Geometric Modeling

Summer Semester 2012

Rational Spline Curves

Projective Geometry - Rational Bezier Curves - NURBS

®® =
wu“'“u“u gg;VERSITAT l l I I

max planck institut
informatik

I3 sAARLANDES




Overview...

Topics:
e Polynomial Spline Curves
e Blossoming and Polars

e Rational Spline Curves
= Some projective geometry
= Conics and quadrics
= Rational Bezier Curves
.= Rational B-Splines: NURBS

. Spline Surfaces



Some Projective Geometry



Projective Geometry

A very short overview of projective geometry
e The computer graphics perspective
e Formal definition



Homogeneous Coordinates

Problem:
o Linear maps (matrix multiplication in RY) can represent...

= Rotations

= Scaling

= Sheering

= Orthogonal projections

e ...but not:
= Translations

= Perspective projections

e This is a problem in computer graphics:

= We would like to represent compound operations in a single,
closed representation



Translations

“Quick Hack” #1: Translations

e Linear maps cannot represent translations:
= Every linear map maps the zero vector to zero M0 =0
= Thus, non-trivial translations are non-linear
e Solution:
= Add one dimension to each vector
= Fillin a one
= Now we can do translations by adding multiples of the one:

G G X 1 Py |[ X . L,
MX=Ih, Ip t @Y=l nLly) (t
1

y
0O 0 1 1



Normalization

Problem: What if the last entry is not 1°?

e It's not a bug, it’s a feature...

e If the last component is not 1, divide everything by it
before using the result

(7]
T

Cartesian coordinates homogenous coordinates

(Euclidian space) \/ (projective space)

—X <
) )



Notation

Notation:

e The extra component is called the homogenous
component of the vector.

e |t is usually denoted by w:

= 2D case: = 3D case:
WX
WX X
X oy
— | wy y|—
y WL
n) Z
0

= General case:

(o)



Perspective Projections

New Feature: Perspective projections
e Very useful for 3D computer graphics
e Perspective projection (central projection)

= involves divisions
= can be packaged into homogeneous component

image pinhole camera object



Perspective Projection

Physical camera:

image pinhole camera object

Virtual camera:

center of projection image plane object



Perspective Projection

oX, Y

-
z

center of projection image plane object

Perpective projection: x'=d 5, y'=d y

Z Z



Homogenous Transformation

Projection as linear transformation in homogenous
coordinates:

e Trick: Put the denominator into the @ component.

x=dZ, y=d¥

Z Z
X' d 0 0 0})x
y' 0O d 0 Ofy
2110 0 d 0]z
@' 0 0 1 OJlw

e Camera placement: move scene in opposite direction



Graphics Pipeline

Graphics pipeline:

2d image

rasterization

vertices X;
(]
3d object |°
(polygon)
object camera .. perspective
> » projection . .
movement placement divide
X>MyX  X>MeX  X—> MX X— X/X.0

Homogenous coordinates

Wy,

bitmap
image



OpenGL Graphics Pipeline

Example: OpenGL Pipeline
e Polygon primitives (triangles)
e Vertices specified by homogenous coordinates (4 floats)
e Transformation pipeline:

= Corresponds to a 4x4 matrix transformation
= (more or less; clipping etc. separate)

e Hardware accelerated
= Special purpose hardware
= Supports rapid 4D vector operations (“vertex shader”)



Formal Definition

Projective Space P’:

e Embed Euclidian space E¢
= into d+1 dimensional Euclidian space at w=1
= Additional dimension usually named @

e |dentify all points on lines through the origin

= representing the same Euclidian point




Properties

Properties:
e Points represented by lines through the origin
e Consequence:

= scaling by common factor does not change the point
= Fuclidian(Ax) = Euclidian(x), A #0
= We can scale the points arbitrarily

e Hence:

= When multiple projective operations are performed on the
projective points.

= Division by w can be done at any time
e “Projective transformation”:
= Map lines through the origin to lines through the origin



Properties

Projective Maps:

e Represented by linear maps in the higher
dimensional space

e Scale at any time:

y=Mxz XM X for w2 0)
V.o X.0

Important: We have xZax, butin general: x+y#x+ay



Directions

Problem: What if =07

e Again —it's not a bug, it’s a feature

e Projective points with @ =0 do not correspond to
Euclidian points
e They represent directions, or points at infinity.
e This gives a natural distinction:
= Euclidian points: @w# 0 in homogenous coordinates.

= Euclidian vectors: @ =0 in homogenous coordinates.

e The difference of points yields a vector.
= Vectors can be added to points
= But not (not really) points to points.



Quadrics and Conics




Modeling Wish List

We want to model:
e Circles (Surfaces: Spheres)
e Ellipses (Surfaces: Ellipsoids)
e And segments of those

Surfaces: Objects with circular cross section
= Cylinders
= Cones
= Surfaces of revolution (lathing)

These objects cannot be represented exactly (only
approximated) by piecewise polynomials



Conical Sections

Classic description of such objects:
e Conical sections (conics)
e Intersections of a cone and a plane
e Resulting objects:

Circles

Ellipses

Hyperbolas
Parabolas

Points

Lines



Conic Sections

Circle, Hyperbola Parabola Line Point
Ellipse (degenerate case)  (degenerate case)



Implicit Form

Implicit quadrics:
e Conic sections can be expressed as zero set of a quadratic
function:
ax’+bxy+cy’+dx+ey+f =0

QXT(l/;b Ui.bjxqt[d e]x+f:0

e Easy to see why:

____________

Explicit eq. for a plane: z = Dx+ Ey+F

Conical Section: AX® + By2 — (DX+ Ey + |:)2



Quadrics & Conics

Quadrics:

e Zero sets of quadratic functions (any dimension)
are called quadrics:

{XERd |XT|\/|X+bTX—|—C:0}

e Conics are the special case for d = 2.



Shapes of Quadratic Polynomials




The Iso-Lines: Quadrics

elliptic

hyperbolic

degenerate case

A4,>0,4,>0

TL

N

4,<0,4,>0

A,=0,4,#0



Characterization

Determining the type of Conic from the implicit form:
e Implicit function: quadratic polynomial
ax’+bxy+cy’+dx+ey+f =0
2-b
=4 a Y x+[d e]x+f:0
1/2-b ¢
M
e Eigenvalues of M:

iy =222 la—cf +b

.




Cases

implicit function:

We obtain the following cases: ..\ (2 dxieysf—0

e Ellipse: b® < 4ac
» Circle:b=0,a=c
= Otherwise: general ellipse

e Hyperbola: b? > 4ac
e Parabola: p? =4ac (border case)



Cases

implicit function:

Explanation: ax’+bxy+cy*+dx+ey+f =0
a+c 1 2

b2:4ac jﬂllzzT_E\/(a—C) + 4ac
a-+C

:Ti a’ —2ac+c? +4ac

=%i%\/a2 +2ac+c?

:Eggi%J@+cf
a+C a+c
= +
2 2
={0,a+c}




Parametrization

We want to represent conics with parametric curves:

e How can we represent (pieces) of conics as parametric
curves?

e How can we generalize our framework of piecewise
polynomial curves to include conical sections?

Projections of Parabolas:

 We will look at a certain class of parametric functions —
projections of parabolas.

e This class turns out to be general enough,
e and can be expressed easily with the tools we know.



Projections of Parabolas

Definition: Projection of a Parabola
e We start with a quadratic space curve.
e Interpret the z-coordinate as homogenous component .
e Project the curve on the plane o = 1.




Projected Parabola

Formal Definition:
e Quadratic polynomial curve in three space
e Project by dividing by third coordinate

fM () =py +tp, +1°p, =| Po.y |+t Pry |+1°] Po.y
\po.d)/ \pl-&)/ KpZCO

s or) oy
f(eucl)(t) _ Po-Y Py Po.Y

Po-@ +tp1.a)+’[2 P,.0




Bernstein Basis

Alternatively: Represent in Bernstein basis

e Rational quadratic Bezier curves:

£ (1) = B (1)

B;” (t)
f (eucl) (t) _

0, + B (t)p, + B (1) p,

)
Dgy.X D,.X P,.X

’ j+5¥%0[1 )+B¥R0[2 j
\Po-Y Py Po.Y

BS? (t)pg.c + B (t)pro+ BY (t)p,.0



Properties

Projective invariance:

e Quadratic Bezier curves are invariant under projective
maps
e The following operations yield the same result

= Applying a projective map to the control points, then evaluate
the curve

= Applying the same projective map to the curve

e Proof:
= 3D curve is invariant under linear maps

= Scaling does not matter for projections
(divide by @ before or after applying a projection matrix does
not matter)



Parametrizing Conics

Conics can be parameterized using projected
parabolas:

e We show that we can represent (piecewise):
= Points and lines (obvious \/)
= A unit parabola
= A unit circle
= A unit hyperbola

e General cases (ellipses etc.) can be obtained by affine
mappings of the control points (which leads to affine
maps of the curve)



Parametrizing Parabolas

Parabolas as rational parametric curves:

o) o) *Ls
f(eucl)(t) _ 0 0 1 [X(t) =1

retty obvious
1+ 0t + 0t° Y(t)—tzj \/ P asywell)




Circle

Let’s try to find a rational parametrization of a
(piece of a) unit circle:

f (eucl) ((0) _ [COS @j

sin @
1-tan?? 2tan?
COS @ = 2 , SIngp = : (tangent half-angle formula)
1+tan? ¥ 1+tan? %
2 2
1-t°
t= tan% — D () = 1J£tt2
1+t°




Circle

Let’s try to find a rational parametrization of a
(piece of a) unit circle:

f(eucl)((p) :(

= fM(t) =

cosp)
sing |

/1—t2
2t
1412

1—t2

1+t° |with t == tan 2
2t 2

1+1°

parametrization for ¢ € (-90°..90°)

— we need at least three segments
to parametrize a full circle



Hyperbolas

Unit Circle: x°+y° =1
1-t? 2t

X(t) = Y(T) =
= X 1+t° v 1+t°

(t € R)

Unit Hyperbola: x°-y°=1

1+1°
1-t%"

Yty = -2

= X(t) = =

(t € [0..1))

AR
L/




Rational Bezier Curves




Rational Bezier Curves

Rational Bezier curves in R" of degree d:
e Form a Bezier curve of degree d in n+1-dimensional space
e Interpret last coordinate as homogenous component
e Euclidian coordinates are obtained by projection.

()= BV(p;, p;eR™

=0

1
piV

> B0
=0

f(eucl)(t) — -
ZB(d)(t)p(n+1)

=0

p"




More Convenient Notation

The curve can be written in “weighted points” form:
P1

n

2B,

=0

Pn

f(eucl)(t) _ -
ZBI'(d)(t)a)i
i=0

Interpretation:
e Points are weighted by weights o,
e Normalized by interpolated weights in the denominator
e Larger weights — more influence of that point



Properties

What about affine invariance, convex hull prop.?

n

ZBI'(d) (t)a)lpl n n
fleuc) () = 0 =>.q,)p, with D q(t)=1
> BP)e,
i=0

Consequence:
e Affine invariance still holds

e For strictly positive weights:
= Convex hull property still holds
= This is not a big restriction (potential singularities otherwise)

e Projective invariance (projective maps, hom. coord’s)



Quadratic Bezier Curves

Quadratic curves:
e Necessary and sufficient to represent conics
e Therefore, we will examine them closer...

Quadpratic rational Bezier curve:

g gy = B (D + B Qapp, + B (ayp,
B ()ap + B (), + B (t) v,

, pieR" o eR



Standard Form

How many degrees of freedom are in the weights?
e Quadratic rational Bezier curve:

B (agp, + B (Neap, + B (w0,
B () + B{? (N)eo, + B (),

e |If one of the weights is # 0 (which must be the case), we

can divide numerator and denominator by this weight and
thus remove one degree of freedom.

e |f we are only interested in the shape of the curve, we can
remove one more degree of freedom by a
reparametrization...

f(eucl ) (t) _




Standard Form

How many degrees of freedom are in the weights?

e Concerning the shape of the curve, the parametrization
does not matter.

e \We have:

f(eucl)(t) _ (1_t)2500p0 +2t(L-t)op; + t2w2p2
(1-t)°ay, + 2t(L—t) e, +t°w,

e We set: (with o to be determined later)

t <« t~ ~,i.e.,(1—t)<— a(l:t)~
a(l-t)+t a(l-t)+t




Remark: Why this reparametrization?

Reparametrization:

t
— ————
a(l-t)+t

Properties:

e 00,

1—>1,

monotonic in between
e Shape determined

by parameter c.

a=1



Standard Form

t : a(l— f)

t e, (l-t)« —
a(l-t)+t a(l-t)+t



Standard Form

«— a(l—ijf)+t~ , i.e.,(l—t)<— a((i(—lt:)?'f
0‘(1_:{) 20) ny t 05(1—:[~ N t ’
f(euel) () = a(l-t)+t oPo L-t)+t Jald-t)+t “iPy all-t)+1 2P2
a(l—f) 2a) +2 t a(l—f) + t 20)
a(l-t)+t ) ° all-t)+t 05(1—t~)+t~wl all-t)+t ) °

B az(l— f)zwopo + 205?(1— :[v)aqpl +1 %w,p,

a 2(1 _ T S =2
a (1—t)za)o+2at(1—t)cal+t @,

_ a’B? (1) wgpy + aB® () ayp, + B () w,p,
a’B (t)ay + B (1) ay + B (t) o,




Standard Form

a*B () agpy + aBP () ayp, + B (1) wyb,

FE(t) = 2R (T @) (f (2) (¢
By (t)w, + aB” (t ), + By () w,

0) (69
let o« = [—2 (assume 0 < —£ < 0)
a)o a)o



Standard Form

f(eucl)(t) _ azB(SZ)(F)a)OpO + aBl(Z)(F)a)lpl + B§2) (F)wzpz
a’BP (1), + B (1) ay + B (1),

), (40,
let o = |—% (assume 0 < —2 < w0)
Wy 20

2
B (t )‘/—‘2 @oPg + B (t )‘/—Zwlpl + @B (1)p,
f(eucl)(t) _ 2 2y
2
Béf’(ﬂ‘/ﬂ @+ BA(1) |2y + 0,BP (1)
Wy Wy
~ ~ a) ~
B () w,p, + B2 ( )‘/;Zwlpl + @,BS? (1)p,
0

B (F)e, + B (D), /%wl +w,BP (1)
0




Standard Form

~ ~_ |lw ~
B(()Z)(t Jo,p, + Bgz)(t ),|—=op; + szgz)(t D,
\/ @
f(eucl)(t) _

0
~ ~ '0) ~
Bé”(t)wﬁB&”(t)‘/;Zwl +@,B,(¢)
0



Standard Form

~ ~_ |lw ~
B(()Z)(t Jo,p, + Bgz)(t )‘/;2501[’1 + a’ngz)(t D,

0
~ ~ ) ~
Béz)(t)wz+B£2)(t)‘/;2w1+w2852)(t)
0

- ~ [ 1 -
B(()Z)(t )P, + Bgz](t ), |[——op; + Bgz)(t D,
Wy,
B(t)+ 352)(7)‘/Lw1 +BS(t)
Wy,

_B2(Op+ B ()op, + B (), |
B{A(t)+BP(t)w+BP (1) oD

f(eucl)(t) _

2



Standard Form

Consequence:
e |t is sufficient to specify the weight of the inner point
e Wecanw.log.setw,=w,=1, w,=w
e This form of a quadratic Bezier curve is called the
standard form.

e Choices:
= w<1:ellipse segment
= »=1:parabola segment (non-rational curve)
= @>1: hyperbola segment



lllustration

Changing the weight:

p(0,1)

Hyperbola

Parabola

p(0,0)
p(1,1)



Conversion to Implicit Form

Convert parametric to implicit form:
e In order to show the shape conditions
e For distance computations / inside-outside tests

Express curve in barycentric coordinates: P:

e Curve can be expressed in
barycentric coordinates
(linear transform):

£(¢)=17,(t)po + 7, (t)P; +7,(L)P;




Conversion to Implicit Form

Comparison of
coefficients yields:

0BP() _ a(1-t)

z-O(t_): 2

Sosd@)

i=0 )

=D
- oB?@1t) 20t(l-t)

7,(t)=— =T D0

2 oB(t)

=0

o, B (t o,t*
Tz(t)— > 272 () 2

Z a)iBi(Z) (£) ] D)

=0

f(¢)=17,(t)py + 7, (E)P; +7,(E)P;

f(eucl)(t) _ (1_t)20)0p0 + 2t(1_t)a)lp1 + t2a)2p2

A-t)w, + 2t -t) oy + t° 0,

P




Conversion to Implicit Form

Solving for t, (1-t):

To(t) =

(1=t Jro(t)D(t)
D(t) @,
20.t(1-t)

D(t)

71(t)=

20 \/rz(t)D(t) 7(H)D()

2'1('[) _ @ W _ 2601\/2-2 (t)To (t)

D(t) Wy,
z-1 (t)2 —_ 4 a)lz
,()7(t) oo,

/"

Po

P

P,



Conversion to Implicit Form

Some more algebra...: P,

7 (t)° _4 a)lz
(D7 (t) @y,

Using 7,(t) = (1-z,(t) - 7,(t)) we get:

[0)00)2 ]71 (t)* = ;4(012;72 (£)7,(t)

= 4o [, ()1 -7, ()~ 7,(1) D,

[(zo(0) - 267 - 7,0z 1) o,

2

= -4-0)1

= [0y ] (1) + |2 b )0 ) + [l ()7 a2 1) = 0

ax? + bxy + cy? + ex +0y+0-=0

(transformed coordinates: x,y affine transform of std coords; does not matter for shape type)



Classification

Eigenvalue argument led to:
e Parabola requires b =4ac in ax® +bxy+cy*+dx+ey+ f =0
e |n our case:
o0, |10 + b2 |y (001 + 4”07 — e? ) = 0
l.e.:
4[500502 ][40)12 ] = [40)12 ]2
<:>l6a)0a)2a)12 :16(014

<~ Wy, 20)12
Standard form: 4, =, =1

= o =1



Classification

Similarly, it follows that:

w, <1 — Ellipse
o =1 — Parabola (@0 = @, =1)

w, >1 — Hyperbola



Circle in Bezier Form

Quadratic rational polynomial:

1 (1-t? 7
f(t) = ,t=tan—,p e (-90°..90°
Y 1+t2[2tj 77 <! )

Conversion to Bezier basis:

B =(-tf =1-2t+t?2t -2 1]  1-¢% 21 0 -1f

B =2tl-t)=2t-2t> 2[0 2 -2 2c 2o 2 of
Béz):tz é[O 0o 1T 1+t* =11 0 1]r




Circle in Bezier Form

Conversion to Bezier basis:
B =(1-tf =1-2t+t?2zt -2 1]
B =2t(1-t)=2t-2t> 2[0 2 -2f
B{? =t 2o o 1

Comparison yields:

1-t* =B{’ +B{
2t = B{®) +2B
1+t* =By +B{* +2B}"

f(hom) (t) _

(1)

1+1t2

Béz) +

1>
IHIIOIIHI

o O

(0)

2)

B



Circle in Bezier Form

Result:

a0 |+ 8200|280
f(0)=

B (t) + B (t) + 2B (1)
Parameters:

t = tan% = @ = 2arctant

t €[0,1] > @ €[0°..90°]



Circle in Bezier Form

Standard Form:

B (£)py + B ()eop, +BV(E)p, 0[]
BO () +BP(D)w+ BO(7) 00

1 1 0
B®| " |+ 12B®| |+ B®
0) 2 1 1
f(t)

B® 4 %\EBP +B®

f(t)=

Wy




Result: Circle in Bezier Form

Final Result:




General Circle Segments

In general:
foro,=w, =1:
W; =COS

angle interval < 180°

o =60°
—> w,=0.5




Properties, Remarks

Continuity:
e The parametrization is only C!, but G®
e No arc length parametrization possible

e Fven stronger: No rational curve other than a straight line
can have an arc-length parametrization.

Circles in in general degree Bezier splines:

e Simplest solution:
= Form quadratic circle (segments)
= Apply degree elevation to obtain the desired degree



Rational De Casteljau Algorithm

Evaluation with De Casteljau Algorithm

e Two Variants:
= Compute numerator and denominator separately, then divide
= Divide in each intermediate step (“rational de Casteljau”)

e Non-rational de Casteljau algorithm:
b()=(1-)b! D)+ bV (e)

i+1

e Rational de Casteljau algorithm:

. o V()
b{"(£)=(1-¢) )

b(r 1)(t) ¢ I(r)(()) bgill)(t)

with
o) =(1-t)o!" V() +tal V(L)



Rational De Casteljau Algorithm

Advantages:

e More intuitive (repeated weighted linear interpolation of
points and weights)

e Numerically more stable (only convex combinations for
the standard case of positive weights, t € [0,1])



Weight Points

Alternative technique to specify weights:
e Weight points
e User interface: More intuitive in interactive design

Weight Points:

_ Py + 0Py 20 2 )
4o = , 41 =
@y + 0, o, + o,

Standard Form:

_ Po T+ o1Py _ P11+t oPpy
4o = y (1=
1+, 1+,




Derivatives

Computing derivatives of rational Bezier curves:
e Straightforward: Apply quotient rule
e A simpler expression can be derived using an algebraic

trick:
d
B9t Yop.
f(t):lz(; G e
Zd:B-(d)(t)a)- w(t)
=0
p(t)

f(t)=ﬁ = pt)=1(t)o(t) = p'(t)=1(t)o(t)+1(t)w(t)

= FOO)=pO)-fw(E) = ()=
w(t)




Derivatives

At the endpoints:

£(6) = p'(£)—w'(¢)f(t)
w(t)

£(0) p'(0)-w'(0)f(0)
w(0)

:d(a’lp1_wopo)_d(w1_w0)p0 = d (a)p — WPy — @01Py + WP )
Wy Wy o o o o

)
=d—(p,-p,)
Wy

f'(l) _ d a)d—l

(Ps—Pg-1)
Wy



NURBS:
Non-Uniform Rational B-Splines



NURBS

NURBS: Rational B-Splines

e Same idea:
= Control points in homogenous coordinates

= Evaluate curve in (d+1)-dimensional space
(same as before)

= For display, divide by @w-component
— (we can divide anytime)



NURBS

NURBS: Rational B-Splines

e Formally: (v'“): B-spline basis function / of degree d)
iNi(d)(t)wipi
f(t) ==L
ZNI'(d)(t)a)i
i=1

e Knot sequences etc. all remain the same

e De Boor algorithm — similar to rational de Casteljau alg.
= 1. option — apply separately to numerator, denominator
= 2. option — normalize weights in each intermediate result

— The second option is numerically more stable



Some Issues

Interpolation problems:

e Finding a B-Spline curve that interpolates a set of
homogeneous points is easy

e Just solve a linear system
e Note: The problem is easy when the weights are given.

What if no weights are given (only Euclidian points)?
e More degrees of freedom than constraints

e |f we reduce the number of points:
= Non-linear system of equations
= |ssues: How to find a solution? Does it exist? Is it unique?



Related Problem

Approximation with rational curves:

e Scenario 1: Homogeneous data points given, with weights
= Easy problem — linear system
e Scenario 2: Euclidian data points are given, but weights
are fixed for each control point (e.g. manually)
= Easy problem again — linear system
= Weights just change the shape of the basis functions
e Scenario 3: Euclidian data points, want to compute
weights as well

= Non-linear optimization problem



General Rational Data Approximation

Scenerio 3: Euclidian data points, want to compute
weights as well

 Non-linear optimization problem

e |Ssues:
= No direct solution possible
= Numerical optimization might get stuck in local minima

e Constraints:
= We have to avoid poles
= E.g. by demanding @, >0
= Constrained optimization problem (even nastier)



General Rational Data Approximation

Simple idea for a numerical approach:
e First solve non-rational problem (all weights = 1)

e Then start constrained non-linear gradient descend
(or Newton) solver from there



