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Overview... 

Topics: 

• Spline Surfaces 

• Implicit Functions 
 Introduction / Mathematical Background 

 Numerical Discretization 

 Level Set Extraction Algorithms 

 Solid Modeling 

 Data Fitting 

• Subdivision Surfaces 

• Variational Modeling 



Implicit Surfaces 
Introduction 



Modeling Zoo 

 

 

 Parametric Models Primitive Meshes 

 

 

 Implicit Models Particle Models 



Implicit Functions 

Basic Idea: 

• We describe an object S d by an implicit equation: 

 S = {x  d | f (x) = 0} 

 The function f describes the shape of the object. 

• Applications: 

 In general, we could describe arbitrary objects 

 Most common case: surfaces in 3. 

 This means, f is zero on an infinitesimally thin sheet only. 



The Implicit Function Theorem 

Implicit Function Theorem: 

• Given a differentiable function 
 

 f : n  D  ,                     , 
  

• Within an  -neighborhood of x(0) we can represent the 
zero level set of f completely as a heightfield function g 

     g : n-1         such that for  x – x(0) <   we have: 

     f(x1,..., xn-1, g(x1,...,xn-1)) = 0 and  

     f(x1,..., xn)  0 everywhere else. 

• The heightfield is a differentiable (n – 1)-manifold and its 
surface normal is the colinear to the gradient of f. 
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This means 

If we want to model surfaces, we are on the safe side if: 

• We use a smooth (differentiable) function f in 3. 

• The gradient of f does not vanish. 

This gives us the following guarantees: 

• The zero-level set is actually a surface: 

 We obtained a closed 2-manifold without boundary. 

 We have a well defined interior / exterior. 

Sufficient: 

• We need smoothness / non-vanishing gradient only close 
to the zero-crossing. 



Implicit Function Types 

Function types: 

• General case 
 Non-zero gradient at zero crossing 

 Otherwise arbitrary 

• Signed implicit function: 
 sign(f): negative inside and positive outside the object 

(or the other way round, but we assume this orientation here) 

• Signed distance field 
 |f| = distance to the surface 

 sign(f): negative inside, positive outside 

• Squared distance function 
 f = (distance to the surface)2 



Implicit Function Types 

Use depends on application: 

• Signed implicit function 
 Solid modeling 

 Interior well defined 

• Signed distance function 
 Most frequently used representation 

 Constant gradient  numerically stable surface definition 

 Availability of distance values useful for many applications 

• Squared distance function 
 This representation is useful for statistical optimization 

 Minimize sum of squared distances  least squares optimization 

 Useful for surfaces defined up to some insecurity / noise. 

 Direct surface extraction more difficult (gradient vanishes!). 

signed distance 



Squared Distance Function 

Example: Surface from random samples 

1. Determine sample point (uniform) 

2. Add noise (Gaussian) 

sampling Gaussian noise many samples distribution 
(in space) 
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Squared Distance Function 

Squared Distance Function: 

• Sampling a surface with uniform sampling and Gaussian 
noise: 

 Probability density is a convolution of the object with a 
Gaussian kernel 

• Smooth surfaces: The log-likelihood can be approximated 
by a squared distance function 



Smoothness 

Smoothness of signed distance function: 

• Any distance function (signed, unsigned, squared) in 
general cannot be globally smooth 

• The distance function is  
non-differentiable at the medial axis 

 Medial axis = set of points that 
have the same distance to two 
or more different surface points 

 For sharp corners, the medial 
axis touches the surfaces 

 This means: f non-differentiable 
on the surface itself 

 Usually, this is no problem in practice. 



Differential Properties 

Some useful differential properties: 

• We look at a surface point x, i.e. f (x) = 0. 

• We assumef (x)  0. 

• The unit normal of the implicit surface is given by: 

 

 

 For signed functions, the normal is pointing outward. 

 For signed distance functions, this simplifies to n(x) = f (x). 
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Differential Properties 

Some useful differential properties: 

• The mean curvature of the surface is proportional to the 
divergence of the unit normal: 

 

 

 

 

• For a signed distance function, the formula simplifies to: 
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Mean Curvature Formula 

Proof (sketch): 

• We assume that the normal is in z-direction, i.e., x, y are 
tangent to the surface (divergence is invariant under 
rotation). The surface normal is given by: 
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Computing Volume Integrals 

Computing volume integrals: 

• Heavyside function: 

 

 

• Volume integral over interior volume f of 
some function g(x) (assuming negative interior values): 
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Computing Surface Integrals 

Computing surface integrals: 

• Dirac delta function: 

 Idealized function (distribution) 

 Zero everywhere ((x) = 0),  
except at x = 0, where it is positive, inifinitely large. 

 The integral of (x) over x is one. 

• Dirac delta function on the surface: directional derivative 
of step(x) in normal direction: 
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Surface Integral 

Computing surface integrals: 

• Surface integral over the surface  f = {x | f (x) = 0} 
of some function g(x): 

 

 

• This looks nice, but is numerically intractable. 

• We can fix this using smothed out Dirac/Heavyside 
functions... 
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Smoothed Functions 

Smooth-step function 
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Implicit Surfaces 
Numerical Discretization 



Representing Implicit Functions 

Representation: Two basic techniques 

• Discretization on grids 

 Simple finite differencing (FD) grids 

 Grids of basis functions (finite elements FE) 

 Hierarchical / adaptive grids (FE) 

• Discretization with radial basis functions 
(particle FE methods) 



Discretization 

Discretization examples 

• In the following, we will look at 2D examples 

• The 3D (d-dimensional) case is similar 



Regular Grids 

Discretization: 

• Regular grid of values fi,j 

• Grid spacing h 

• Differential properties can 
be approximated by finite 
differences: 

 For example: 

  )(
1

)( )(,1)()(),( hOff
h

f jiji

x





 xxxxx

  )(
2

1
)( 2

)(,1)()(,1)( hOff
h

f jiji

x





 xxxxx



Regular Grids 

Variant: 

• Use only cells near the surface 

• Saves storage & computation time 

• However: We need to know an 
estimate on where the surface is 
located to setup the 
representation 

• Propagate to the rest of the 
volume (if necessary): 
fast marching method 



Fast Marching Method 

Problem statement: 

• Assume we are given the surface and signed distance 
value in a narrow band. 

• Now we want to compute distance values everywhere on 
the grid. 

Three solutions: 

• Nearest neighbor queries 

• Eikonal equation 

• Fast marching 



Nearest Neighbors 

Algorithm: 

• For each grid cell: 

 Compute nearest point on 
the surface 

 Enter distance 

• Approximate nearest neighbor 
computation: 

 Look for nearest grid cell with 
zero crossing first 

 Then compute distance curve  zero level set using a Newton-
like algorithm (repeated point-to-plane distance) 

• Costs: O(n) kNN queries (n empty cells) 



Eikonal Equation 

Eikonal Equation 

• Place variables in empty cells 

• Fixed values in known cells 

• Then solve the following PDE: 

 

 

 

• This is a (non-linear) boundary value problem. 
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Fast Marching 

Solving the Equation: 

• The Eikonal equation can be solved efficiently by a region 
growing algorithm: 

 Start with the initial known values 

 Compute new distances at immediate neighbors solving a local 
Eikonal equation (*) 

 The smallest of these values must be correct (similar to Dijkstra’s 
algorithm) 

 Fix this value and update the neighbors again 

 Growing front, O(n log n) time. 
 

(*) for details see: J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge 
University Press 1996. 



Regular Grids of Basis Functions 

Discretization (2D): 

• Place a basis function in each 
grid cell: bi,j = b(x – i, y – j) 

• Typical choices: 

 Bivariate uniform cubic B-splines 
(tensor product) 

 b(x, y) = exp[-(x2 + y2)] 

• The implicit function is then 
represented as: 

 
 

• The i,j describe different f. 
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Regular Grids of Basis Functions 

Differential Properties: 

• Derivatives: 

 

 

 

 

• Derivatives are linear 
combinations of the 
derivatives of the basis 
function. 

• In particular: We again get a 
linear expression in the i,j. 
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Adaptive Grids 

Adaptive / hierarchical grid: 

• Perform a quadtree /octree 
tessellation of the domain 
(or any other partition into 
elements) 

• Refine where more precision is 
necessary (near surface, maybe 
curvature dependent) 

• Associate basis functions with 
each cell (constant or higher 
order) 



Particle Methods 

Particle methods /  
radial basis functions: 

• Place a set of “particles” in space at 
positions xi. 

• Associate each with a radial basis 
function b(x – xi). 

• The discretization is then given by: 

 

 

• The i encode f. 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Obviously, derivatives are again linear 
in i: 

 

 

• The radial basis functions can also 
have different size (support) for 
adaptive refinement 

• Placement: near the expected surface 
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Particle Methods 

Particle methods /  
radial basis functions: 

• Where should we place the radial 
basis functions? 

 If we have an initial guess for 
the surface shape: 

– put some on the surface 

– and some in +/- normal direction. 

 Otherwise: 

– Uniform placement in lowres 

– Solve for surface 

– Refine near lowres-surface, iterate. 



Types of Radial Basis Functions 

Typical choices for radial basis functions: 

• (Quasi-) compactly supported functions: 

 Exponentials / normal distribution densities: exp(- x2) 

 Uniform (cubic) tensor product B-Splines 

 Moving-least squares finite element basis functions 
(will be discussed later) 

• Globally supported functions: 

 Thin plate spline basis functions: 

 

 These functions guarantee minimal integral second derivatives. 
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Pros & Cons 

Why use globally supported basis functions? 

• They come with smoothness guarantees 
(details in the next lecture) 

• However: Computations might become expensive 
(we will see later how to device efficient algorithms for 
globally supported radial basis functions) 

Locally supported functions: 

• Easy to use 

• Additional regularization might become necessary to 
compute a “nice” surface. 



Implicit Surfaces 
Level Set Extraction 



Iso-Surface Extraction 

New task: 

• Assume we have defined an implicit function 

• Now we want to extract the surface. 

• I.e. convert it to an explicit, piecewise parametric 
representation, typically a triangle mesh. 

• For this we need an iso-surface extraction algorithm 

 a.k.a. level set extraction 

 a.k.a. contouring 



Algorithms 

Algorithms: 

• Marching Cubes 

 This is the standard technique. 

 We will also discuss some problems / modifications. 

• Particle methods 

 Just to show an alternative 

 Not used that frequently in practice 



Marching Cubes 

Marching Cubes: 

• The most frequently used iso surface extraction algorithm 

 Creates a triangle mesh from an iso-value surface of a scalar 
volume 

 The algorithm is also used frequently to visualize CT scanner 
data and other volume data 

• Simple idea: 

 Define and solve a fixed complexity, local problem. 

 Compute a full solution by solving many such local problems 
incrementally. 



Marching Cubes 

Marching Cubes: 

• Here is the local problem: 

 We have a cube with 8 vertices 

 Each vertex is either inside or 
outside the volume 
(i.e. f (x) < 0 or f (x)  0) 

 How should we triangulate this cube? 

 How should we place the vertices? 



Triangulation 

Triangulation: 

• We have 256 different cases – each of the 8 vertices can 
be in or out. 

• By symmetry, this can be reduced to 15 cases 

 Symmetry: reflection, rotation, and bit inversion 

• This means, we can compute the topology of the mesh 

[source: Wikipedia] 



Vertex Placement 

How to place the vertices? 

• Zero-th order accuracy: Place vertices at edge midpoints 

• First order accuracy: Linearly interpolate vertices along 
edges. 

• Example: for scalar values f(x) = -0.1 and f(y) = 0.2,  
place the vertex at ratio 1:2 between x and y. 

[source: Wikipedia] 



Outer Loop 

Outer Loop: 

• Compute a bounding box of the 
domain of the implicit function. 

• Divide it into cubes of the same 
size (regular cube grid) 

• Execute “marching cube” 
algorithm in each subcube 

• Output the union of all triangles 
generated 

• Optionally: Use a vertex hash table 
to make the mesh consistent 
(remove double vertices) 



Marching Squares 

Marching Squares: 

• There is also a 2D version of the algorithm, called 
marching squares. 

• Same idea, but fewer cases. 



Ambiguities 

There is a (minor) technical problem remaining: 

• The triangulation can be ambiguous 

• In some cases, different topologies are possible which are 
all locally plausible: 

 

 

 

• This is an undersampling artifact. At a sufficiently high 
resolution, this cannot occur. 

• Problem: Inconsistent application can lead to holes in the 
surface (non-manifold solutions) 
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Ambiguities 

Solution: 

• Always use the same solution pattern in ambiguous 
situations 

• For example: Always connect diagonally. 

 This might yield topologically wrong results. 

 But the surface is guaranteed to be a triangulated 2-manifold 
without holes and with well defined interior / exterior 

• Better solution: 

 Use higher resolution sampling (if possible) 

• All of this (problem and solutions) also applies to the 3D 
case. 



MC Variations 

Empty space skipping: 

• Marching cube uses an n3 voxel grid, which can become 
pretty expensive. 

• The surface intersects typically only O(n2) voxels. 

• If we roughly know where the surface might appear, we 
can restrict the execution of the algorithm (and the 
evaluations of f at the corners) to a narrow band around 
the surface. 

• Example: Particle methods – only extract within the 
support of the radial basis functions. 



MC Variations 

Hierarchical marching cubes algorithm: 

• One can use a hierarchical version of the marching cubes 
algorithm using a balanced octree instead of a regular grid 

  We need some refinement criterion to judge on where to 
subdivide 

 This is application dependent (depends on the definition of f ). 

• However, we obtain many more cases to consider (which 
is painful to derive) 

Simple solution (common in practice): 

• Extract high-resolution triangle mesh 

• Then run mesh simplification (slower, but better quality) 



Particle-Based Extraction 

Particle-based method: 

• This technique creates a set of points as output, which 
cover the iso-surface. 

• Algorithm: 

 Start with a random point cloud (n points in a bounding volume) 

 Now define forces that attract particles to the zero-level set. 

 Also add some (weak) tangential repulsion to make them 
distribute uniformly 



Forces 

Attraction “force”: 

 

Tangential repulsion force: 
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Solution 

Solution: 

• We obtain a system of ordinary differential equations 

• The ODE can be solved numerically 

• Simplest technique: gradient decent (explicit Euler) 

 Move every point by a fraction of the force vector 

 Recalculate forces 

 Iterate 

• We have the solution if the system reaches a steady state 
(nothing moves anymore, numerically) 



Implicit Surfaces 
Solid Modeling 



Solid Modeling 

We want to: 

• Form basic volumetric primitives (spheres, cubes, 
cylinders) as implicit functions (this is easy, no details). 

• Compute Boolean combinations of these primitives: 
Intersection, union, etc... 

• Derive an implicit function from these operations 



Boolean Operations 

Actually, Boolean operations with implicit functions 
are simple: 

• Given two signed implicit functions (negative inside) fA, fB 
for objects A, B. 

• The boolean combinations are given by: 

 Union A B: fA  B = min(fA, fB) 

 Intersection A  B: fA  B = max(fA, fB) 

 Complement  A:   fA = – fA 

 Difference A \ B:  fA \ B = max(fA, – fB) 

-   - 
+ 

+ 
-   - 

 + 
- 

-   - 
+ 



Hierarchical Modeling 

This can be models as a CSG tree (constructive solid 
geometry): 

• Leaf nodes are signed  
distance functions 

• Inner nodes are Boolean 
operations 

• Evaluation translates to 
an arithmetic expression 

• Other operations: 

 Deformation (apply vector field) 

 Blending (combine surfaces smoothly) 

 

  

- + - + - + - + 



Hierarchical Modeling 

Rendering CSG hierarchies: 

• Rendering is simple 

• We get one compound 
signed implicit function 

• We can extract the surface 
using marching cubes 

• We can raytrace the surface 
using a numerical root 
finding algorithm 

 For example: 
Newton scheme with voxel-based intialization 

 

  

- + - + - + - + 



Implicit Surfaces 
Data Fitting 



Constructing Implicit Surfaces 

Question: How to construct implicit surfaces? 

• Basic primitives: Spheres, boxes etc... are (almost) trivial. 

• We can construct implicit spline schemes by using 3D 
tensor product (or tetrahedral) constructions of 3D Bezier 
or B-Spline functions 

• Another option: Variational modeling (next lecture) 

• In this chapter of this lecture: Fitting to data 



Data Fitting 

Data Fitting Problem: 

• We are given a set of points 

• We want to find an implicit surface that interpolates or 
approximates these points 

• This problem is ill-defined 

• We need additional assumptions to make it well-defined 

• We will look at three variants: 

 Hoppe’s method / plane blending 

 Thin-plate spline data matching 

 MPU Implicits (multi-level partition of unity implicits) 



Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 



Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 

 

unoriented normals: 
total least squares plane fit (PCA) 

in a k-nearest neighbors neighborhood 



Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 

 

consistent orientation:  
region growing, flip normals if angle > 180°,  
pick most similar normal next in each step 



Plane Blending Method 

Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 

consistent orientation:  
blend between signed distance functions of  

planes associated with each point 



Plane Blending Method 

Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 

signed distance function:  
plane blending (next slide) 



Normal Constraints 

Basic Idea: 

• Each point defines an oriented plane and a signed distance 
function 

• To obtain a composite distance field in space: 
Blend these distance functions with weights from a kernel 
function (Gaussian, or uniform B-Spline) 
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Normal Constraints 

Basic Idea: 
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Plane Blending Method 
Initial data 

Estimate normals 

Signed distance 
func. 

Marching cubes 

Final mesh 
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Plane Blending Method 

Initial data 

Estimate normals 

Signed distance func. 

Marching cubes 

Final mesh 



Thin-Plate Spline Data Matching 

Agenda: 

• Use radial basis functions 

• Use a globally supported basis 
that guarantees smoothness 

• Place radial basis functions 
at the input points 

• Place two more in normal and  
negative normal direction 

• Prescribe values +1,0,-1 

• Solve a linear system to meet  
these constraints 
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Types of Radial Basis Functions 

Typical choices for radial basis functions: 

• Globally supported functions: 

 Thin splate spline basis functions: 

 

 These functions guarantee minimal integral second derivatives. 

• Problem: evaluation 

 Every basis function interacts with each other one 

 This creates a dense n n linear system 

 One can use a fast multi pole method that clusters far away 
nodes in bigger octree boxes 

 This gives O(log n) interactions per particle, overall O(n log n) 
interactions. 
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Alternative 

Alternative: 

• Use locally supported basis functions (e.g. B-Splines) 

• Employ an additional regularization term to make the 
solution smooth. 

• Optimize the energy function 

 

 

 

 
 

• The crictical point is the solution to a linear system 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Hierarchical implicit function 
approximation 

 Given: data points with normals 

 Computes: hierarchical  
approximation of the signed 
distance function 

 



MPU Implicits 

Multi-level partition of unity implicits: 

• Octree decomposition of space 

• In each octree cell, fit an implicit 
quadratic function to points 

 f (xi) = 0 at data points 

 Additional normal constraints 

• Stopping criterion: 

 Sufficient approximation accuracy 
(evaluate f at data points to 
calulate distance) 

 At least 15 points per cell. 



MPU Implicits 

Multi-level partition of unity implicits: 

• This gives an adaptive grid of 
local implicit function  
approximations. 

• Problem: How to define a global 
implicit function? 

• Idea: Just blend between local 
approximants using a windowing 
function 



MPU Implicits 

Multi-level partition of unity implicits: 

• Windowing function: 

 Use smooth windowing function w 

– B-splines / normal distribution 

– original formulation: quadratic  
tensor product B-spline function, 
support = 1.5 cell diagonal 

 Renormalize to form partition 
of unity: 
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MPU Implicits 

Multi-level partition of unity implicits: 

• Sharp features:  

 If a leaf cell with a few points has strongly varying normals, this 
might be a sharp feature. 

 Multiple functions can be fitted to parts of the data 

 Boolean operations to obtain composite distance field 

 

 


