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Overview... 

Topics: 

• Triangle Meshes & Multi-Resolution Representations 

• Implicit Functions 

• Subdivision Surfaces 

• Variational Modeling 
 Introduction 

 Variational Framework 

 Variational Function Fitting Toolkit 

 Euler & Lagrange – Some More Mathematical Background 

 Surface Modeling 

 Other Applications 



Variational Modeling 
Introduction 



 Motivation 

Surface modeling techniques we have seen so far: 

• Bivariate polynomial spline patches 

 Quad (tensor product) patches 

 Triangular patches 

• Subdivision surfaces 

• Implicit functions 



 Motivation 

Problems: 

• Bivariate polynomial spline patches 

 General topologies are hard to handle 

 Need to adapt base mesh to user constraints 

– control points, boundaries, etc. 

• Subdivision surfaces 

 More flexible than spline patches 

 Problems: 

– Continuity at extraordinary vertices 

– Still need to build a base mesh 

• Implicit functions 

 Nice tool – but how do we construct actual surfaces? 



Variational Modeling 

Variational Modeling: 

• Different approach: 

 Formulate smoothness in terms of a penalty function 

 Set additional constraints (handle points, normals, etc) 

 Then solve for the “optimal function” 

• No direct manipulation of control points... 

 No direct user interaction 

– Use e.g. B-Splines or implicit functions 
as numerical representation 

– Control points moved “automatically” 

– “Meta tool”: compute control points automatically 

 Instead: Sparse control points/handles with more semantics 



Two Views: 

In this lecture: 

• Narrow view: 

 Use variational techniques for modeling shapes 

• General view: 

 Short introduction / overview to variational calculus and 
practical techniques. 

 Application examples in geometry processing. 

Applications beyond geometric modeling: 

• Variational approaches ubiquitous 

 in computer graphics 

 in computer vision (in particular) 



Variational Modeling 
Basic Techniques 



Calculus of Variation 

Basic Idea: 

• We look at a set of functions f: S  D 

• Define “energy functional” E: (S  D)   

 Functional: assigns real numbers to functions 

 Each function gets a “score” 

 “Energy” means: the smaller the better 

• Add additional requirements (“constraints”) on f. 

 Soft constraints  violation increases energy. 

 Hard constraints  violation not allowed. 

• Compute function(s) f that minimize E. 



Calculus of Variation 

Very general framework: 

• Many problems directly formulated this way 

• Example 1: 

 Looking for a curve. 

 As smooth as possible (energy = non-smoothness). 

 It should go through a number of points (hard constraints). 

E large 
E small 

constraints 



Calculus of Variation 

Another example: 

• Problem: We want to go to the moon. 

• Given: 

 Orbits of moons, planets and star(s). 

 Flight conditions (athmosphere, gravitation of stellar bodies) 

• Unknowns: 

 Throttle (magnitude, direction) from rocket motors (vector 
function) 

• Energy function: 

 Usage of rocket fuel (the fewer the better) 

 Perhaps: Overall travel time (maybe not longer than a week) 



Calculus of Variation 

To the moon: 

• Constraints: 

 We want to start in Cape Canaveral (upright trajectory) and end 
up on the moon. 

 We do not want to hit moons or planets on our way. 

 We want to approach the moon at no more than 20 km/h 
relative speed upon touchdown. 

 The rocket motor has a limited range of forces it can create (not 
more than a certain thrust, no backward thrust) 

So flying to the moon is just minimizing a functional. 
(ok, this is slightly simplified) 



A Simple Example 

Simple example: variational splines 

• Energy: 

 We want smooth curves 

 Smooth translates to minimum curvature 

 Quadratic penalty: 
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A Simple Example 

Simple example: variational splines 

• Energy: 

 Problem: curvature is non-linear 

 Easier to minimize: second derivatives 

 Equivalent in case of a unit-speed parametrization 
(which is tricky to enforce) 
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A Simple Example 

Simple example: variational splines 

• Constraints: 

 Hard constraints: we are given parameter values t1, ..., tn 

at which we should meet control points p1, ..., pn. 

 

 

 

 We already know the solution to this problem: Piecewise cubic 
interpolating spline. 
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A Simple Example 

Simple example: variational splines 

• More interesting: soft constraints 

 We are given parameter values t1,...,tn at which we should 
approximately meet control points p1, ..., pn. 

 

 

 

  controls the smoothness of the result. Large values reduce 
smoothness to meet the control points more precisely. 
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A Simple Example 

Simple example: variational splines 

• Soft constraints 

 We are given parameter values t1,...,tn at which we should 
approximately meet control points p1, ..., pn, up to a specific 
accuracy for each point. 

 We can specify the accuracy by error quadrics Q1, ..., Qn. 
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Rank-Deficient Quadrics 

The rank deficient error quadric trick: 

• A rank-1 matrix constraints the curve in one direction only 

• Useful for point-to-surface constraints (minimize normal 
direction deviation, tangential motion is free) 
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Numerical Treatment 

Numerical computation: 

• No closed form solution 

• Instead: 

 Discretize (finite dimensional function space) 

 Solve for coefficients (coordinate vector in this function space) 



Finite Differences 

FD solution: 

• Represent curve as array of k values: 

 

 

 

• Unknowns are the curve points y1, ..., yk 

t 0 0.1 0.2 ... 7.4 7.5 

y y0 y1 y2 ... Y74 y75 

y1 

y2 

yk 



Discretized Energy Function 

Discretized Energy Function: 

• Energy is a squared linear expression  quadratic 
discrete objective function 

• Constraints are quadratic by construction 

• Yields quadratic energy function  

 solved by a linear system 
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(neglected here: handling boundary values) 



Summary 

Summary: 

• Variational approaches look like this: 

 

 

 

 

• Connection to statistics: 

 Bayesian maximum a posteriori estimation 

 E(data) is the data likelihood (log space) 

 E(regularizer) is a prior distribution (log space) 
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Variational Toolbox: 
Data Fitting, Regularizer 

Functionals, Discretizations 



Toolbox 

In the following: 

• We will discuss... 

 ...useful standard functionals. 

 ...how to model soft constraints. 

 ...how to model hard constraints. 

 ...how to discretize the model. 

• Then snap & click your favorite custom variational 
modeling scheme. 

• (Click & snap means: add together to a composite energy) 



Functionals 



Functionals 

Standard Functional #1: Function norm 

• Given a function f: m     n 

• Minimize: 

 
 

• Means: the function values should not become too large 

• Often useful to avoid numerical problems: 

 Assume an SPD quadratic functional 

 Add E(zero)  

– smallest eigenvalue cannot become smaller than  
( condition number) 

– system is always solvable 
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Functionals 

Standard Functional #2: Harmonic energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize differences to neighboring points 

• Appears all the time in physics & engineering. 

 not really what we want for smooth curves... 
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Harmonic Energy 

Example: Heat equation 

• Given a metal plate 

• Hard constraints: 

 A heat source 

 A heat sink 

• What is the final heat distribution? 

 Heat flow tends to equalize temperature. 

– Stronger heat flow for larger temperature gradients. 

 Gradients become as small as possible. 

heat sink heat source 



Harmonic Energy 

Example: Harmonic energy 

• Curves that minimize the harmonic energy: 

 Shortest path, a.k.a. polygons 

 

 

• Two-dimensional parametric surface: 

 

 

 

• Useful in parametrization (conformal mappings are 
harmonic) 



Functionals 

Standard Functional #3: Thin plate spline energy 

• Given a function f: m     n 

• Minimize: 

 

 

• Objective: minimize integral second derivatives 

 approximately: minimize curvature 

• More common in geometric modeling/processing 

 yields smooth curves & surfaces 

 A true curvature based energy is rarely used (non-quadratic). 
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Energies for Vector Fields 

Vector fields: 

• The following energies are useful for mappings from 
n  n (e.g.: space deformations). 

• Think of an object moving (over time). 

• f(x) describes its deformation. 

• f(x,t) describes its motion over time. 

  n f()  n 

f: n  n 



Functionals 

Standard Functional #4: Green’s deformation tensor 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize metric distortion 
 Metric distortion =  non-identity first fundamental form 

• Basis for physically-based deformation modeling: 
 Energy is invariant under rigid transformations. 

 Bending, scaling, shearing is penalized. 

 Energy is non-quadratic (non-linear optimization required). 

 Matrix M encodes material properties (often M = I). 

– Important: read M·[...] as Matrix-Vector product 
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How to Detect Deformations? 

Model 

• Map volume to volume 

• Function 𝑓: 𝑉 → ℝ3 

S1 

V1 
f 

S2 

f 

f (V1) 



How to Detect Deformations? 

Detect deformation 

• Look at “deformation gradients” 

• Jacobian matrix 𝛻𝑓 

• Function 𝛻𝑓: 𝑉 → ℝ3 

 

 
 

Criterion 

• No deformation: 𝛻𝑓 orthogonal 

• Deformation: 𝛻𝑓 non-orthogonal 

f 
𝛻𝑓 



Elastic Volume Model 

Extrinsic Volumetric “As-Rigid-As Possible” 

• Measure orthogonality 

• Integrate over deviation from orthogonality 
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V1 
f 

S2 
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f (V1) 
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Functionals 

Standard Functional #5: Volume preservation 
• Given a function f: n     n 

• Minimize: 

 

 

• Objective: minimize local volume changes 

• This energy tries to preserve the volume at any point. 

 Physics: Incompressible materials (for example fluids) 

 The energy is invariant under rigid transformations. 

 This energy is non-quadratic (non-linear optimization required). 

 Often used in conjunction with deformation models. 
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Detect local change of volume 

• Look at “deformation gradients” 

• Jacobian matrix 𝛻𝑓 

• Function 𝛻𝑓: 𝑉 → ℝ3 

 

 
 

Criterion 

• Same volume: 𝛻𝑓 maintains volume (= determinant) 

• Volume change: det 𝛻𝑓 changes 

Volume Preservation 

𝛻𝑓 f 



Functionals 

Standard Functional #6: Infinitesimal volume preservation 

• Given a function v: n     n, 𝐯 𝐱, 𝑡 =
𝑑

𝑑𝑡
𝐟(𝐱, 𝑡) 

• Minimize: 

 

 

• Minimize local volume changes in a velocity field 

• Difference to the previous case: 
 The vectors are instantaneous motions (v(x) = d/dt f(x,t)) 

 A divergence free (time dependent) vector field will not 
introduce volume changes 

 This functional is linear, but does not work for large (rotational) 
displacements. 
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Functionals 

Standard Functionals #7 & #8: Velocity & acceleration 
• Given a function v: (n  )      n 

• Minimize: 

 

 

• Objective: minimize velocity / acceleration 

• Models air resistance, inertia. 
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Soft Constraints 



Soft Constraints 

Penalty functions 
• Uniform 
• General quadrics 
• Differential constraints 

Types of soft constraints 
• Point-wise constraints 
• Line / area constraints 

Constraint functions 
• Least-squares 
• M-estimators 



Uniform Soft Constraints 

Uniform, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

General quadratic, point-wise soft constraints: 
• Given a function f: n     n 

• Minimize: 
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Uniform Soft Constraints 

Differential constraints: 
• Given a function f: n     n 

• Minimize: 
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This is still a quadratic constraints ( linear system). 



Examples 

Examples of differential constraints: 

• Prescribe normal orientation of a surface 

 

 

• Prescribe rotation of a deformation field 

 

• Prescribe velocity or acceleration of a particle trajectory 
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Line / Area Soft Constraints 

Line and area constraints: 
• Given a function f: n     n 

• Minimize: 

 

 

 

 

 

• A.k.a: “Transfinite Constraints” 
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Constraint Functions 

Constraint Functions: 
• Typically, we use quadratic constraints 

 E(x) = f (x)2 

 Easy to optimize (linear system) 

 Well-defined critical point (gradient vanishes) 

 Sensitive to outliers 

• Constraints come from measured data 
 E.g.: 3D scanner data 

 Quadratic constraints may case trouble 



Constraint Functions 

Constraint Functions: 
• Alternatives: 

 L1-norm constraints: 

– E(x) = |f (x)| 

– more robust and still convex, i.e. can be optimized 

 Non-convex, truncated constraints: 

– E(x) = min(|f (x)|, C), C>0 

– yet more robust 

– finding a global optimum can be problematic 

– c.f. least-squares chapter 



Discretization 



Finite Element Discretization 

Finite-element discretization: 

• Step 1: Choose a finite dimensional  function space  

 Spanned by basis functions 

• Step 2: Compute optimum in that space only 

• Finite differences (FD) is a special case 

 grid of piecewise constant basis functions 

• General approach: 








k

i
ii

f

xbxf

fEfE

1

)()(
~

)
~

(minarg)(minarg








Finite Element Discretization 

Derive a discrete equation: 
• Just plug in the discrete f. 

• Then minimize the it over the . 

• For a differentiable energy function, we compute the 
critical point(s): 

 

 

 
• For quadratic functionals, this leads to a linear system. 

• For non-linear functionals, we can apply 
 Newton-optimization 
 Gradient descent 
 etc. 
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Example 

(Abstract) example: 

• Minimize square integral of a differential operator 

• Quadratic differential soft constraints 

• We obtain a quadratic optimization problem 

 The unknowns are the coefficients 
(coordinates in function basis) 



Example 

(Abstract) example (cont): 
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Numerical Aspects 



How to solve the problems? 

Solving the discretized variational problem: 

• Quadratic energy and quadratic constraints: 

 The discretization is a quadratic function as well. 

 The gradient is a linear expression. 

 The matrix in this expression is symmetric. 

 Well-defined problem => matrix is semi-positive definite 

 Usually very sparse matrix 

– coefficients of basis functions only interact with neighbors 

– depends on overlap of support 

 We can use iterative sparse system solvers: 

– frequently used: conjugate gradients (needs SPD matrix). 
CG is available in GeoX. 



How to solve the problems? 

Solving the discretized variational problem: 

• Non linear energy functions: 

 If the function is convex, we can get to a critical point that is the 
global minimum. 

 In general, we can only find a local optimum (or critical point). 

 Frequently used techniques are: 

– Newton optimization: 
- Iteratively compute 2nd order Taylor expansions 

(Hessian matrix, gradient) and solve linear problems. 

- Typically, Hessian matrices are sparse. 
Use conjugate gradients to solve for critical points. 

- Variants – Quasi Newton: Gauss-Newton, (L)BFGS 

– Non-linear conjugate gradients with line search. 

– In any case, we need a good initialization. 



Hard Constraints 



Hard Constraints 

Hard Constraints: 

• Sometimes, we want some properties of the solution to 
be met exactly rather than approximately. 

 Interpolation vs. approximation 

 Includes complex constraints (area constraints, differential 
properties etc.) 

• Three options to implement hard constraints: 

 Strong soft constraints (easy, but not exact) 

 Variable elimination (exact, but limited) 

 Lagrange multipliers (most complex method) 



Hard Soft Constraints 

Simplest Implementation: 

• Use soft constraints with a large weight 

 

• This is simple to implement. 

• A few serious problems: 

 The technique is not exact 

– For some applications this might be not acceptable. 

 The stronger the constraints, the larger the weight: 

– The condition number of the quadric matrix (condition of 
the Hessian in the non-linear case) becomes worse. 

– At some point, no solution is possible anymore. 

– Iterative solvers are slowed down (e.g. conjugate gradients) 
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Variable Elimination 

Idea: Variable elimination 

• We just replace variables by fixed numbers. 

• Then solve the remaining system. 

Example: 

4.0 

2.5 

4.5 

y1 
y2 

y3 
y4 y5 y6 

y7 
y8 

y9 

f ’(x0) = h-1(y1 – 4.0) 

f ’(x3) = h-1(y4 – y3) 



Variable Elimination 

Advantages: 
• Exact constraints 

• Conceptually simple 

Problems: 
• Only works for simple constraints (variable = value) 

• Need to augment system (not so easy to implement 
generically) 

• Does not work for FE methods (general basis functions) 
 Values at any point are a sum of scaled basis functions 

• Does not work for complex constraints (area/integral 
constraints, differential constraints etc.) 



Lagrange Multipliers 

Most general technique: Lagrange multipliers 

• This method works for complex, composite constraints 

• No problems with general basis functions 

 Not restricted to finite difference discretizations 

• The technique is exact. 



Lagrange Multipliers 

Here is the idea: 

• Assume we want to optimize E(x1, ..., xn) subject to an 
implicitly formulated constraint g(x1, ..., xn) = 0. 

• This looks like this: 

E g 0)(,  xggE 
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E g 
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Lagrange Multipliers 

Formally: 

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0. 

• Formally, we want: 

 

• We get a local optimum for: 

 

 

 

• A critical point of this equation 
satisfies both 
and               . 

gE  

0)(  and  )()(  xxx ggE 

  0)(,,...,:i.e.

0)(

)()()(

1

,







x

x

xxx

x

LG

LG

gELG

nxx 





0)( xg
)()( xx gE  

E

g



Example 

Example: Optimizing a quadric subject to a linear  
 equality constraint 

• We want to optimize: 

• Subject to: 

We obtain: 

•   

 

 
 

• Linear system: 
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Multiple Constraints 

Multiple Constraints: 

• Similar idea 

• Introduce multiple “Lagrange multipliers” . 
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Multiple Constraints 

Example: Linear subspace constraints 

•                                 subject to 

•   

 

• Linear system: 
 

• Remark: M must have full rank for this to work. 
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What can we do with this? 

Multiple linear equality constraints: 

• We can constrain 

 multiple function values 

 differential properties 

 integral values 

• Area constraints: 

 Sample at each basis function of the discretization 

 and prescribe a value 

• Need to take care: 

 Need to make sure that constraints are linearly independent 



What can we do with this? 

Inequality constraints: 

• There are efficient quadratic programming algorithms. 

 Idea: turn on and off the constraints intelligently. 

• Examples:  

 Simplex method 

 Interior-point method 



The Euler Lagrange Equation 
(some more math) 



The Euler-Lagrange Equation 

Theoretical Result: 

• An integral energy minimization problem can be reduced 
to a differential equation. 

• We look at energy functions of a specific form: 

 

 

 

 f is the unknown function 

 F is the energy at each point x to be integrated 

 F depends (at most) on the position x, the function value f (x) and 
the first derivative f'(x). 
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The Euler-Lagrange Equation 

Now we look for a minimum: 

• Necessary condition: 

•                          (critical point) 
 

• In order to compute this: 

 Approximate f by a polygon (finite difference approximation) 

 f = ((x1, y1), ..., (xn, yn)) 

 Equally spaced: xi – xi-1 = h 
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(Can be formalized more precisely 
using functional derivatives) 



The Euler-Lagrange Equation 

Minimum condition: 
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The Euler-Lagrange Equation 

Minimum condition: 
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Letting h  0, we obtain the continuous Euler-Lagrange 
differential equation: 



The Euler-Lagrange Equation 
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Example 

Example: Harmonic Energy 
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Generalizations 

Multi-dimensional version: 

 df :

 


 dxxd dxdxffxfxxFfE
d

...)(),...,(),(,,...,)( 11 1
xx

Necessary condition for extremum: 

0
)( 1













d

i xi i
f

E

dx

d

f

E

x

)(: xf
x

f
i

xi 




This is a partial differential equation (PDE). 



Example 

Example: General Harmonic energy 
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Summary 

Euler Lagrange Equation: 
• Converts integral minimization problem into ODE or PDE. 

• Gives a necessary, but not sufficient condition for 
extremum (critical “point”, read: function f ) 

• Application: 
 From a numerical point of view, no big difference: 

– We can directly optimize the integral expression 

– Same discrete system of equations 

 Analytical tool 

– Helps understanding the minimizer functions. 



Surface Modeling 



Applications 

Variational Surface Modeling: 

Two Examples: 

• Parametric surfaces 
[Welch & Witkin: “Variational Surface Modeling”, Siggraph 1992] 

• Implicit surfaces 
[Turk, O'Brien: “Variational Implicit Surfaces.”, TR, Georgia-Tec, 
1999] 

 



Parametric Surfaces 

Domain: 
• Parametric patch: f: [0,1]2  3. 

• Representation (discretization): 
 Grid of uniform tensor-product B-Splines 

 Refine by dilated functions (subdivision) until convergence 

• Energy: 
 Thin-plate-spline energy 

• Constraints: 
 Points (soft / hard, langrange multipliers) 

 Transfinite constraints (curves, soft constraints only) 

• Numerics: 
 Quadratic objective  solver sparse linear system 



Implicit Surface 

Domain: 
• Implicit function: f: [0,1]3  . 

• Representation (discretization): 
 Radial basis functions of 

fundamental solutions 

• Energy: 
 Thin-plate-spline energy 

• Constraints: 
 Points with normals (hard, variable elimination) 

• Numerics: 
 Radial basis functions around points and  normal 

 Solve linear system for interpolation problem 

 Energy implicitly encoded in fundamental solutions 
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Other Applications 



Variational Animation Modeling 

f (x, t) – deformation field 

t = 0 t = 1 t = 2 

x – point on urshape S 
S 

f 
f 



Variational Framework 
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[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008] 
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