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Overview... 

Topics: 

• Polynomial Spline Curves 

• Blossoming and Polars 

• Rational Spline Curves 

• Spline Surfaces 

 Introduction 

 Tensor Product Surfaces 

 Total Degree Surfaces 



Introduction: 
Spline Surfaces 
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Spline Surfaces 

Parametric spline surfaces: 

• Two parameter  
coordinates (u,v) 

• Piecewise bivariate 
polynomials 
(rational surfaces  
  homogeneous coords) 

• Assemble multiple pieces 
to form a surface with continuity 

• Each piece is called spline patch 
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Spline Surfaces 

Two different approaches 

• Tensor product surfaces 

 Simple construction 

 Everything carries over 
from curve case 

 Quad patches 

 Degree anisotropy 

• Total degree surfaces 

 Not as straightforward 
(blossoming will help) 

 Isotropic degree 

 Triangle patches 



Tensor Product Surfaces 



Tensor Product Surfaces 

Simple Idea: 

• Given a basis for a one dimensional function space on the 
interval t  [t0, t1]  d: 

 B(curv) := {b1(t), ..., bn(t)} 

• Build a new basis with two parameters by taking all 
possible products: 

 B(surf) := {b1(u)b1(v), b1(u)b2(v),..., bn(u)bn(v)} 



Tensor Product Surfaces 

Tensor product basis 

 b1(u) b2(u) b3(u) b4(u) 

b1(v) b1(v)b1(u) b1(v)b2(u) b1(v)b3(u) b1(v)b4(u) 

b2(v) b2(v)b1(u) b2(v)b2(u) b2(v)b3(u) b2(v)b4(u) 

b3(v) b3(v)b1(u) b3(v)b2(u) b3(v)b3(u) b3(v)b4(u) 

b4(v) b4(v)b1(u) b4(v)b2(u) b4(v)b3(u) b4(v)b4(u) 



Monomial Example 

Tensor product basis of cubic monomials 

  1 u u2 u3 

 1 1 u u2 u3 

 v v uv u2v u3v 

 v2 v2 uv2 u2v2 u3v3 

 v3 v3 uv3 u2v3 u3v3 

Degree Anisotropy: b33(t, t) is of degree 6 in t 



Example 



Tensor Product Surfaces 

Tensor Product Surfaces: 

 

 

 

• “Curves of Curves” 

• Order does not matter 
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Properties 

Properties of tensor product surfaces: 

• Linear invariance: Obvious 

• Affine invariance? 

 Needs partition of unity property 

 Assume basis B(curv) := {b1(t), ..., bn(t)} forms a partition 
 

of unity, i.e.: 
 

 Then we get: 

 

 

• Affine invariance for tensor product surfaces is induced by 
the corresponding property of the employed curve basis 
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Properties 

Properties of tensor product surfaces: 

• Convex Hull? 

 Assume basis B(curv) := {b1(t), ..., bn(t)} forms a partition of unity 
and it is positive ( 0) on t  [t0, t1] 

 Obviously, we then have: 

 

 

 So we have the convex hull property on [t0, t1]2 

• The convex hull property for tensor product surfaces is 
induced by the property of the employed curve basis. 

 0)()(
1 1 00


  

n

i

n

j

ji vbub



Partial Derivatives 

Computing partial derivatives: 

• First derivatives: 

 

 

 

 

 

• Just spline-curve combinations of curve derivatives 
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Partial Derivatives 

Computing partial derivatives: 

• Second derivatives: 
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Partial Derivatives 

Computing partial derivatives: 

• General derivatives: 
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Normal Vectors 

We can compute normal vectors from partial 
derivatives: 

 
 

•   

 

 

• Problem: degenerate cases 

 Colinear tangents 

 Irregular parametrization 

• Need extra code to handle special cases 
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Bezier Patches 

Bezier Patches: 

• Use tensor product Bernstein basis 

 

 

• We get automatically: 

 Affine invariance 

 Convex hull property 
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Bezier Patches 

Bezier Patches: 

• Interpolation: 

 Boundary curves are Bezier 
curves of the boundary 
control points 

d = 10 d = 3 

B0 

B1 B2 

B3 



Bezier Patches 

Bezier Patches 

• Tangent vectors: 

 First derivatives at boundary points are proportional to 
differences of control points: 
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Continuity Conditions 

For C0 continuity: 

• Boundary control points must match 

For C1 continuity: 

• Difference vectors must match at the boundary 



C0 Continuity 



C1 Continuity 



C1 Continuity 



Polars & Blossoms 

Blossoms for tensor product surfaces: 
• Polar form of a polynomial tensor product surface of degree d: 
    F:          n F(u, v) 

    f:   d  d   n f(u1,...,ud; v1,..., vd) 

• Required Properties: 

 Diagonality: f(u,...,u; v,..., v) = F(u, v) 

 Symmetry: f (u1,...,ud; v1,..., vd) = f (u (1),..., u (d); v (1),..., v (d)) 
for all permutations of indices , . 

 Multi-affine: k = 1  
  f (u1,..., kui

(k),..., ud; v1,..., vd) 
        = 1f (u1,..., ui

(1),..., ud; v1,..., vd) +...+ nf (u1,...,ui
(n),..., ud; v1,..., vd) 

 and f (u1,..., ud; v1,..., kvi
(k),..., vd) 

        = 1f (u1,..., ud; v1,..., vi
(1),..., vd) +...+ nf (u1,..., ud; v1,...,vi

(n),..., vd) 



Short Summary 

Polar forms for tensor product surfaces: 

• Polarize separately in u and v. 

• Notation: f(u1,...,ud; v1,..., vd) 
 

• Can be used to derive properties/algorithms similar 
to the curve case 

• More interesting: Polar forms for total degree surfaces 
(we will see this later) 

u-parameters v-parameters 



Bezier Control Points 

Bezier control points in blossom notation: 

v 

u 

f(1,1,1; 0,0,0) 

f(0,1,1; 0,0,0) 

f(0,0,1; 0,0,0) f(0,0,0; 0,0,0) 

f(1,1,1; 1,0,0) 

f(0,1,1; 1,0,0) 

f(0,0,1; 1,0,0) f(0,0,0; 1,0,0) 

f(1,1,1; 1,1,0) 

f(0,1,1; 1,1,0) 

f(0,0,1; 1,1,0) f(0,0,0; 1,1,0) 

f(1,1,1; 1,1,1) 

f(0,1,1; 1,1,1) 

f(0,0,1; 1,1,1) 
f(0,0,0; 1,1,1) 



De Casteljau Algorithm 

De Casteljau algorithm for tensor product surfaces: 

v 

u b(0,0,0; 0,0,0) 

b(1,1,1; 0,0,0) 

b(0,0,0; 1,1,1) 

b(1,1,1; 1,1,1) 

b(u,u,u; v,v,v) 

b(u,0,0; v,0,0) 

b(u,0,0; v,1,1) 

b(u,1,1; v,0,0) 

b(u,1,1; v,1,1) 

b(u,u,0; v,v,1) 

b(u,u,0; v,v,0) 

b(u,u,1; v,v,1) 

b(u,u,1; v,v,0) 



B-Spline Patches 

B-Spline Patches 

• More general than Bezier patches 
(we get Bezier patches as a special case) 

• First, we fix a degree d. 

• Then, we need knot sequences in u and v direction: 

 (u1,...,un), (v1,...,vm) 

• And a corresponding array of control points: 

 d0,0 ...               dn-d+1,0 
         .                            .       .                            .       .                            .      d0,m-d+1 ...               dn-d+1,m-d+1 
 



B-Spline Patches 

Then, obtain a parametric B-spline patch as: 
 

•   
 

• We can evaluate the patches using the de Boor Algorithm: 

 “Curves of curves” idea 

 Determine the knots/control points influencing (u,v). 
These will be no more than (d+1)  (d+1) points. 

 Compute (d+1) v-direction control points along u direction, 
performing (d+1) curve evaluations. 

 Then evaluate the curve in v-direction. 

 (or the other way round, interchanging u,v-directions) 
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Illustration 



B-Spline Patches 

Alternative: 

• 2D de Boor algorithm 

• Works similar to the 2D de Casteljau algorithm  
but with different weights 
(we can use tensor-product blossoming to derive the 
weights) 



Rational Patches 

Rational Patches: 

• We can use rational Bezier/B-splines to create the patches 
(“rational Bezier patches” / “NURBS-patches”) 

• Idea: 

 Form a parametric surface in 4D, homogenous space 

 Then project to  = 1 to obtain the surface in Euclidian 3D space 

• In short: Just use homogeneous coordinates everywhere 



Rational Patch 

Rational Bezier Patch: 
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Rational Patch 

Rational B-Spline Patch: 
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Remark: Rational Patches 

Observation: 

• Euclidian surface is not a 
tensor product surface  

 denominator 
depends on both u and v 

• Homogeneous space: 
4D surface is a tensor 
product surface. 
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Surfaces of Revolution 

Advantages of rational patches: 

• Rational patches can represent surfaces of revolution 
exactly. 

• Examples: 

 Cylinders 

 Cones 

 Spheres 

 Ellipsoids 

 Tori 

• Question: given a cross section curve, how do we get the 
control points for the 3D surface? 



Surfaces of Revolution 



Surfaces of Revolution 

Given: 

• Control points p1,...,pn of curve 
(“generatrix”) 

We want to compute: 

• Control points pi,j of a rational surface 

Such that: 

• The surface describes the surface of 
revolution that we obtain by rotating 
the curve around the y axis (w.l.o.g.) 

p1 

p2 

p3 
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x 



Surfaces of Revolution 

Simplification: 

• We look only at a single rational Bezier 
segment. 

• Applying the scheme to multiple 
segments together is straightforward. 

• The same idea also works for 
B-splines. 
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Surfaces of Revolution 

Construction: 

• We are given control points 
p1,..., pd+1  

 (d is the degree in u direction) 

• We introduce a new parameter v. 

• In v direction, we use quadratic 
Bezier curves (2nd degree basis in 
v-direction) 

p3 

p4 
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Surfaces of Revolution 

Key Idea: 
• For u-direction curves: Control points 

(and thus the curves) must move on 
circles around the y-axis. 

• Circles must have the same 
parametrization (this is easy) 

• This means, the control points rotate 
around the y-axis. 

• Affine invariance will make the whole 
curve rotate, we get the desired 
surface of revolution. 
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Surfaces of Revolution 

Making one point rotate around the y-axis: 
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Surfaces of Revolution 

Making one point rotate around the y-axis: 

x 

z 

y 
r 
  







ipi 
i 













r 



Surfaces of Revolution 

Making one point rotate around the y-axis: 
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Surfaces of Revolution 

Making one point rotate around the y-axis: 
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Remark 

What we get: 

• We obtain 4 segments, i.e. 4 patches for each Bezier 
segment 

• A similar construction with 3 segments exists as well 

Does the scheme yield a circle for weights  1 in the 
generatrix curve? 

• Common factors in weights cancel out 

• Therefore, we still obtain a circle at these points 

• Parametrization does not change either 



Benefit 

With this construction, it is straightforward to create: 

• Spheres 

• Tori 

• Cylinders 

• Cones 

And affine transformations of these (e.g. ellipsoids) 



Parametrization Restrictions 

Remaining problem: 

• The sphere and the cone are not 
regularly parametrized (double 
control points) 

• Might cause trouble (normals 
computation, tessellation) 

• In general: no spheres, or n-tori (n > 1) can be 
parametrized without degeneracies 

• What works: open surfaces, cylinders, tori 

 

3x the same point 



Curves on Surfaces, trimmed NURBS 

Quad patch problem: 

• All of our shapes are parameterized over rectangular 
regions 

• General boundary curves are hard to create 

• Topology fixed to a disc (or cylinder, torus) 

• No holes in the middle 

• Assembling complicated shapes is painful 

 Lots of pieces 

 Continuity conditions for assembling pieces become complicated 

 Cannot use C2 B-Splines continuity along boundaries when using 
multiple pieces 



Curves on Surfaces, trimmed NURBS 

Consequence: 

• We need more control over the parameter domain 

• One solution is trimming using curves on surfaces (CONS) 

• Standard tool in CAD: trimmed NURBS 

Basic idea: 

• Specify a curve in the parameter domain that 
encapsulates one (or more) pieces of area 

• Tessellate the parameter domain accordingly to cut out 
the trimmed piece (rendering) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



Curves-on-Surfaces (CONS) 



General Shapes 

General shapes with holes: 

• Draw multiple curves 

• Inside / outside test: 

 If any ray in the parameter domain 
intersects the boundary curves an 
odd number of times, the point is 
inside 

 Outside otherwise 

 Implementation needs to take care 
of special cases (critical points with 
respect to normal of the ray) 

 Nasty, but doable 

(special case) 



Free Form Deformation 
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FFD 

Free Form Deformations 

• Use a 3D tensor-product 
B-Spline (or Bezier spline) 

• Defines a bend mapping  
3  3 

• Can be used to change the 
shape of objects globally 

• We will see other shape 
deformation techniques 
later in the lecture 
(time permitting) 
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Total Degree Surfaces 



Bezier Triangles 

Alternative surface definition: Bezier triangles 

• Constructed according to given 
total degree 

 Completely symmetric: 
No degree anisotropy 

• Can be derived using a triangular 
de Casteljau algorithm 

 Blossoming formalism is very helpful 
for defining Bezier Triangles 

 Barycentric interpolation of blossom 
values 



Blossoms for Total Degree Surfaces 

Blossoms with points as arguments: 

• Polar form degree d with points as input und output: 
  F: n  m 

  f: dn  m 

• Required Properties: 

 Diagonality: f(t, t, ..., t) = F(t) 

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d)) 
  for all permutations of indices . 

 Multi-affine: k = 1  

 f (t1, t2, ..., kti
(k),..., td) 

                  = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td) 

points as arguments 



Example 

Example: bivariate monomial basis 

• In powers of (u,v): 
B = {1, u, v,  u2, uv, v2} 

• Blossom form: multilinear in (u1,u2,v1,v2) 
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Barycentric Coordinates 

Barycentric Coordinates: 

• Planar case: 
Barycentric combinations of 3 points 

 
 

• Area formulation: 
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Barycentric Coordinates 

Barycentric Coordinates: 
  
• Linear formulation: 

p1 
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Bezier Triangles: Overview 

Bezier Triangles: Main Ideas 

• Use 3D points as inputs to the blossoms 

• These are Barycentric coordinates of a 
parameter triangle {a, b, c} 

• Use 3D points as outputs 

• Form control points by multiplying parameter points, just 
as in the curve case: p(a,...,a, b,...,b, c,...,c) 
 

• De Casteljau Algorithm: Compute polynomial values 
p(x, ..., x) by barycentric interpolation  
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Plugging in the Barycentric Coord’s 

Analogy: 2D Curves in barycentric coordinates 

• Barycentric coordinates for 2D curves: 

 
 
 

•   
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Plugging in the Barycentric Coord’s 

Analogy: 2D Curves in barycentric coordinates 

• Barycentric coordinates for 2D curves: 

 
 
 

•   

• Bezier splines: 
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Example 

Cubic Bezier Triangle: c 

a b 
p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b) 

p(c,a,a) p(c,b,b) 

p(c,c,b) 

p(c,c,c) 

p(c,c,a) 

p(a,b,c) 



De Casteljau Algorithm 

p(a,b,c) 

a 

b 

c 

p(a,a,a) p(c,a,a) 

p(c,c,a) 

p(c,c,c) 

p(c,c,b) 

p(c,b,b) 

p(b,a,a) 

p(b,b,a) 
p(b,b,b) 

p(x,b,c) 

p(x,c,c) 

p(x,a,a) 

p(x,b,b) 
p(x,a,b) 

p(x,a,c) 

p(x,x,c) 

p(x,x,a) 

p(x,x,b) 

p(x,x,x) 
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Bernstein Form 

Writing this recursion out, we obtain: 

•   

 

 
 

• This is the Bernstein form of a Bezier triangle surface 

• (Proof by induction) 
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Rendering 



Rendering trimmed NURBS 

How can we render trimmed NURBS? 

We will look at three variants: 

• Rasterization 

• Raytracing 

• Hardware-friendly rasterization algorithm 

 

 

 



Rasterization 

Basic pipeline:  

perspective 
divide 

rasterization 

projection 
camera 

placement 
object 

movement 

3d object 
(polygon) 

vertices xi 

x  Mm·x x  Mc·x x  Mp·x x  x/x. 

2d image 

bitmap 
 image 

Homogenous coordinates (z-buffer for 
hidden surface removal) 



Rasterization Pipeline 

Basically: 

• We can draw triangles 

• Very efficient due to hardware support 
(standard GPU: 100 M triangles/sec, 1000 M pixels/sec) 

• We need to convert our surfaces into triangles 
(“tessellation”) 

• Nowadays: We can afford high resolution tessellations 



Simple Idea 

Simplest solution: Uniform tessellation 



Fancier Idea 

Better solution: Adaptive tessellation 



Adaptive Tesselation 

Adaptive Tessellation: 

• Subdivide parameter domain 
recursively 

• Divide rectangle into four smaller 
parts (“Quadtree”) 

• Possible stopping criterion: 

 Distance between planar faces and 
surface 

 Approximately: planarity of control 
points 



Adaptive Tesselation 

Adaptive Tessellation: 

• Balanced Quadtree: 

 Make sure that the subdivision level 
of adjacent cells does not differ by 
more than one level 

• Divide cells into triangles 

• Look at direct neighbors to create 
a closed mesh 

• Only 24 = 16 cases 



So what about the curves? 

Remaining problem: 

• Need to render trimmed patches 

• Super-simple solution 
(“cheating”): 

 add a texture map, remove “white” 
pixels with (do not draw empty 
space) 

 Supported in hardware (“alpha test”) 

 But this looks ugly 

 And does not help in geometric 
computation (if we need a 
triangulation of the trimmed object 
for further processing) 



So what about the curves? 

Second try: 

• We have to tessellate the trimming 
area in the domain 

• Need to place triangles in the 
domain that approximate the 
shape 

• Curve tessellation problem 

 Classic computational geometry problem 

 Several solutions 

 E.g. constrained Delaunay triangulation 

• Easy to implement: Quadtree triangulation method 



Quadtree triangulation 

Quadtree triangulation: 

• Subdivide recursively as before 

• New stopping criterion 

 If the bounding box intersects the area: 

– Do not stop until surface is well 
 approximated 

– And: No boundary curve inside, or 
the boundary curves intersects 
exactly twice 

– Limit recursion depth to avoid 
trouble at degeneracies 

 If the bounding box covers empty space: 

– Stop immediately 



Quadtree triangulation 



Quadtree triangulation 

Tessellation Algorithm: 

• Compute balanced quadtree 

• Stop when accuracy is met and only two curve 
intersections are in each box 

• Tesselate interior the same way as before 

• Tessellate intersections with fixed scheme 
(at most two triangles) 

• Drop exterior boxes 

Interior holes: 

• Use ray-based inside/outside test 



Hardware friendly version 

Problem: 

• The adaptive tessellation is computationally costly 

• Algorithm with complex data structures and pointers, 
not easy to implement on special purpose hardware 

• Even a standard CPU needs its time 

Hardware friendly algorithm: [Guthe et al. 2005] 

• Basic idea: graphics hardware is so fast, we can waste a 
few triangles 

• Runs completely on programmable graphics hardware 

• We will discuss a simplified version (no gory GPU details) 



Guthe’s Algorithm 

Basic Idea: 

• Use a uniform grid 

• Represent each quad as a pixel 

• Now render sequence of triangles 
along the curve, connected with 
one corner, in XOR mode 

 



Guthe’s Algorithm 



Hardware friendly algorithm 

After XOR-polygon drawing: 

• Knowing the pixels that cover the domain, each one can 
be easily tessellated 

• The spline surface is evaluated on the graphics hardware 
(programmable shaders) 

• This algorithm is much faster than standard techniques 

• In case the accuracy is not sufficient, a hierarchical 
refinement “on demand” is implemented 

• Increases the resolution in surface parts close to the 
viewer 



Raytracing 

How can we raytrace NURBS patches? 

Raytracing algorithm: 

• Shoot a ray through each pixel of the image 

• Test objects in the scene for intersection 

• Display closest object  

• For shading the object, further rays can be sent 
recursively 

 Shadow rays to the light source(s) – if blocked, object is in 
shadow 

 Reflected / refracted rays for mirroring / refractions 



Raytracing 

center of projection object image plane 



Intersection Problem 

Intersection Problem 

• Rendering with raytracing reduces to determine whether 
a ray intersects a spline patch 

• Non-linear system of equations: 
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Solution Strategies 

Numerical optimization 

• No closed form solution 

• Therefore: Numerical approach 

 Need a starting value x0 (e.g. x0 = (u,v,t) = (0,0,0) ) 

 Then iteratively improve solution 

• Numerical techniques 

 (Gradient decent on squared residue) 

 Newton’s method: Linearize problem 

– Compute Jacobian 

– Solve linear system F(x0)(x – x0) + F(x0) = 0 

– Iterate 

 Newton-like geometric technique 



Newton-like technique 

x0 

F(x0)(x – x0) 

x1 



Problem 

Properties of Newton-based algorithm 

• Quite efficient – typically needs only a few iterations 

• However: No convergence guarantees 

 In general: does not always converge to the correct solution 

• Need good initialization 

Brute-Force approach: 

• Restart iteration from a number of starting points on the 
surface 

• But that takes forever to compute 



Alternative 

Alternative: Hierarchical subdivision algorithm 

• Compute bounding volume of control points (convex hull 
property) 

 We can use the convex hull 

 Simpler to implement: bounding sphere 

• Test for intersection 

 No intersection found  return false, we are done 

 Otherwise continue recursively 

• Recursion: subdivide patch into four parts (de Casteljau) 

• Call recursive test for all patches 

• Always terminate, if precision is sufficient 



Alternative 

Alternative: Hierarchical subdivision algorithm 

• Guaranteed to converge 

• But slower 

 Linear convergence, i.e. number of correct digits in solution 
increases proportional to #iterations (asymptotical) 

 Newton method typically converges quadratically 
(number of correct digits increases quadratically) 

“Best of both worlds” 

• Start with a few iterations of hierarchical subdivision 

 Stopping criterion: Test for “flatness of control points” 

• Then use Newton iteration to boost accuracy rapidly 


