
Geometric Modeling
Summer Semester 2012

Spline Surfaces
Tensor Product Surfaces · Total Degree Surfaces

Overview...

Topics:

• Polynomial Spline Curves

• Blossoming and Polars

• Rational Spline Curves

• Spline Surfaces

 Introduction

 Tensor Product Surfaces

 Total Degree Surfaces

Introduction:
Spline Surfaces

z

z

output: 1D output: 2D output: 3D
in

p
u

t:
 3

D

in
p

u
t:

 2
D

in

p
u

t:
 1

D

u

f(t) t

function graph

x

t

plane curve

t

space curve

plane warp surface

space warp

y

x

y

u

v

x

y u

v

x

y

u
v

y

z

w

x

Spline Surfaces

Parametric spline surfaces:

• Two parameter
coordinates (u,v)

• Piecewise bivariate
polynomials
(rational surfaces
  homogeneous coords)

• Assemble multiple pieces
to form a surface with continuity

• Each piece is called spline patch

z

u

v

x

y

Spline Surfaces

Two different approaches

• Tensor product surfaces

 Simple construction

 Everything carries over
from curve case

 Quad patches

 Degree anisotropy

• Total degree surfaces

 Not as straightforward
(blossoming will help)

 Isotropic degree

 Triangle patches

Tensor Product Surfaces

Tensor Product Surfaces

Simple Idea:

• Given a basis for a one dimensional function space on the
interval t  [t0, t1]  d:

 B(curv) := {b1(t), ..., bn(t)}

• Build a new basis with two parameters by taking all
possible products:

 B(surf) := {b1(u)b1(v), b1(u)b2(v),..., bn(u)bn(v)}

Tensor Product Surfaces

Tensor product basis

 b1(u) b2(u) b3(u) b4(u)

b1(v) b1(v)b1(u) b1(v)b2(u) b1(v)b3(u) b1(v)b4(u)

b2(v) b2(v)b1(u) b2(v)b2(u) b2(v)b3(u) b2(v)b4(u)

b3(v) b3(v)b1(u) b3(v)b2(u) b3(v)b3(u) b3(v)b4(u)

b4(v) b4(v)b1(u) b4(v)b2(u) b4(v)b3(u) b4(v)b4(u)

Monomial Example

Tensor product basis of cubic monomials

 1 u u2 u3

 1 1 u u2 u3

 v v uv u2v u3v

 v2 v2 uv2 u2v2 u3v3

 v3 v3 uv3 u2v3 u3v3

Degree Anisotropy: b33(t, t) is of degree 6 in t

Example

Tensor Product Surfaces

Tensor Product Surfaces:

• “Curves of Curves”

• Order does not matter

 

 



 

 

 







n

j

n

i
jiij

n

i

n

j
jiji

n

i

n

j
jiji

vbub

vbub

vbubvu

1 1
,

1 1
,

1 1
,

)()(

)()(

)()(),(

p

p

pf

Properties

Properties of tensor product surfaces:

• Linear invariance: Obvious

• Affine invariance?

 Needs partition of unity property

 Assume basis B(curv) := {b1(t), ..., bn(t)} forms a partition

of unity, i.e.:

 Then we get:

• Affine invariance for tensor product surfaces is induced by
the corresponding property of the employed curve basis

11)()()()()(
11 11 1

  
  

n

j
j

n

i

n

j
ji

n

i

n

j
ji ubvbubvbub

1)(
1




n

i
i vb

Properties

Properties of tensor product surfaces:

• Convex Hull?

 Assume basis B(curv) := {b1(t), ..., bn(t)} forms a partition of unity
and it is positive ( 0) on t  [t0, t1]

 Obviously, we then have:

 So we have the convex hull property on [t0, t1]2

• The convex hull property for tensor product surfaces is
induced by the property of the employed curve basis.

 0)()(
1 1 00


  

n

i

n

j

ji vbub

Partial Derivatives

Computing partial derivatives:

• First derivatives:

• Just spline-curve combinations of curve derivatives

ji

n

i

n

j
jiji

n

i

n

j
ji vb

dv

d
ubvbub

v
,

1 1
,

1 1

)()()()(pp  
  















ji

n

i
i

n

j
jji

n

i

n

j
ji ub

du

d
vbvbub

u
,

11
,

1 1

)()()()(pp 
 















Partial Derivatives

Computing partial derivatives:

• Second derivatives:

ji

n

i
i

n

j
jji

n

i

n

j
ji ub

du

d
vbvbub

u
,

1
2

1
,

1 1
2

2

)()()()(pp 
 





















 





































n

i
jii

n

j
j

ji

n

i
i

n

j
j

n

i

n

j
jiji

ub
du

d
vb

dv

d

ub
du

d
vb

v
vbub

vu

1
,

1

,
111 1

,

2

)()(

)()()()(

p

pp

Partial Derivatives

Computing partial derivatives:

• General derivatives:

ji

n

j
js

sn

i
ir

r

ji

n

i
ir

rn

j
js

s

ji

n

i

n

j
jisr

sr

vb
dv

d
ub

du

d

ub
du

d
vb

dv

d
vbub

vu

,
11

,
11

,
1 1

)()(

)()()()(

p

pp







 

































































Normal Vectors

We can compute normal vectors from partial
derivatives:

•

• Problem: degenerate cases

 Colinear tangents

 Irregular parametrization

• Need extra code to handle special cases



































































n

i
jii

n

j
j

n

i
jii

n

j
j

n

i
jii

n

j
j

n

i
jii

n

j
j

ubvb
dv

d
ub

du

d
vb

ubvb
dv

d
ub

du

d
vb

vu

1
,

11
,

1

1
,

11
,

1

)()()()(

)()()()(

),(

pp

pp

n

Bezier Patches

Bezier Patches:

• Use tensor product Bernstein basis

• We get automatically:

 Affine invariance

 Convex hull property


 


d

i

d

j
ji

d
j

d
i vBuBvu

0 0
,

)()()()(),(pf

Bezier Patches

Bezier Patches:

• Interpolation:

 Boundary curves are Bezier
curves of the boundary
control points

d = 10 d = 3

B0

B1 B2

B3

Bezier Patches

Bezier Patches

• Tangent vectors:

 First derivatives at boundary points are proportional to
differences of control points:

 





 








d

j
jj

d
j

d

i

d

j
ji

d
i

d
j

u

vBd

BvBvu
u

0
,0,1

)(

0 0
,

)()(

0

)(

)0(')(),(

pp

pf

 









 d

j
jdjd

d
j

u

vBdvu
u 0

,1,
)(

1

)(),(ppf

Continuity Conditions

For C0 continuity:

• Boundary control points must match

For C1 continuity:

• Difference vectors must match at the boundary

C0 Continuity

C1 Continuity

C1 Continuity

Polars & Blossoms

Blossoms for tensor product surfaces:
• Polar form of a polynomial tensor product surface of degree d:
 F:     n F(u, v)

 f: d  d  n f(u1,...,ud; v1,..., vd)

• Required Properties:

 Diagonality: f(u,...,u; v,..., v) = F(u, v)

 Symmetry: f (u1,...,ud; v1,..., vd) = f (u (1),..., u (d); v (1),..., v (d))
for all permutations of indices , .

 Multi-affine: k = 1 
  f (u1,..., kui

(k),..., ud; v1,..., vd)
 = 1f (u1,..., ui

(1),..., ud; v1,..., vd) +...+ nf (u1,...,ui
(n),..., ud; v1,..., vd)

 and f (u1,..., ud; v1,..., kvi
(k),..., vd)

 = 1f (u1,..., ud; v1,..., vi
(1),..., vd) +...+ nf (u1,..., ud; v1,...,vi

(n),..., vd)

Short Summary

Polar forms for tensor product surfaces:

• Polarize separately in u and v.

• Notation: f(u1,...,ud; v1,..., vd)

• Can be used to derive properties/algorithms similar
to the curve case

• More interesting: Polar forms for total degree surfaces
(we will see this later)

u-parameters v-parameters

Bezier Control Points

Bezier control points in blossom notation:

v

u

f(1,1,1; 0,0,0)

f(0,1,1; 0,0,0)

f(0,0,1; 0,0,0) f(0,0,0; 0,0,0)

f(1,1,1; 1,0,0)

f(0,1,1; 1,0,0)

f(0,0,1; 1,0,0) f(0,0,0; 1,0,0)

f(1,1,1; 1,1,0)

f(0,1,1; 1,1,0)

f(0,0,1; 1,1,0) f(0,0,0; 1,1,0)

f(1,1,1; 1,1,1)

f(0,1,1; 1,1,1)

f(0,0,1; 1,1,1)
f(0,0,0; 1,1,1)

De Casteljau Algorithm

De Casteljau algorithm for tensor product surfaces:

v

u b(0,0,0; 0,0,0)

b(1,1,1; 0,0,0)

b(0,0,0; 1,1,1)

b(1,1,1; 1,1,1)

b(u,u,u; v,v,v)

b(u,0,0; v,0,0)

b(u,0,0; v,1,1)

b(u,1,1; v,0,0)

b(u,1,1; v,1,1)

b(u,u,0; v,v,1)

b(u,u,0; v,v,0)

b(u,u,1; v,v,1)

b(u,u,1; v,v,0)

B-Spline Patches

B-Spline Patches

• More general than Bezier patches
(we get Bezier patches as a special case)

• First, we fix a degree d.

• Then, we need knot sequences in u and v direction:

 (u1,...,un), (v1,...,vm)

• And a corresponding array of control points:

 d0,0 ... dn-d+1,0
 d0,m-d+1 ... dn-d+1,m-d+1

B-Spline Patches

Then, obtain a parametric B-spline patch as:

•

• We can evaluate the patches using the de Boor Algorithm:

 “Curves of curves” idea

 Determine the knots/control points influencing (u,v).
These will be no more than (d+1)  (d+1) points.

 Compute (d+1) v-direction control points along u direction,
performing (d+1) curve evaluations.

 Then evaluate the curve in v-direction.

 (or the other way round, interchanging u,v-directions)


 


n

i

m

j
ji

d
j

d
i vNuNvu

0 0
,

)()()()(),(pf

Illustration

B-Spline Patches

Alternative:

• 2D de Boor algorithm

• Works similar to the 2D de Casteljau algorithm
but with different weights
(we can use tensor-product blossoming to derive the
weights)

Rational Patches

Rational Patches:

• We can use rational Bezier/B-splines to create the patches
(“rational Bezier patches” / “NURBS-patches”)

• Idea:

 Form a parametric surface in 4D, homogenous space

 Then project to  = 1 to obtain the surface in Euclidian 3D space

• In short: Just use homogeneous coordinates everywhere

Rational Patch

Rational Bezier Patch:


 
















d

i

d

j ji

jijid
j

d
i vBuBvu

0 0 ,

,,)()((hom))()(),(


 p
f





 

 


d

i

d

j
ji

d
j

d
i

d

i

d

j
ji

d
j

d
i

Eucl

vBuB

vBuB

vu

0 0
,

)()(

0 0
,

)()(

)(

)()(

)()(

),(



p

f

Rational Patch

Rational B-Spline Patch:


 
















n

i

m

j ji

jijid
j

d
i vNuNvu

0 0 ,

,,)()((hom))()(),(


 p
f





 

 


n

i

m

j
ji

d
j

d
i

n

i

m

j
ji

d
j

d
i

Eucl

vNuN

vNuN

vu

0 0
,

)()(

0 0
,

)()(

)(

)()(

)()(

),(



p

f

Remark: Rational Patches

Observation:

• Euclidian surface is not a
tensor product surface

 denominator
depends on both u and v

• Homogeneous space:
4D surface is a tensor
product surface.





 

 


d

i

d

j
ji

d
j

d
i

d

i

d

j
ji

d
j

d
i

Eucl

vBuB

vBuB

vu

0 0
,

)()(

0 0
,

)()(

)(

)()(

)()(

),(



p

f





 

 


n

i

m

j
ji

d
j

d
i

n

i

m

j
ji

d
j

d
i

Eucl

vNuN

vNuN

vu

0 0
,

)()(

0 0
,

)()(

)(

)()(

)()(

),(



p

f

Surfaces of Revolution

Advantages of rational patches:

• Rational patches can represent surfaces of revolution
exactly.

• Examples:

 Cylinders

 Cones

 Spheres

 Ellipsoids

 Tori

• Question: given a cross section curve, how do we get the
control points for the 3D surface?

Surfaces of Revolution

Surfaces of Revolution

Given:

• Control points p1,...,pn of curve
(“generatrix”)

We want to compute:

• Control points pi,j of a rational surface

Such that:

• The surface describes the surface of
revolution that we obtain by rotating
the curve around the y axis (w.l.o.g.)

p1

p2

p3

p4

y

x

Surfaces of Revolution

Simplification:

• We look only at a single rational Bezier
segment.

• Applying the scheme to multiple
segments together is straightforward.

• The same idea also works for
B-splines.

p1

p3

p4

y

x

p2

Surfaces of Revolution

Construction:

• We are given control points
p1,..., pd+1

 (d is the degree in u direction)

• We introduce a new parameter v.

• In v direction, we use quadratic
Bezier curves (2nd degree basis in
v-direction)

p3

p4

y

x

p1

p2

Surfaces of Revolution

Key Idea:
• For u-direction curves: Control points

(and thus the curves) must move on
circles around the y-axis.

• Circles must have the same
parametrization (this is easy)

• This means, the control points rotate
around the y-axis.

• Affine invariance will make the whole
curve rotate, we get the desired
surface of revolution.

p1

p2

p3

p4

y

x

Surfaces of Revolution

Making one point rotate around the y-axis:

x

z

y 






ipi
i

Surfaces of Revolution

Making one point rotate around the y-axis:

x

z

y
r
  







ipi
i













r

Surfaces of Revolution

Making one point rotate around the y-axis:

x

z

y
r
  







ipi
i













r

 









 

i

ii rp



 k

 









 

i

ii rp



 k




















































1

0

0

:,

0

0

1

: ki

 







 

i

ii rp



 i2

Surfaces of Revolution

Making one point rotate around the y-axis:

x

z

y
r
  







ipi
i













r

 









 

i

ii rp



 k

 









 

i

ii rp



 k

 












 

i

ii rrp





221

2221 ki 












 

i

ii rp





221

221 k

 












 

i

ii rp





221

221 k  












 

i

ii rrp





221

2221 ki




















































1

0

0

:,

0

0

1

: ki

 







 

i

ii rp



 i2

Remark

What we get:

• We obtain 4 segments, i.e. 4 patches for each Bezier
segment

• A similar construction with 3 segments exists as well

Does the scheme yield a circle for weights  1 in the
generatrix curve?

• Common factors in weights cancel out

• Therefore, we still obtain a circle at these points

• Parametrization does not change either

Benefit

With this construction, it is straightforward to create:

• Spheres

• Tori

• Cylinders

• Cones

And affine transformations of these (e.g. ellipsoids)

Parametrization Restrictions

Remaining problem:

• The sphere and the cone are not
regularly parametrized (double
control points)

• Might cause trouble (normals
computation, tessellation)

• In general: no spheres, or n-tori (n > 1) can be
parametrized without degeneracies

• What works: open surfaces, cylinders, tori

3x the same point

Curves on Surfaces, trimmed NURBS

Quad patch problem:

• All of our shapes are parameterized over rectangular
regions

• General boundary curves are hard to create

• Topology fixed to a disc (or cylinder, torus)

• No holes in the middle

• Assembling complicated shapes is painful

 Lots of pieces

 Continuity conditions for assembling pieces become complicated

 Cannot use C2 B-Splines continuity along boundaries when using
multiple pieces

Curves on Surfaces, trimmed NURBS

Consequence:

• We need more control over the parameter domain

• One solution is trimming using curves on surfaces (CONS)

• Standard tool in CAD: trimmed NURBS

Basic idea:

• Specify a curve in the parameter domain that
encapsulates one (or more) pieces of area

• Tessellate the parameter domain accordingly to cut out
the trimmed piece (rendering)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

Curves-on-Surfaces (CONS)

General Shapes

General shapes with holes:

• Draw multiple curves

• Inside / outside test:

 If any ray in the parameter domain
intersects the boundary curves an
odd number of times, the point is
inside

 Outside otherwise

 Implementation needs to take care
of special cases (critical points with
respect to normal of the ray)

 Nasty, but doable

(special case)

Free Form Deformation

z

z

output: 1D output: 2D output: 3D
in

p
u

t:
 3

D

in
p

u
t:

 2
D

in

p
u

t:
 1

D

u

f(t) t

function graph

x

t

plane curve

t

space curve

plane warp surface

space warp

y

x

y

u

v

x

y u

v

x

y

u
v

y

z

w

x

FFD

Free Form Deformations

• Use a 3D tensor-product
B-Spline (or Bezier spline)

• Defines a bend mapping
3  3

• Can be used to change the
shape of objects globally

• We will see other shape
deformation techniques
later in the lecture
(time permitting)

59 / 104

u

v

y

z

w

x

u

v

y

z

w

x

Total Degree Surfaces

Bezier Triangles

Alternative surface definition: Bezier triangles

• Constructed according to given
total degree

 Completely symmetric:
No degree anisotropy

• Can be derived using a triangular
de Casteljau algorithm

 Blossoming formalism is very helpful
for defining Bezier Triangles

 Barycentric interpolation of blossom
values

Blossoms for Total Degree Surfaces

Blossoms with points as arguments:

• Polar form degree d with points as input und output:
 F: n  m

 f: dn  m

• Required Properties:

 Diagonality: f(t, t, ..., t) = F(t)

 Symmetry: f (t1, t2, ..., td) = f (t(1), t(2),..., t(d))
 for all permutations of indices .

 Multi-affine: k = 1 

 f (t1, t2, ..., kti
(k),..., td)

 = 1f (t1, t2, ..., ti
(1), ..., td) + ... + n f (t1, t2, ..., ti

(n),,..., td)

points as arguments

Example

Example: bivariate monomial basis

• In powers of (u,v):
B = {1, u, v, u2, uv, v2}

• Blossom form: multilinear in (u1,u2,v1,v2)



   

  212212211121

2121

,
4

1
,

,
2

1
,

2

1

,1

vvuvvuvuvuuu

vvuu

B







Barycentric Coordinates

Barycentric Coordinates:

• Planar case:
Barycentric combinations of 3 points

• Area formulation:

1:with,321   pppp

 1

)),,((

)),,((
,

)),,((

)),,((
,

)),,((

)),,((

321

21

321

31

321

32

ppp

ppp

ppp

ppp

ppp

ppp
















area

area

area

area

area

area


p1

p2

p3

p 





Barycentric Coordinates

Barycentric Coordinates:

• Linear formulation:

p1

p2

p3

p 





   32313

33321

321

321

)1(

ppppp

ppppp

ppp

pppp

















p1

p2

p3

p





Bezier Triangles: Overview

Bezier Triangles: Main Ideas

• Use 3D points as inputs to the blossoms

• These are Barycentric coordinates of a
parameter triangle {a, b, c}

• Use 3D points as outputs

• Form control points by multiplying parameter points, just
as in the curve case: p(a,...,a, b,...,b, c,...,c)

• De Casteljau Algorithm: Compute polynomial values
p(x, ..., x) by barycentric interpolation


i


j


k

Plugging in the Barycentric Coord’s

Analogy: 2D Curves in barycentric coordinates

• Barycentric coordinates for 2D curves:

•

0 t 1

a p b

1,   bap

  


  


Plugging in the Barycentric Coord’s

Analogy: 2D Curves in barycentric coordinates

• Barycentric coordinates for 2D curves:

•

• Bezier splines:

0 t 1

a p b

1,   bap

 ),...,,,...,(1)(
0


idi

d

i

idi
tt

i

d
t



 







 bbaafF







0,0

),...,,,...,(
!!

!
)(

ji
dji ji

ji

ji

d
 bbaafpF 

(standard form)

(barycentric form)

  


  


Example

Cubic Bezier Triangle: c

a b
p(a,a,a) p(b,a,a) p(b,b,a) p(b,b,b)

p(c,a,a) p(c,b,b)

p(c,c,b)

p(c,c,c)

p(c,c,a)

p(a,b,c)

De Casteljau Algorithm

p(a,b,c)

a

b

c

p(a,a,a) p(c,a,a)

p(c,c,a)

p(c,c,c)

p(c,c,b)

p(c,b,b)

p(b,a,a)

p(b,b,a)
p(b,b,b)

p(x,b,c)

p(x,c,c)

p(x,a,a)

p(x,b,b)
p(x,a,b)

p(x,a,c)

p(x,x,c)

p(x,x,a)

p(x,x,b)

p(x,x,x)

1

,







 cbax

Bernstein Form

Writing this recursion out, we obtain:

•

• This is the Bernstein form of a Bezier triangle surface

• (Proof by induction)







0,,

),...,,,...,,,...,(
!!!

!
)(

kji
dkji kji

kji ccbbaa
kji

d
F fx 

1

,







 cbax

Rendering

Rendering trimmed NURBS

How can we render trimmed NURBS?

We will look at three variants:

• Rasterization

• Raytracing

• Hardware-friendly rasterization algorithm

Rasterization

Basic pipeline:

perspective
divide

rasterization

projection
camera

placement
object

movement

3d object
(polygon)

vertices xi

x  Mm·x x  Mc·x x  Mp·x x  x/x.

2d image

bitmap
 image

Homogenous coordinates (z-buffer for
hidden surface removal)

Rasterization Pipeline

Basically:

• We can draw triangles

• Very efficient due to hardware support
(standard GPU: 100 M triangles/sec, 1000 M pixels/sec)

• We need to convert our surfaces into triangles
(“tessellation”)

• Nowadays: We can afford high resolution tessellations

Simple Idea

Simplest solution: Uniform tessellation

Fancier Idea

Better solution: Adaptive tessellation

Adaptive Tesselation

Adaptive Tessellation:

• Subdivide parameter domain
recursively

• Divide rectangle into four smaller
parts (“Quadtree”)

• Possible stopping criterion:

 Distance between planar faces and
surface

 Approximately: planarity of control
points

Adaptive Tesselation

Adaptive Tessellation:

• Balanced Quadtree:

 Make sure that the subdivision level
of adjacent cells does not differ by
more than one level

• Divide cells into triangles

• Look at direct neighbors to create
a closed mesh

• Only 24 = 16 cases

So what about the curves?

Remaining problem:

• Need to render trimmed patches

• Super-simple solution
(“cheating”):

 add a texture map, remove “white”
pixels with (do not draw empty
space)

 Supported in hardware (“alpha test”)

 But this looks ugly

 And does not help in geometric
computation (if we need a
triangulation of the trimmed object
for further processing)

So what about the curves?

Second try:

• We have to tessellate the trimming
area in the domain

• Need to place triangles in the
domain that approximate the
shape

• Curve tessellation problem

 Classic computational geometry problem

 Several solutions

 E.g. constrained Delaunay triangulation

• Easy to implement: Quadtree triangulation method

Quadtree triangulation

Quadtree triangulation:

• Subdivide recursively as before

• New stopping criterion

 If the bounding box intersects the area:

– Do not stop until surface is well
 approximated

– And: No boundary curve inside, or
the boundary curves intersects
exactly twice

– Limit recursion depth to avoid
trouble at degeneracies

 If the bounding box covers empty space:

– Stop immediately

Quadtree triangulation

Quadtree triangulation

Tessellation Algorithm:

• Compute balanced quadtree

• Stop when accuracy is met and only two curve
intersections are in each box

• Tesselate interior the same way as before

• Tessellate intersections with fixed scheme
(at most two triangles)

• Drop exterior boxes

Interior holes:

• Use ray-based inside/outside test

Hardware friendly version

Problem:

• The adaptive tessellation is computationally costly

• Algorithm with complex data structures and pointers,
not easy to implement on special purpose hardware

• Even a standard CPU needs its time

Hardware friendly algorithm: [Guthe et al. 2005]

• Basic idea: graphics hardware is so fast, we can waste a
few triangles

• Runs completely on programmable graphics hardware

• We will discuss a simplified version (no gory GPU details)

Guthe’s Algorithm

Basic Idea:

• Use a uniform grid

• Represent each quad as a pixel

• Now render sequence of triangles
along the curve, connected with
one corner, in XOR mode

Guthe’s Algorithm

Hardware friendly algorithm

After XOR-polygon drawing:

• Knowing the pixels that cover the domain, each one can
be easily tessellated

• The spline surface is evaluated on the graphics hardware
(programmable shaders)

• This algorithm is much faster than standard techniques

• In case the accuracy is not sufficient, a hierarchical
refinement “on demand” is implemented

• Increases the resolution in surface parts close to the
viewer

Raytracing

How can we raytrace NURBS patches?

Raytracing algorithm:

• Shoot a ray through each pixel of the image

• Test objects in the scene for intersection

• Display closest object

• For shading the object, further rays can be sent
recursively

 Shadow rays to the light source(s) – if blocked, object is in
shadow

 Reflected / refracted rays for mirroring / refractions

Raytracing

center of projection object image plane

Intersection Problem

Intersection Problem

• Rendering with raytracing reduces to determine whether
a ray intersects a spline patch

• Non-linear system of equations:


 


d

i

d

j
ji

d
j

d
i vBuBvu

0 0
,

)()()()(),(pf

bar  tt)(

0),,(

0)()(

),,(

0 0
,

)()(




 

tvu

tvBuB

tvu

d

i

d

j
ji

d
j

d
i

F

bap

F
  






solve for u, v, t

Solution Strategies

Numerical optimization

• No closed form solution

• Therefore: Numerical approach

 Need a starting value x0 (e.g. x0 = (u,v,t) = (0,0,0))

 Then iteratively improve solution

• Numerical techniques

 (Gradient decent on squared residue)

 Newton’s method: Linearize problem

– Compute Jacobian

– Solve linear system F(x0)(x – x0) + F(x0) = 0

– Iterate

 Newton-like geometric technique

Newton-like technique

x0

F(x0)(x – x0)

x1

Problem

Properties of Newton-based algorithm

• Quite efficient – typically needs only a few iterations

• However: No convergence guarantees

 In general: does not always converge to the correct solution

• Need good initialization

Brute-Force approach:

• Restart iteration from a number of starting points on the
surface

• But that takes forever to compute

Alternative

Alternative: Hierarchical subdivision algorithm

• Compute bounding volume of control points (convex hull
property)

 We can use the convex hull

 Simpler to implement: bounding sphere

• Test for intersection

 No intersection found  return false, we are done

 Otherwise continue recursively

• Recursion: subdivide patch into four parts (de Casteljau)

• Call recursive test for all patches

• Always terminate, if precision is sufficient

Alternative

Alternative: Hierarchical subdivision algorithm

• Guaranteed to converge

• But slower

 Linear convergence, i.e. number of correct digits in solution
increases proportional to #iterations (asymptotical)

 Newton method typically converges quadratically
(number of correct digits increases quadratically)

“Best of both worlds”

• Start with a few iterations of hierarchical subdivision

 Stopping criterion: Test for “flatness of control points”

• Then use Newton iteration to boost accuracy rapidly

