Bezier Curves

Rational Bezier curves in \mathbb{R}^n of degree d:

- Form a Bezier curve of degree d in n+1-dimensional space
- Interpret last coordinate as homogenous component
- Euclidian coordinates are obtained by projection.

$$\mathbf{f}^{(hom)}(t) = \sum_{i=0}^{n} B_i^{(d)}(t) \mathbf{p}_i, \quad \mathbf{p}_i \in \mathbb{R}^{n+1}$$

$$\frac{\sum_{i=0}^{n} B_{i}^{(d)}(t) \begin{pmatrix} p_{i}^{(1)} \\ \vdots \\ p_{i}^{(n)} \end{pmatrix}}{\sum_{i=0}^{n} B_{i}^{(d)}(t) p_{i}^{(n+1)}}$$

More Convenient Notation

The curve can be written in "weighted points" form:

$$\mathbf{f}^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i \begin{pmatrix} p_1 \\ \vdots \\ p_n \end{pmatrix}}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i}$$

Interpretation:

- Points are weighted by weights \(\omega_i\)
- Normalized by interpolated weights in the denominator
- Larger weights → more influence of that point

Properties

What about affine invariance, convex hull prop.?

$$\mathbf{f}^{(eucl)}(t) = \frac{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i}{\sum_{i=0}^{n} B_i^{(d)}(t) \omega_i} = \sum_{i=0}^{n} q_i(t) \mathbf{p}_i \quad \text{with } \sum_{i=0}^{n} q_i(t) = 1$$

Consequence:

- Affine invariance still holds
- For strictly positive weights:
 - Convex hull property still holds
 - This is not a big restriction (potential singularities otherwise)
- Projective invariance (projective maps, hom. coord's)

Quadratic Bezier Curves

Quadratic curves:

- Necessary and sufficient to represent conics
- Therefore, we will examine them closer...

Quadratic rational Bezier curve:

$$\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(t)\omega_0\mathbf{p}_0 + B_1^{(2)}(t)\omega_1\mathbf{p}_1 + B_2^{(2)}(t)\omega_2\mathbf{p}_2}{B_0^{(2)}(t)\omega_0 + B_1^{(2)}(t)\omega_1 + B_2^{(2)}(t)\omega_2}, \quad \mathbf{p}_i \in \mathbb{R}^n, \omega_i \in \mathbb{R}$$

How many degrees of freedom are in the weights?

Quadratic rational Bezier curve:

$$\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(t)\omega_0\mathbf{p}_0 + B_1^{(2)}(t)\omega_1\mathbf{p}_1 + B_2^{(2)}(t)\omega_2\mathbf{p}_2}{B_0^{(2)}(t)\omega_0 + B_1^{(2)}(t)\omega_1 + B_2^{(2)}(t)\omega_2}$$

- If one of the weights is ≠ 0 (which must be the case), we can divide numerator and denominator by this weight and thus remove one degree of freedom.
- If we are only interested in the shape of the curve, we can remove one more degree of freedom by a reparametrization...

How many degrees of freedom are in the weights?

- Concerning the shape of the curve, the parametrization does not matter.
- We have:

$$\mathbf{f}^{(eucl)}(t) = \frac{(1-t)^2 \omega_0 \mathbf{p}_0 + 2t(1-t)\omega_1 \mathbf{p}_1 + t^2 \omega_2 \mathbf{p}_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2}$$

• We set: (with α to be determined later)

$$t \leftarrow \frac{\widetilde{t}}{\alpha(1-\widetilde{t})+\widetilde{t}}, i.e., (1-t) \leftarrow \frac{\alpha(1-\widetilde{t})}{\alpha(1-\widetilde{t})+\widetilde{t}}$$

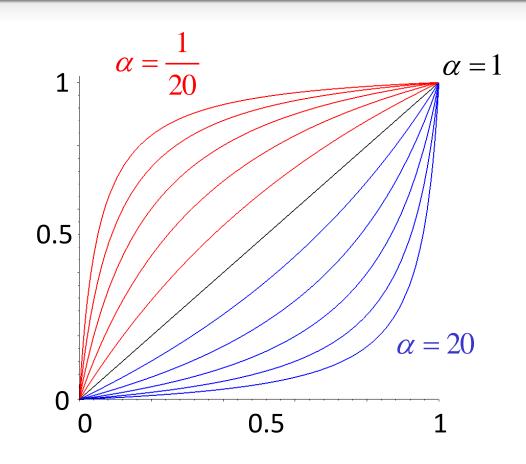
Remark: Why this reparametrization?

Reparametrization:

$$t \leftarrow \frac{\widetilde{t}}{\alpha(1-\widetilde{t})+\widetilde{t}}$$

Properties:

- $0 \rightarrow 0$, $1 \rightarrow 1$, monotonic in between
- Shape determined by parameter α .



$$t \leftarrow \frac{\widetilde{t}}{\alpha(1-\widetilde{t})+\widetilde{t}}, i.e., (1-t) \leftarrow \frac{\alpha(1-\widetilde{t})}{\alpha(1-\widetilde{t})+\widetilde{t}}$$

$$t \leftarrow \frac{\widetilde{t}}{\alpha(1-\widetilde{t})+\widetilde{t}}, i.e., (1-t) \leftarrow \frac{\alpha(1-\widetilde{t})}{\alpha(1-\widetilde{t})+\widetilde{t}}$$

$$\begin{split} \mathbf{f}^{(eucl)}(t) &= \frac{\left(\frac{\alpha \left(1-\widetilde{t}\right)}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right)^{2} \omega_{0} \mathbf{p}_{0} + 2 \left(\frac{\widetilde{t}}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right) \frac{\alpha \left(1-\widetilde{t}\right)}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}} \omega_{1} \mathbf{p}_{1} + \left(\frac{\widetilde{t}}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right)^{2} \omega_{2} \mathbf{p}_{2}}{\left(\frac{\alpha \left(1-\widetilde{t}\right)}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right)^{2} \omega_{0} + 2 \left(\frac{\widetilde{t}}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right) \frac{\alpha \left(1-\widetilde{t}\right)}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}} \omega_{1} + \left(\frac{\widetilde{t}}{\alpha \left(1-\widetilde{t}\right)+\widetilde{t}}\right)^{2} \omega_{2}} \\ &= \frac{\alpha^{2} \left(1-\widetilde{t}\right)^{2} \omega_{0} \mathbf{p}_{0} + 2\alpha \widetilde{t} \left(1-\widetilde{t}\right) \omega_{1} \mathbf{p}_{1} + \widetilde{t}^{2} \omega_{2} \mathbf{p}_{2}}{\alpha^{2} \left(1-\widetilde{t}\right)^{2} \omega_{0} + 2\alpha \widetilde{t} \left(1-\widetilde{t}\right) \omega_{1} + \widetilde{t}^{2} \omega_{2}} \\ &= \frac{\alpha^{2} B_{0}^{(2)}(\widetilde{t}) \omega_{0} \mathbf{p}_{0} + \alpha B_{1}^{(2)}(\widetilde{t}) \omega_{1} \mathbf{p}_{1} + B_{2}^{(2)}(\widetilde{t}) \omega_{2} \mathbf{p}_{2}}{\alpha^{2} B_{0}^{(2)}(\widetilde{t}) \omega_{0} + \alpha B_{1}^{(2)}(\widetilde{t}) \omega_{1} + B_{2}^{(2)}(\widetilde{t}) \omega_{2}} \end{split}$$

$$\mathbf{f}^{(eucl)}(t) = \frac{\alpha^2 B_0^{(2)}(\widetilde{t})\omega_0 \mathbf{p}_0 + \alpha B_1^{(2)}(\widetilde{t})\omega_1 \mathbf{p}_1 + B_2^{(2)}(\widetilde{t})\omega_2 \mathbf{p}_2}{\alpha^2 B_0^{(2)}(\widetilde{t})\omega_0 + \alpha B_1^{(2)}(\widetilde{t})\omega_1 + B_2^{(2)}(\widetilde{t})\omega_2}$$

let
$$\alpha = \sqrt{\frac{\omega_2}{\omega_0}}$$
 (assume $0 \le \frac{\omega_2}{\omega_0} < \infty$)

$$\mathbf{f}^{(eucl)}(t) = \frac{\alpha^{2}B_{0}^{(2)}(\tilde{t})\omega_{0}\mathbf{p}_{0} + \alpha B_{1}^{(2)}(\tilde{t})\omega_{1}\mathbf{p}_{1} + B_{2}^{(2)}(\tilde{t})\omega_{2}\mathbf{p}_{2}}{\alpha^{2}B_{0}^{(2)}(\tilde{t})\omega_{0} + \alpha B_{1}^{(2)}(\tilde{t})\omega_{1} + B_{2}^{(2)}(\tilde{t})\omega_{2}}$$

$$\det \alpha = \sqrt{\frac{\omega_{2}}{\omega_{0}}} \quad (\text{assume } 0 \le \frac{\omega_{2}}{\omega_{0}} < \infty)$$

$$\mathbf{f}^{(eucl)}(t) = \frac{B_{0}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}^{2}\omega_{0}\mathbf{p}_{0} + B_{1}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}\omega_{1}\mathbf{p}_{1} + \omega_{2}B_{2}^{(2)}(\tilde{t})\mathbf{p}_{2}}{B_{0}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}^{2}\omega_{0} + B_{1}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}\omega_{1}\mathbf{p}_{1} + \omega_{2}B_{2}^{(2)}(\tilde{t})}$$

$$= \frac{B_{0}^{(2)}(\tilde{t})\omega_{2}\mathbf{p}_{0} + B_{1}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}\omega_{1}\mathbf{p}_{1} + \omega_{2}B_{2}^{(2)}(\tilde{t})\mathbf{p}_{2}}{B_{0}^{(2)}(\tilde{t})\omega_{2} + B_{1}^{(2)}(\tilde{t})\sqrt{\frac{\omega_{2}}{\omega_{0}}}\omega_{1}\mathbf{p}_{1} + \omega_{2}B_{2}^{(2)}(\tilde{t})\mathbf{p}_{2}}$$

$$\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(\widetilde{t})\omega_2\mathbf{p}_0 + B_1^{(2)}(\widetilde{t})\sqrt{\frac{\omega_2}{\omega_0}}\omega_1\mathbf{p}_1 + \omega_2B_2^{(2)}(\widetilde{t})\mathbf{p}_2}{B_0^{(2)}(\widetilde{t})\omega_2 + B_1^{(2)}(\widetilde{t})\sqrt{\frac{\omega_2}{\omega_0}}\omega_1 + \omega_2B_2^{(2)}(\widetilde{t})}$$

$$\mathbf{f}^{(eucl)}(t) = \frac{B_0^{(2)}(\widetilde{t})\omega_2\mathbf{p}_0 + B_1^{(2)}(\widetilde{t})\sqrt{\frac{\omega_2}{\omega_0}}\omega_1\mathbf{p}_1 + \omega_2B_2^{(2)}(\widetilde{t})\mathbf{p}_2}{B_0^{(2)}(\widetilde{t})\omega_2 + B_1^{(2)}(\widetilde{t})\sqrt{\frac{\omega_2}{\omega_0}}\omega_1 + \omega_2B_2^{(2)}(\widetilde{t})}$$

$$= \frac{B_0^{(2)}(\widetilde{t})\mathbf{p}_0 + B_1^{(2)}(\widetilde{t})\sqrt{\frac{1}{\omega_0\omega_2}}\omega_1\mathbf{p}_1 + B_2^{(2)}(\widetilde{t})\mathbf{p}_2}{B_0^{(2)}(\widetilde{t}) + B_1^{(2)}(\widetilde{t})\sqrt{\frac{1}{\omega_0\omega_2}}\omega_1 + B_2^{(2)}(\widetilde{t})}$$

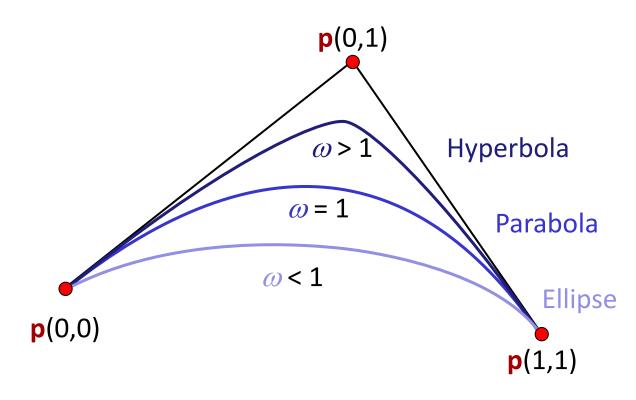
$$= \frac{B_0^{(2)}(\widetilde{t})\mathbf{p}_0 + B_1^{(2)}(\widetilde{t})\omega\mathbf{p}_1 + B_2^{(2)}(\widetilde{t})\mathbf{p}_2}{B_0^{(2)}(\widetilde{t}) + B_1^{(2)}(\widetilde{t})\omega + B_2^{(2)}(\widetilde{t})} \quad \text{with: } \omega := \sqrt{\frac{1}{\omega_0\omega_2}}\omega_1$$

Consequence:

- It is sufficient to specify the weight of the inner point
- We can w.l.o.g. set $\omega_0 = \omega_2 = 1$, $\omega_1 = \omega$
- This form of a quadratic Bezier curve is called the standard form.
- Choices:
 - *ω* < 1: ellipse segment
 - ω = 1: parabola segment (non-rational curve)
 - ω > 1: hyperbola segment

Illustration

Changing the weight:



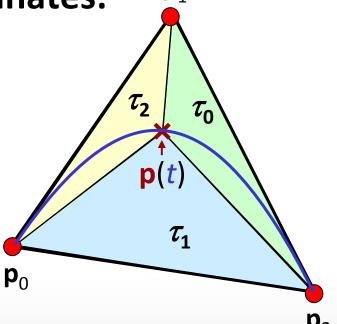
Convert parametric to implicit form:

- In order to show the shape conditions
- For distance computations / inside-outside tests

Express curve in barycentric coordinates:

 Curve can be expressed in barycentric coordinates (linear transform):

$$\mathbf{f}(t) = \tau_0(t)\mathbf{p}_0 + \tau_1(t)\mathbf{p}_1 + \tau_2(t)\mathbf{p}_2$$



Comparison of coefficients yields:

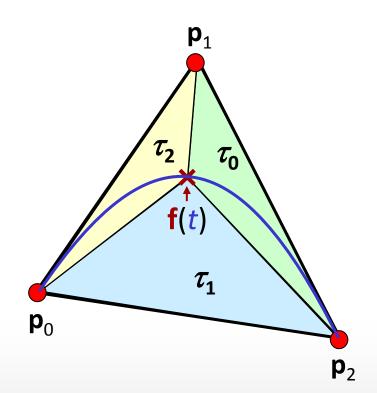
$$\tau_0(t) = \frac{\omega_0 B_0^{(2)}(t)}{\sum_{i=0}^2 \omega_i B_i^{(2)}(t)} = \frac{\omega_0 (1-t)^2}{D(t)}$$

$$\tau_{1}(t) = \frac{\omega_{1}B_{1}^{(2)}(t)}{\sum_{i=0}^{2} \omega_{i}B_{i}^{(2)}(t)} = \frac{2\omega_{1}t(1-t)}{D(t)}$$

$$\tau_{2}(t) = \frac{\omega_{2}B_{2}^{(2)}(t)}{\sum_{i=0}^{2}\omega_{i}B_{i}^{(2)}(t)} = \frac{\omega_{2}t^{2}}{D(t)}$$

$$\mathbf{f}(t) = \tau_0(t)\mathbf{p}_0 + \tau_1(t)\mathbf{p}_1 + \tau_2(t)\mathbf{p}_2$$

$$\mathbf{f}^{(eucl)}(t) = \frac{(1-t)^2 \omega_0 \mathbf{p}_0 + 2t(1-t)\omega_1 \mathbf{p}_1 + t^2 \omega_2 \mathbf{p}_2}{(1-t)^2 \omega_0 + 2t(1-t)\omega_1 + t^2 \omega_2}$$



Solving for t, (1-t):

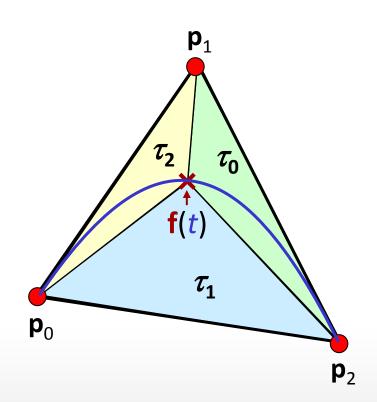
$$\tau_0(t) = \frac{\omega_0(1-t)^2}{D(t)} \Rightarrow (1-t) = \sqrt{\frac{\tau_0(t)D(t)}{\omega_0}}$$

$$\tau_1(t) = \frac{2\omega_1 t(1-t)}{D(t)}$$

$$\tau_2(t) = \frac{\omega_2 t^2}{D(t)} \Rightarrow t = \sqrt{\frac{\tau_2(t)D(t)}{\omega_2}}$$

$$\tau_1(t) = \frac{2\omega_1 \sqrt{\frac{\tau_2(t)D(t)}{\omega_2} \frac{\tau_0(t)D(t)}{\omega_0}}}{D(t)} = 2\omega_1 \sqrt{\frac{\tau_2(t)\tau_0(t)}{\omega_0\omega_2}}$$

$$\Rightarrow \frac{\tau_1(t)^2}{\tau_2(t)\tau_0(t)} = 4\frac{{\omega_1}^2}{\omega_0\omega_2}$$

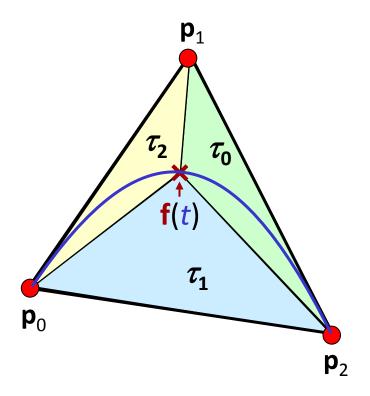


Some more algebra...:

$$\frac{\tau_1(t)^2}{\tau_2(t)\tau_0(t)} = 4\frac{\omega_1^2}{\omega_0\omega_2}$$

Using $\tau_2(t) = (1 - \tau_0(t) - \tau_1(t))$ we get:

$$\begin{aligned} \left[\omega_{0}\omega_{2}\right]\tau_{1}(t)^{2} &= \left[4\omega_{1}^{2}\right]\tau_{2}(t)\tau_{0}(t) \\ &= \left[4\omega_{1}^{2}\right]\tau_{0}(t)\left(1-\tau_{0}(t)-\tau_{1}(t)\right) \\ &= \left[4\omega_{1}^{2}\right]\left(\tau_{0}(t)-\tau_{0}(t)^{2}-\tau_{1}(t)\tau_{0}(t)\right) \end{aligned}$$



$$\Rightarrow \left[\omega_{0}\omega_{2}\right]\tau_{1}(t)^{2} + \left[4\omega_{1}^{2}\right]\tau_{1}(t)\tau_{0}(t) + \left[4\omega_{1}^{2}\right]\tau_{0}(t)^{2} - \left[4\omega_{1}^{2}\right]\tau_{0}(t) = 0$$

$$a x^{2} + b xy + c y^{2} + e x + 0y + 0 = 0$$

(transformed coordinates: x,y affine transform of std coords; does not matter for shape type)

Classification

Eigenvalue argument led to:

- Parabola requires $b^2 = 4ac$ in $ax^2 + bxy + cy^2 + dx + ey + f = 0$
- In our case:

$$\left[\omega_{0}\omega_{2}\right]\tau_{1}(t)^{2} + \left[4\omega_{1}^{2}\right]\tau_{1}(t)\tau_{0}(t) + \left[4\omega_{1}^{2}\right]\tau_{0}(t)^{2} - \left[4\omega_{1}^{2}\right]\tau_{0}(t) = 0$$

i.e.:

$$4\left[\omega_0\omega_2\right]\left[4\omega_1^2\right] = \left[4\omega_1^2\right]^2$$

$$\Leftrightarrow 16\omega_0\omega_2\omega_1^2 = 16\omega_1^4$$

$$\Leftrightarrow \omega_0 \omega_2 = \omega_1^2$$

Standard form: $\omega_0 = \omega_2 = 1$

$$\Rightarrow \omega_1 = 1$$

Classification

Similarly, it follows that:

```
\omega_1 < 1 \rightarrow \text{Ellipse}
\omega_1 = 1 \rightarrow \text{Parabola}
(\omega_0 = \omega_2 = 1)
\omega_1 > 1 \rightarrow \text{Hyperbola}
```

Quadratic rational polynomial:

$$\mathbf{f}(t) = \frac{1}{1+t^2} \begin{pmatrix} 1-t^2 \\ 2t \end{pmatrix}, t = \tan\frac{\varphi}{2}, \varphi \in (-90^{\circ}..90^{\circ})$$

Conversion to Bezier basis:

$$B_0^{(2)} = (1-t)^2 = 1 - 2t + t^2 = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T \qquad 1 - t^2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$$

$$B_1^{(2)} = 2t(1-t) = 2t - 2t^2 = \begin{bmatrix} 0 & 2 & -2 \end{bmatrix}^T \qquad 2t = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}^T$$

$$B_2^{(2)} = t^2 \qquad = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \qquad 1 + t^2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$

Conversion to Bezier basis:

$$B_0^{(2)} = (1-t)^2 = 1 - 2t + t^2 = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^T \qquad 1 - t^2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$$

$$B_1^{(2)} = 2t(1-t) = 2t - 2t^2 = \begin{bmatrix} 0 & 2 & -2 \end{bmatrix}^T \qquad 2t = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}^T$$

$$B_2^{(2)} = t^2 \qquad = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \qquad 1 + t^2 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$

Comparison yields:

$$1-t^{2} = B_{0}^{(2)} + B_{1}^{(2)}
2t = B_{1}^{(2)} + 2B_{2}^{(2)}
1+t^{2} = B_{0}^{(2)} + B_{1}^{(2)} + 2B_{2}^{(2)}$$

$$\mathbf{f}^{\text{(hom)}}(t) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} B_{0}^{(2)} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} B_{1}^{(2)} + \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} B_{2}^{(2)}$$

Result:

$$\mathbf{f}(t) = \frac{B_0^{(2)}(t) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + B_1^{(2)}(t) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 2B_2^{(2)}(t) \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)}(t) + B_1^{(2)}(t) + 2B_2^{(2)}(t)}$$

Parameters:

$$t = \tan\frac{\varphi}{2} \Rightarrow \varphi = 2 \arctan t$$

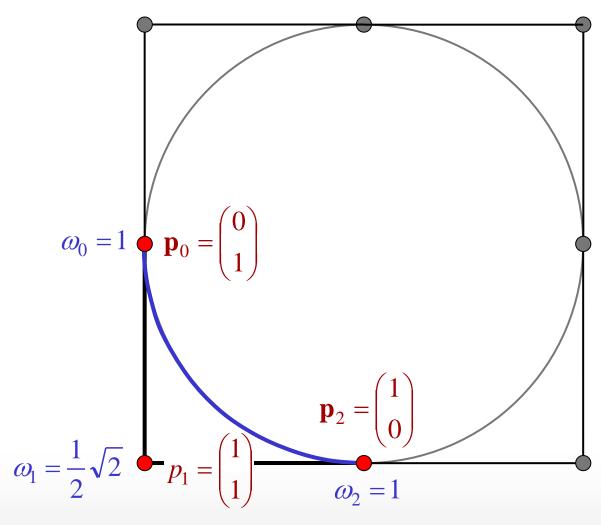
$$t \in [0,1] \to \varphi \in [0^{\circ}...90^{\circ}]$$

$$\mathbf{f}(t) = \frac{B_0^{(2)}(\widetilde{t})\mathbf{p}_0 + B_1^{(2)}(\widetilde{t})\omega\mathbf{p}_1 + B_2^{(2)}(\widetilde{t})\mathbf{p}_2}{B_0^{(2)}(\widetilde{t}) + B_1^{(2)}(\widetilde{t})\omega + B_2^{(2)}(\widetilde{t})} \quad \text{with: } \omega := \sqrt{\frac{1}{\omega_0 \omega_2}} \omega_1$$

$$\mathbf{f}(t) = \frac{B_0^{(2)} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{2} \sqrt{2} B_1^{(2)} \begin{pmatrix} 1 \\ 1 \end{pmatrix} + B_2^{(2)} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{B_0^{(2)} + \frac{1}{2} \sqrt{2} B_1^{(2)} + B_2^{(2)}}$$

Result: Circle in Bezier Form

Final Result:

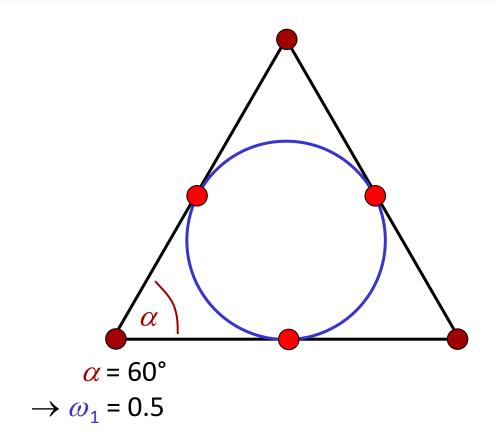


General Circle Segments

In general:

for
$$\omega_0 = \omega_2 = 1$$
:
 $\omega_1 = \cos \alpha$

angle interval < 180°



Properties, Remarks

Continuity:

- The parametrization is only C^1 , but G^{∞}
- No arc length parametrization possible
- Even stronger: No rational curve other than a straight line can have an arc-length parametrization.

Circles in in general degree Bezier splines:

- Simplest solution:
 - Form quadratic circle (segments)
 - Apply degree elevation to obtain the desired degree

Rational De Casteljau Algorithm

Evaluation with De Casteljau Algorithm

- Two Variants:
 - Compute numerator and denominator separately, then divide
 - Divide in each intermediate step ("rational de Casteljau")
- Non-rational de Casteljau algorithm:

$$\mathbf{b}_{i}^{(r)}(t) = (1-t)\mathbf{b}_{i}^{(r-1)}(t) + t\mathbf{b}_{i+1}^{(r-1)}(t)$$

• Rational de Casteljau algorithm:

$$\mathbf{b}_{i}^{(r)}(t) = (1-t)\frac{\omega_{i}^{(r-1)}(t)}{\omega_{i}^{(r)}(t)}\mathbf{b}_{i}^{(r-1)}(t) + t\frac{\omega_{i+1}^{(r-1)}(t)}{\omega_{i}^{(r)}(t)}\mathbf{b}_{i+1}^{(r-1)}(t)$$

with

$$\omega_i^{(r)}(t) = (1-t)\omega_i^{(r-1)}(t) + t\omega_{i+1}^{(r-1)}(t)$$

Rational De Casteljau Algorithm

Advantages:

- More intuitive (repeated weighted linear interpolation of points and weights)
- Numerically more stable (only convex combinations for the standard case of positive weights, $t \in [0,1]$)

Weight Points

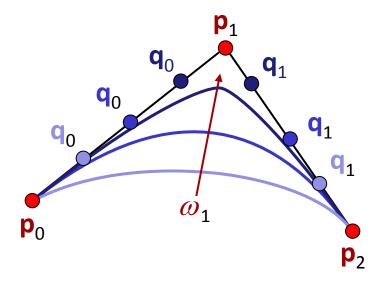
Alternative technique to specify weights:

- Weight points
- User interface: More intuitive in interactive design

Weight Points:

$$\mathbf{q}_0 = \frac{\omega_0 \mathbf{p}_0 + \omega_1 \mathbf{p}_1}{\omega_0 + \omega_1}, \quad \mathbf{q}_1 = \frac{\omega_1 \mathbf{p}_1 + \omega_2 \mathbf{p}_2}{\omega_1 + \omega_2}$$

$$\mathbf{q}_0 = \frac{\mathbf{p}_0 + \omega_1 \mathbf{p}_1}{1 + \omega_1}, \quad \mathbf{q}_1 = \frac{\mathbf{p}_1 + \omega_1 \mathbf{p}_2}{1 + \omega_1}$$



Derivatives

Computing derivatives of rational Bezier curves:

- Straightforward: Apply quotient rule
- A simpler expression can be derived using an algebraic trick:

$$\mathbf{f}(t) = \frac{\sum_{i=0}^{d} B_i^{(d)}(t) \omega_i \mathbf{p}_i}{\sum_{i=0}^{d} B_i^{(d)}(t) \omega_i} =: \frac{\mathbf{p}(t)}{\omega(t)}$$

$$\mathbf{f}(t) = \frac{\mathbf{p}(t)}{\omega(t)} \implies \mathbf{p}(t) = \mathbf{f}(t)\omega(t) \implies \mathbf{p}'(t) = \mathbf{f}'(t)\omega(t) + \mathbf{f}(t)\omega'(t)$$

$$\Rightarrow \mathbf{f}'(t)\omega(t) = \mathbf{p}'(t) - \mathbf{f}(t)\omega'(t) \Rightarrow \mathbf{f}'(t) = \frac{\mathbf{p}'(t) - \mathbf{f}(t)\omega'(t)}{\omega(t)}$$

Derivatives

At the endpoints:

$$\mathbf{f'}(t) = \frac{\mathbf{p'}(t) - \omega'(t)\mathbf{f}(t)}{\omega(t)}$$

$$\mathbf{f'}(0) = \frac{\mathbf{p'}(0) - \omega'(0)\mathbf{f}(0)}{\omega(0)}$$

$$= \frac{d(\omega_1\mathbf{p}_1 - \omega_0\mathbf{p}_0) - d(\omega_1 - \omega_0)\mathbf{p}_0}{\omega_0} = \frac{d}{\omega_0}(\omega_1\mathbf{p}_1 - \omega_0\mathbf{p}_0 - \omega_1\mathbf{p}_0 + \omega_0\mathbf{p}_0)$$

$$= d\frac{\omega_1}{\omega_0}(\mathbf{p}_1 - \mathbf{p}_0)$$

$$\mathbf{f'}(1) = d\frac{\omega_{d-1}}{\omega_d}(\mathbf{p}_d - \mathbf{p}_{d-1})$$

NURBS:

Non-Uniform Rational B-Splines

NURBS

NURBS: Rational B-Splines

- Same idea:
 - Control points in homogenous coordinates
 - Evaluate curve in (d+1)-dimensional space (same as before)
 - For display, divide by *o*-component
 - (we can divide anytime)

NURBS

NURBS: Rational B-Splines

• Formally: $(N_i^{(d)}: B$ -spline basis function i of degree d)

$$\mathbf{f}(t) = \frac{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i \mathbf{p}_i}{\sum_{i=1}^{n} N_i^{(d)}(t) \omega_i}$$

- Knot sequences etc. all remain the same
- De Boor algorithm similar to rational de Casteljau alg.
 - 1. option apply separately to numerator, denominator
 - 2. option normalize weights in each intermediate result
 - The second option is numerically more stable

Some Issues

Interpolation problems:

- Finding a B-Spline curve that interpolates a set of homogeneous points is easy
- Just solve a linear system
- Note: The problem is easy when the weights are given.

What if no weights are given (only Euclidian points)?

- More degrees of freedom than constraints
- If we reduce the number of points:
 - Non-linear system of equations
 - Issues: How to find a solution? Does it exist? Is it unique?

Related Problem

Approximation with rational curves:

- Scenario 1: Homogeneous data points given, with weights
 - Easy problem linear system
- Scenario 2: Euclidian data points are given, but weights are fixed for each control point (e.g. manually)
 - Easy problem again linear system
 - Weights just change the shape of the basis functions
- Scenario 3: Euclidian data points, want to compute weights as well
 - Non-linear optimization problem

General Rational Data Approximation

Scenerio 3: Euclidian data points, want to compute weights as well

- Non-linear optimization problem
- Issues:
 - No direct solution possible
 - Numerical optimization might get stuck in local minima
- Constraints:
 - We have to avoid poles
 - E.g. by demanding $\omega_i > 0$
 - Constrained optimization problem (even nastier)

General Rational Data Approximation

Simple idea for a numerical approach:

- First solve non-rational problem (all weights = 1)
- Then start constrained non-linear gradient descend (or Newton) solver from there