
Geometric Modeling
Summer Semester 2012

Implicit Surfaces
Mathematical Background · Level Set Extraction · Solid Modeling

Overview...

Topics:

• Spline Surfaces

• Implicit Functions
 Introduction / Mathematical Background

 Numerical Discretization

 Level Set Extraction Algorithms

 Solid Modeling

 Data Fitting

• Subdivision Surfaces

• Variational Modeling

Implicit Surfaces
Introduction

Modeling Zoo

 Parametric Models Primitive Meshes

 Implicit Models Particle Models

Implicit Functions

Basic Idea:

• We describe an object S d by an implicit equation:

 S = {x  d | f (x) = 0}

 The function f describes the shape of the object.

• Applications:

 In general, we could describe arbitrary objects

 Most common case: surfaces in 3.

 This means, f is zero on an infinitesimally thin sheet only.

The Implicit Function Theorem

Implicit Function Theorem:

• Given a differentiable function

 f : n  D  , ,

• Within an  -neighborhood of x(0) we can represent the
zero level set of f completely as a heightfield function g

 g : n-1   such that for x – x(0) <  we have:

 f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and

 f(x1,..., xn)  0 everywhere else.

• The heightfield is a differentiable (n – 1)-manifold and its
surface normal is the colinear to the gradient of f.

0),...,()()0()0(
1

)0(








n

nn

xxf
x

f
x

x0)()0(xf

This means

If we want to model surfaces, we are on the safe side if:

• We use a smooth (differentiable) function f in 3.

• The gradient of f does not vanish.

This gives us the following guarantees:

• The zero-level set is actually a surface:

 We obtained a closed 2-manifold without boundary.

 We have a well defined interior / exterior.

Sufficient:

• We need smoothness / non-vanishing gradient only close
to the zero-crossing.

Implicit Function Types

Function types:

• General case
 Non-zero gradient at zero crossing

 Otherwise arbitrary

• Signed implicit function:
 sign(f): negative inside and positive outside the object

(or the other way round, but we assume this orientation here)

• Signed distance field
 |f| = distance to the surface

 sign(f): negative inside, positive outside

• Squared distance function
 f = (distance to the surface)2

Implicit Function Types

Use depends on application:

• Signed implicit function
 Solid modeling

 Interior well defined

• Signed distance function
 Most frequently used representation

 Constant gradient  numerically stable surface definition

 Availability of distance values useful for many applications

• Squared distance function
 This representation is useful for statistical optimization

 Minimize sum of squared distances  least squares optimization

 Useful for surfaces defined up to some insecurity / noise.

 Direct surface extraction more difficult (gradient vanishes!).

signed distance

Squared Distance Function

Example: Surface from random samples

1. Determine sample point (uniform)

2. Add noise (Gaussian)

sampling Gaussian noise many samples distribution
(in space)

 
   








  μxΣμx

Σ
xΣμ

1T

2/12/,
2

1
exp

||π2

1
)(

d
p

Squared Distance Function

Squared Distance Function:

• Sampling a surface with uniform sampling and Gaussian
noise:

 Probability density is a convolution of the object with a
Gaussian kernel

• Smooth surfaces: The log-likelihood can be approximated
by a squared distance function

Smoothness

Smoothness of signed distance function:

• Any distance function (signed, unsigned, squared) in
general cannot be globally smooth

• The distance function is
non-differentiable at the medial axis

 Medial axis = set of points that
have the same distance to two
or more different surface points

 For sharp corners, the medial
axis touches the surfaces

 This means: f non-differentiable
on the surface itself

 Usually, this is no problem in practice.

Differential Properties

Some useful differential properties:

• We look at a surface point x, i.e. f (x) = 0.

• We assumef (x)  0.

• The unit normal of the implicit surface is given by:

 For signed functions, the normal is pointing outward.

 For signed distance functions, this simplifies to n(x) = f (x).

)(

)(
)(

x

x
xn

f

f






Differential Properties

Some useful differential properties:

• The mean curvature of the surface is proportional to the
divergence of the unit normal:

• For a signed distance function, the formula simplifies to:

)(

)(

)()()(

)()(2

x

x

xxx

xnx

f

f

n
z

n
y

n
x

H

zyx























)(

)()()()()(2
2

2

2

2

2

2

x

xxxxx

f

f
z

f
y

f
x

fH


















Mean Curvature Formula

Proof (sketch):

• We assume that the normal is in z-direction, i.e., x, y are
tangent to the surface (divergence is invariant under
rotation). The surface normal is given by:

z

x, y








































1

),(

),(

1

0

0

),(yxs

yxs

yx y

x

n

),(2

),(),(

),(),(

1),(),(),(

2

22

2

2

2

2

2

2

2

yxH

yxs
y

yxs
yx

yxs
yx

yxs
x

trace

z
yxs

y
yxs

x
yx




















































 n

 







)(tr

2

1
)(00 xSH x

Computing Volume Integrals

Computing volume integrals:

• Heavyside function:

• Volume integral over interior volume f of
some function g(x) (assuming negative interior values):










0 if1

0 if0
)step(

x

x
x

  




f

dxfgdg


xxxx))(step(1)()(

Computing Surface Integrals

Computing surface integrals:

• Dirac delta function:

 Idealized function (distribution)

 Zero everywhere ((x) = 0),
except at x = 0, where it is positive, inifinitely large.

 The integral of (x) over x is one.

• Dirac delta function on the surface: directional derivative
of step(x) in normal direction:

   

)())((

)(

)(
)())((step)())(step(ˆ

xx

x

x
xxxnx

ff

f

f
fff












(x)

x

Surface Integral

Computing surface integrals:

• Surface integral over the surface  f = {x | f (x) = 0}
of some function g(x):

• This looks nice, but is numerically intractable.

• We can fix this using smothed out Dirac/Heavyside
functions...

 




f

dffgdg


xxxxxx |)(|))(()()(

Smoothed Functions

Smooth-step function


























x

x
xx

x

x








1

π
sin

π2

1

22

1
0

)p(smooth_ste

Smoothed Dirac delta function

































x

x
x

x

x

0

π
cos

2

1

2

1
0

)ta(smooth_del

Implicit Surfaces
Numerical Discretization

Representing Implicit Functions

Representation: Two basic techniques

• Discretization on grids

 Simple finite differencing (FD) grids

 Grids of basis functions (finite elements FE)

 Hierarchical / adaptive grids (FE)

• Discretization with radial basis functions
(particle FE methods)

Discretization

Discretization examples

• In the following, we will look at 2D examples

• The 3D (d-dimensional) case is similar

Regular Grids

Discretization:

• Regular grid of values fi,j

• Grid spacing h

• Differential properties can
be approximated by finite
differences:

 For example:

 )(
1

)()(,1)()(),(hOff
h

f jiji

x





 xxxxx

 )(
2

1
)(2

)(,1)()(,1)(hOff
h

f jiji

x





 xxxxx

Regular Grids

Variant:

• Use only cells near the surface

• Saves storage & computation time

• However: We need to know an
estimate on where the surface is
located to setup the
representation

• Propagate to the rest of the
volume (if necessary):
fast marching method

Fast Marching Method

Problem statement:

• Assume we are given the surface and signed distance
value in a narrow band.

• Now we want to compute distance values everywhere on
the grid.

Three solutions:

• Nearest neighbor queries

• Eikonal equation

• Fast marching

Nearest Neighbors

Algorithm:

• For each grid cell:

 Compute nearest point on
the surface

 Enter distance

• Approximate nearest neighbor
computation:

 Look for nearest grid cell with
zero crossing first

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance)

• Costs: O(n) kNN queries (n empty cells)

Eikonal Equation

Eikonal Equation

• Place variables in empty cells

• Fixed values in known cells

• Then solve the following PDE:

• This is a (non-linear) boundary value problem.
known

known

A

ff

f







x

xx

 area known the on

)()(to subject

1

Fast Marching

Solving the Equation:

• The Eikonal equation can be solved efficiently by a region
growing algorithm:

 Start with the initial known values

 Compute new distances at immediate neighbors solving a local
Eikonal equation (*)

 The smallest of these values must be correct (similar to Dijkstra’s
algorithm)

 Fix this value and update the neighbors again

 Growing front, O(n log n) time.

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge
University Press 1996.

Regular Grids of Basis Functions

Discretization (2D):

• Place a basis function in each
grid cell: bi,j = b(x – i, y – j)

• Typical choices:

 Bivariate uniform cubic B-splines
(tensor product)

 b(x, y) = exp[-(x2 + y2)]

• The implicit function is then
represented as:

• The i,j describe different f.

b2,3

b3,3


 


i jn

i

n

j
jiji yxbyxf

0 0
,,),(),(

Regular Grids of Basis Functions

Differential Properties:

• Derivatives:

• Derivatives are linear
combinations of the
derivatives of the basis
function.

• In particular: We again get a
linear expression in the i,j.

b2,3

b3,3


 
























i jn

i

n

j mkk

ji

mkk

yxb
xx

yxf
xx

0 0 1

,

1

),(
...

),(
...



Adaptive Grids

Adaptive / hierarchical grid:

• Perform a quadtree /octree
tessellation of the domain
(or any other partition into
elements)

• Refine where more precision is
necessary (near surface, maybe
curvature dependent)

• Associate basis functions with
each cell (constant or higher
order)

Particle Methods

Particle methods /
radial basis functions:

• Place a set of “particles” in space at
positions xi.

• Associate each with a radial basis
function b(x – xi).

• The discretization is then given by:

• The i encode f.





n

i
iibf

0

)()(xxx 

Particle Methods

Particle methods /
radial basis functions:

• Obviously, derivatives are again linear
in i:

• The radial basis functions can also
have different size (support) for
adaptive refinement

• Placement: near the expected surface












 n

i
i

mkk

i

mkk

b
xx

f
xx 0 11

)(
...

)(
...

xxx 

Particle Methods

Particle methods /
radial basis functions:

• Where should we place the radial
basis functions?

 If we have an initial guess for
the surface shape:

– put some on the surface

– and some in +/- normal direction.

 Otherwise:

– Uniform placement in lowres

– Solve for surface

– Refine near lowres-surface, iterate.

Types of Radial Basis Functions

Typical choices for radial basis functions:

• (Quasi-) compactly supported functions:

 Exponentials / normal distribution densities: exp(- x2)

 Uniform (cubic) tensor product B-Splines

 Moving-least squares finite element basis functions
(will be discussed later)

• Globally supported functions:

 Thin plate spline basis functions:

 These functions guarantee minimal integral second derivatives.

0

2

0 ln xxxx 
3

0xx (2D), (3D).

Pros & Cons

Why use globally supported basis functions?

• They come with smoothness guarantees
(details in the next lecture)

• However: Computations might become expensive
(we will see later how to device efficient algorithms for
globally supported radial basis functions)

Locally supported functions:

• Easy to use

• Additional regularization might become necessary to
compute a “nice” surface.

Implicit Surfaces
Level Set Extraction

Iso-Surface Extraction

New task:

• Assume we have defined an implicit function

• Now we want to extract the surface.

• I.e. convert it to an explicit, piecewise parametric
representation, typically a triangle mesh.

• For this we need an iso-surface extraction algorithm

 a.k.a. level set extraction

 a.k.a. contouring

Algorithms

Algorithms:

• Marching Cubes

 This is the standard technique.

 We will also discuss some problems / modifications.

• Particle methods

 Just to show an alternative

 Not used that frequently in practice

Marching Cubes

Marching Cubes:

• The most frequently used iso surface extraction algorithm

 Creates a triangle mesh from an iso-value surface of a scalar
volume

 The algorithm is also used frequently to visualize CT scanner
data and other volume data

• Simple idea:

 Define and solve a fixed complexity, local problem.

 Compute a full solution by solving many such local problems
incrementally.

Marching Cubes

Marching Cubes:

• Here is the local problem:

 We have a cube with 8 vertices

 Each vertex is either inside or
outside the volume
(i.e. f (x) < 0 or f (x)  0)

 How should we triangulate this cube?

 How should we place the vertices?

Triangulation

Triangulation:

• We have 256 different cases – each of the 8 vertices can
be in or out.

• By symmetry, this can be reduced to 15 cases

 Symmetry: reflection, rotation, and bit inversion

• This means, we can compute the topology of the mesh

[source: Wikipedia]

Vertex Placement

How to place the vertices?

• Zero-th order accuracy: Place vertices at edge midpoints

• First order accuracy: Linearly interpolate vertices along
edges.

• Example: for scalar values f(x) = -0.1 and f(y) = 0.2,
place the vertex at ratio 1:2 between x and y.

[source: Wikipedia]

Outer Loop

Outer Loop:

• Compute a bounding box of the
domain of the implicit function.

• Divide it into cubes of the same
size (regular cube grid)

• Execute “marching cube”
algorithm in each subcube

• Output the union of all triangles
generated

• Optionally: Use a vertex hash table
to make the mesh consistent
(remove double vertices)

Marching Squares

Marching Squares:

• There is also a 2D version of the algorithm, called
marching squares.

• Same idea, but fewer cases.

Ambiguities

There is a (minor) technical problem remaining:

• The triangulation can be ambiguous

• In some cases, different topologies are possible which are
all locally plausible:

• This is an undersampling artifact. At a sufficiently high
resolution, this cannot occur.

• Problem: Inconsistent application can lead to holes in the
surface (non-manifold solutions)

in

in out

out

?

Ambiguities

Solution:

• Always use the same solution pattern in ambiguous
situations

• For example: Always connect diagonally.

 This might yield topologically wrong results.

 But the surface is guaranteed to be a triangulated 2-manifold
without holes and with well defined interior / exterior

• Better solution:

 Use higher resolution sampling (if possible)

• All of this (problem and solutions) also applies to the 3D
case.

MC Variations

Empty space skipping:

• Marching cube uses an n3 voxel grid, which can become
pretty expensive.

• The surface intersects typically only O(n2) voxels.

• If we roughly know where the surface might appear, we
can restrict the execution of the algorithm (and the
evaluations of f at the corners) to a narrow band around
the surface.

• Example: Particle methods – only extract within the
support of the radial basis functions.

MC Variations

Hierarchical marching cubes algorithm:

• One can use a hierarchical version of the marching cubes
algorithm using a balanced octree instead of a regular grid

 We need some refinement criterion to judge on where to
subdivide

 This is application dependent (depends on the definition of f).

• However, we obtain many more cases to consider (which
is painful to derive)

Simple solution (common in practice):

• Extract high-resolution triangle mesh

• Then run mesh simplification (slower, but better quality)

Particle-Based Extraction

Particle-based method:

• This technique creates a set of points as output, which
cover the iso-surface.

• Algorithm:

 Start with a random point cloud (n points in a bounding volume)

 Now define forces that attract particles to the zero-level set.

 Also add some (weak) tangential repulsion to make them
distribute uniformly

Forces

Attraction “force”:

Tangential repulsion force:

2)1()()(iii fmxF x



































































 



T

i

i

i

i

ij
ji

ji

jii
f

f

f

f
kF

)(

)(

)(

)(
),()(

2

)2(

x

x

x

x
I

xx

xx
xxx

F(1)(xi)

F(2)(xi)

Solution

Solution:

• We obtain a system of ordinary differential equations

• The ODE can be solved numerically

• Simplest technique: gradient decent (explicit Euler)

 Move every point by a fraction of the force vector

 Recalculate forces

 Iterate

• We have the solution if the system reaches a steady state
(nothing moves anymore, numerically)

Implicit Surfaces
Solid Modeling

Solid Modeling

We want to:

• Form basic volumetric primitives (spheres, cubes,
cylinders) as implicit functions (this is easy, no details).

• Compute Boolean combinations of these primitives:
Intersection, union, etc...

• Derive an implicit function from these operations

Boolean Operations

Actually, Boolean operations with implicit functions
are simple:

• Given two signed implicit functions (negative inside) fA, fB
for objects A, B.

• The boolean combinations are given by:

 Union A B: fA  B = min(fA, fB)

 Intersection A  B: fA  B = max(fA, fB)

 Complement  A: fA = – fA

 Difference A \ B: fA \ B = max(fA, – fB)

- -
+

+
- -

 +
-

- -
+

Hierarchical Modeling

This can be models as a CSG tree (constructive solid
geometry):

• Leaf nodes are signed
distance functions

• Inner nodes are Boolean
operations

• Evaluation translates to
an arithmetic expression

• Other operations:

 Deformation (apply vector field)

 Blending (combine surfaces smoothly)



 

- + - + - + - +

Hierarchical Modeling

Rendering CSG hierarchies:

• Rendering is simple

• We get one compound
signed implicit function

• We can extract the surface
using marching cubes

• We can raytrace the surface
using a numerical root
finding algorithm

 For example:
Newton scheme with voxel-based intialization



 

- + - + - + - +

Implicit Surfaces
Data Fitting

Constructing Implicit Surfaces

Question: How to construct implicit surfaces?

• Basic primitives: Spheres, boxes etc... are (almost) trivial.

• We can construct implicit spline schemes by using 3D
tensor product (or tetrahedral) constructions of 3D Bezier
or B-Spline functions

• Another option: Variational modeling (next lecture)

• In this chapter of this lecture: Fitting to data

Data Fitting

Data Fitting Problem:

• We are given a set of points

• We want to find an implicit surface that interpolates or
approximates these points

• This problem is ill-defined

• We need additional assumptions to make it well-defined

• We will look at three variants:

 Hoppe’s method / plane blending

 Thin-plate spline data matching

 MPU Implicits (multi-level partition of unity implicits)

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

unoriented normals:
total least squares plane fit (PCA)

in a k-nearest neighbors neighborhood

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

consistent orientation:
region growing, flip normals if angle > 180°,
pick most similar normal next in each step

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

consistent orientation:
blend between signed distance functions of

planes associated with each point

Plane Blending Method

Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

signed distance function:
plane blending (next slide)

Normal Constraints

Basic Idea:

• Each point defines an oriented plane and a signed distance
function

• To obtain a composite distance field in space:
Blend these distance functions with weights from a kernel
function (Gaussian, or uniform B-Spline)

x

w(x, xi)

Normal Constraints

Basic Idea:

x

w(x, xi)

 

 












n

i
i

n

i
iii

w

w

f

1

1

,

)(

xx

xxxxn

x (partition of unity weights)

x1

x2

x3

n1

n2

n3

Plane Blending Method
Initial data

Estimate normals

Signed distance
func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Plane Blending Method

Initial data

Estimate normals

Signed distance func.

Marching cubes

Final mesh

Thin-Plate Spline Data Matching

Agenda:

• Use radial basis functions

• Use a globally supported basis
that guarantees smoothness

• Place radial basis functions
at the input points

• Place two more in normal and
negative normal direction

• Prescribe values +1,0,-1

• Solve a linear system to meet
these constraints

-1
-1

-1 -1

+1
+1

+1 +1
0

0
0 0

Types of Radial Basis Functions

Typical choices for radial basis functions:

• Globally supported functions:

 Thin splate spline basis functions:

 These functions guarantee minimal integral second derivatives.

• Problem: evaluation

 Every basis function interacts with each other one

 This creates a dense n n linear system

 One can use a fast multi pole method that clusters far away
nodes in bigger octree boxes

 This gives O(log n) interactions per particle, overall O(n log n)
interactions.

0

2

0 ln xxxx 
3

0xx (2D), (3D).

Alternative

Alternative:

• Use locally supported basis functions (e.g. B-Splines)

• Employ an additional regularization term to make the
solution smooth.

• Optimize the energy function

• The crictical point is the solution to a linear system



 



 























































m

j
jj

n

i
i

bf

df
zxzyyxzyx

fE

1

1

2
222222

2

)()(

with

)(
222

)()(

xxx

xxxλ





MPU Implicits

Multi-level partition of unity implicits:

• Hierarchical implicit function
approximation

 Given: data points with normals

 Computes: hierarchical
approximation of the signed
distance function

MPU Implicits

Multi-level partition of unity implicits:

• Octree decomposition of space

• In each octree cell, fit an implicit
quadratic function to points

 f (xi) = 0 at data points

 Additional normal constraints

• Stopping criterion:

 Sufficient approximation accuracy
(evaluate f at data points to
calulate distance)

 At least 15 points per cell.

MPU Implicits

Multi-level partition of unity implicits:

• This gives an adaptive grid of
local implicit function
approximations.

• Problem: How to define a global
implicit function?

• Idea: Just blend between local
approximants using a windowing
function

MPU Implicits

Multi-level partition of unity implicits:

• Windowing function:

 Use smooth windowing function w

– B-splines / normal distribution

– original formulation: quadratic
tensor product B-spline function,
support = 1.5 cell diagonal

 Renormalize to form partition
of unity:














n

i
i

n

i
ii

w

fw

f

1

1

)(

)()(

)(

xx

xxx

x

MPU Implicits

Multi-level partition of unity implicits:

• Sharp features:

 If a leaf cell with a few points has strongly varying normals, this
might be a sharp feature.

 Multiple functions can be fitted to parts of the data

 Boolean operations to obtain composite distance field

