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Overview...

Topics:
e Triangle Meshes & Multi-Resolution Representations
e Implicit Functions
e Subdivision Surfaces

e Variational Modeling
= Introduction
Variational Framework
Variational Function Fitting Toolkit
Euler & Lagrange — Some More Mathematical Background
Surface Modeling
Other Applications



Variational Modeling
Introduction



Motivation

Surface modeling techniques we have seen so far:

 Bivariate polynomial spline patches
= Quad (tensor product) patches
= Triangular patches

e Subdivision surfaces
e Implicit functions



Motivation

Problems:

 Bivariate polynomial spline patches
= General topologies are hard to handle
= Need to adapt base mesh to user constraints
— control points, boundaries, etc.

e Subdivision surfaces
= More flexible than spline patches
= Problems:
— Continuity at extraordinary vertices
— Still need to build a base mesh

e Implicit functions

= Nice tool — but how do we construct actual surfaces?



Variational Modeling

Variational Modeling:

e Different approach:
= Formulate smoothness in terms of a penalty function
= Set additional constraints (handle points, normals, etc)
= Then solve for the “optimal function”

e No direct manipulation of control points...
= No direct user interaction

— Use e.g. B-Splines or implicit functions
as numerical representation

— Control points moved “automatically”
— “Meta tool”: compute control points automatically
= |Instead: Sparse control points/handles with more semantics



Two Views:

In this lecture:

e Narrow view:

= Use variational techniques for modeling shapes

e General view:

= Short introduction / overview to variational calculus and
practical techniques.

= Application examples in geometry processing.

Applications beyond geometric modeling:
e Variational approaches ubiquitous

= in computer graphics
= in computer vision (in particular)



Variational Modeling
Basic Techniques



Calculus of Variation

Basic ldea:
e We look at a set of functions f: S—> D
e Define “energy functional” E: (S — D) > R

= Functional: assigns real numbers to functions
= Each function gets a “score”
= “Energy” means: the smaller the better
e Add additional requirements (“constraints”) on f.
= Soft constraints — violation increases energy.

= Hard constraints — violation not allowed.

e Compute function(s) f that minimize E.



Calculus of Variation

Very general framework:
e Many problems directly formulated this way
e Example 1:

= Looking for a curve.
= As smooth as possible (energy = non-smoothness).
= |t should go through a number of points (hard constraints).
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Calculus of Variation

Another example:
e Problem: We want to go to the moon.
e Given:

= Orbits of moons, planets and star(s).
= Flight conditions (athmosphere, gravitation of stellar bodies)
e Unknowns:

= Throttle (magnitude, direction) from rocket motors (vector
function)

e Energy function:
= Usage of rocket fuel (the fewer the better)
= Perhaps: Overall travel time (maybe not longer than a week)



Calculus of Variation

To the moon:

e Constraints:

= We want to start in Cape Canaveral (upright trajectory) and end
up on the moon.

= We do not want to hit moons or planets on our way.

= We want to approach the moon at no more than 20 km/h
relative speed upon touchdown.

= The rocket motor has a limited range of forces it can create (not
more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional.
(ok, this is slightly simplified)



A Simple Example

Simple example: variational splines
e Energy:

= We want smooth curves
= Smooth translates to minimum curvature
= Quadratic penalty:

E(f)= j| curvature,(t)|* dt

curve

e

D)



A Simple Example

Simple example: variational splines
e Energy:

= Problem: curvature is non-linear
= Easier to minimize: second derivatives

= Equivalent in case of a unit-speed parametrization
(which is tricky to enforce)

- -2

E(f)= | |-5f®)] dt

curve L




A Simple Example

Simple example: variational splines

e Constraints:

= Hard constraints: we are given parameter values t,, ..., t,
at which we should meet control points p, ..., p,.

E(f)= j {;—tzf(t)} dt

= We already know the solution to this problem: Piecewise cubic
interpolating spline.



A Simple Example

Simple example: variational splines

e More interesting: soft constraints

= We are given parameter values t,,...,t, at which we should
approximately meet control points p,, ..., p,.

2
dZ
E(f)= j { ; f(t)} dt + AZ(f(t )-p,)
t=tq dt
= /1 controls the smoothness of the result. Large values reduce
smoothness to meet the control points more precisely.



A Simple Example

Simple example: variational splines
e Soft constraints

= We are given parameter values t,,...,t, at which we should

approximately meet control points p, ..., p,,, up to a specific
accuracy for each point.

= We can specify the accuracy by error quadrics Q, ..., Q.

tn

E(f)= j{;zf(t)} dt+2(f(t) p,) Q(f(t)-p;)

t=tq



Rank-Deficient Quadrics

The rank deficient error quadric trick:
e A rank-1 matrix constraints the curve in one direction only

e Useful for point-to-surface constraints (minimize normal
direction deviation, tangential motion is free)




Numerical Treatment

Numerical computation:
e No closed form solution
e |Instead:

= Discretize (finite dimensional function space)
= Solve for coefficients (coordinate vector in this function space)



Finite Differences

FD solution:

e Represent curve as array of k values:

t 0 0102 | .. |74 |75

y Yo A4 \ g Y, | Vs

e Unknowns are the curve points Vi o0 Y

Y1



Discretized Energy Function

Discretized Energy Function:

e Energy is a squared linear expression — quadratic
discrete objective function

e Constraints are quadratic by construction
 Yields quadratic energy function

= solved by a linear system
E(f): jz {;tzf(t):| dt+i(f(ti)_pi)TQi(f(ti)_pi)

t=tq

| kfy 2y +y. [ &
E(dzscr) (f) — Z|:YI1 Iz;l - YI+1 i| i Z(yindex(ti) - pi )T Qi <Yindex(t,-) B pl)
i=1 i=1

(neglected here: handling boundary values)



Summary

Summary:

e Variational approaches look like this:

compute argminkE( f),
feF

E(f) _ E(data)(f) + E(regularizer) (f) ,

f eF={f] f satifieshard constraints}

e Connection to statistics:

= Bayesian maximum a posteriori estimation
= Eldata) js the data likelihood (log space)
= [lregularizer) jg 3 prior distribution (log space)



Variational Toolbox:
Data Fitting, Regularizer
Functionals, Discretizations



Toolbox

In the following:

e We will discuss...
= ...useful standard functionals.
= ...how to model soft constraints.
= ...how to model hard constraints.
= ...how to discretize the model.

e Then snap & click your favorite custom variational
modeling scheme.

e (Click & snap means: add together to a composite energy)



Functionals




Functionals

Standard Functional #1: Function norm
e Given a functionf: R"o> Q) — R”
e Minimize:

E(Zero) (f) _ J'f(X)Z dx

e Means: the function values should not become too large
e Often useful to avoid numerical problems:

= Assume an SPD quadratic functional
= Add AE(zero)

— smallest eigenvalue cannot become smaller than A
(— condition number)

— system is always solvable



Functionals

Standard Functional #2: Harmonic energy
e Given a functionf: R">Q — R”

e Minimize:
E(harmonic)(f) _ I(Vf(X))Z dx

e Objective: minimize differences to neighboring points
e Appears all the time in physics & engineering.

= not really what we want for smooth curves...



Harmonic Energy

Example: Heat equation
e Given a metal plate
e Hard constraints:

= A heat source
= A heat sink

e \What is the final heat distribution?

= Heat flow tends to equalize temperature.

heat sink heat source

— Stronger heat flow for larger temperature gradients.
= Gradients become as small as possible.



Harmonic Energy

Example: Harmonic energy

e Curves that minimize the harmonic energy:
= Shortest path, a.k.a. polygons

SN

e Two-dimensional parametric surface:

e Useful in parametrization (conformal mappings are
harmonic)



Functionals

Standard Functional #3: Thin plate spline energy
e Given a functionf: R">Q — R”
e Minimize:

E(TSS) (f) _ J’ii 62 f(X) Jx

e Objective: minimize integral second derivatives

= approximately: minimize curvature

e More common in geometric modeling/processing
= yields smooth curves & surfaces
= A true curvature based energy is rarely used (non-quadratic).



Energies for Vector Fields

Vector fields:

e The following energies are useful for mappings from
R" — R" (e.g.: space deformations).

e Think of an object moving (over time).
e f(x) describes its deformation.
e f(x,t) describes its motion over time.

f: R"—> R"

i




Functionals

Standard Functional #4: Green’s deformation tensor
e Given a functionf: R">Q — R”
e Minimize:

ECrm (£)= [[MvE" Ve 1| dx
Q

e Objective: minimize metric distortion
= Metric distortion = non-identity first fundamental form

e Basis for physically-based deformation modeling:
= Energy is invariant under rigid transformations.
= Bending, scaling, shearing is penalized.
= Energy is non-quadratic (non-linear optimization required).
= Matrix M encodes material properties (often M =1).
— Important: read M:|...] as Matrix-Vector product



How to Detect Deformations?

Model

e Map volume to volume
e Function f:V - R?

vf

f(Vy)




How to Detect Deformations?

Detect deformation
e Look at “deformation gradients”

e Jacobian matrix Vf
e Function Vf:V - R3

Vf

b T
Criterion

e No deformation: V| orthogonal

e Deformation: V[ non-orthogonal



Elastic Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”

e Measure orthogonality
e Integrate over deviation from orthogonality

E(f) = H 7FCONTFEOIT 1| dx

v/

f(V4)



Functionals

Standard Functional #5: Volume preservation
e Given a functionf: R">Q — R”
e Minimize:
ECm(£) = [[det(VE)-1] dx
Q

e Objective: minimize local volume changes

e This energy tries to preserve the volume at any point.
= Physics: Incompressible materials (for example fluids)
= The energy is invariant under rigid transformations.
= This energy is non-quadratic (non-linear optimization required).
= Often used in conjunction with deformation models.



Volume Preservation

Detect local change of volume
e Look at “deformation gradients”

e Jacobian matrix Vf
e Function Vf:V - R3

Criterion
e Same volume: V[ maintains volume (= determinant)
e Volume change: det Vf changes



Functionals

Standard Functional #6: Infinitesimal volume preservation
e Given afunctionv:R">Q — R", v(x,t) = %f(x, t)

e Minimize:

2
E (volume) (y) :j(divv(x))zdx=j (%vl(x)+...+%vn(x)> dx
Q Q 1 n

e Minimize local volume changes in a velocity field

e Difference to the previous case:

= The vectors are instantaneous motions (v(x) = d/dt f(x,t))

= A divergence free (time dependent) vector field will not
introduce volume changes

= This functional is linear, but does not work for large (rotational)
displacements.



Functionals

Standard Functionals #7 & #8: Velocity & acceleration
e Given a functionv: (R"xR) o Q — R”
e Minimize:

EU(f) = || (—f(x t)} dxdt, E“(f)=|| [—f(x t)j dxdt

Objective: minimize velocity / acceleration
Models air resistance, inertia.



Soft Constraints




Soft Constraints

Penalty functions
e Uniform
e General quadrics
e Differential constraints

Types of soft constraints
e Point-wise constraints
e Line / area constraints

Constraint functions
e Least-squares
e M-estimators



Uniform Soft Constraints

Uniform, point-wise soft constraints:
e Given a functionf:R">Q — R”
e Minimize:

Em(£) = iqi () -y

constraint weights (certainty)

prescribed values (x,y).



Uniform Soft Constraints

General quadratic, point-wise soft constraints:
e Given a functionf: R">Q — R”
e Minimize:

Eleomst(f) = i(f(xi)—yi)TQi(f(xi)—yi)

constraint weights (general quadratic form, non-negative)

prescribed values (x,y).



Uniform Soft Constraints

Differential constraints:
e Given a functionf: R">Q — R”
e Minimize:
E(Conm)(f) = Z(Df(xi )— (DY)i )T Q, (Df(xi )— (DY)i )

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy);

Differential operator: p=

This is still a quadratic constraints (— linear system).



Examples

Examples of differential constraints:
e Prescribe normal orientation of a szurface
-0,
f:R*> >R°, E“")(f)=¢q|| -0, |f-n
1

e Prescribe rotation of a deformation field
f:R3 —)R3, E(constr)(f):qnvf_R”IZ:

e Prescribe velocity or acceleration of a particle trajectory
£:R® xR - R f(x,t)=pos, EC"(f)=q(x,t)f(x,t)-a(x,t)f



Line / Area Soft Constraints

Line and area constraints:
e Given a functionf: R">Q — R”
e Minimize:

E ()= [(f(x)-y(x) Q)(E(x) -y(x)

AcQ)

quadric error weights (may be position dependent)
prescribed values y(x) (function of position x)

area A < QQ on which the constraint is placed (line, area, volume...)

e A.k.a: “Transfinite Constraints”



Constraint Functions

Constraint Functions:
e Typically, we use quadratic constraints

= E(x) =f(x)*

= Easy to optimize (linear system)

= Well-defined critical point (gradient vanishes)
= Sensitive to outliers

e Constraints come from measured data
= E.g.: 3D scanner data
= Quadratic constraints may case trouble



Constraint Functions

Constraint Functions:

e Alternatives:
= L,-norm constraints:
- E(x) = [f(x)|
— more robust and still convex, i.e. can be optimized
= Non-convex, truncated constraints:
— E(x) = min(]|f(x)]|, C), C>0
— yet more robust
— finding a global optimum can be problematic
— c.f. least-squares chapter



Discretization




Finite Element Discretization

Finite-element discretization:

e Step 1: Choose a finite dimensional function space

= Spanned by basis functions
e Step 2: Compute optimum in that space only
e Finite differences (FD) is a special case

= grid of piecewise constant basis functions

e General approach:

argminE(f)— argminE(E)
f p

fi() =3 Abi(x)



Finite Element Discretization

Derive a discrete equation:
e Just plug in the discretef:
e Then minimize the it over the A.

e For a differentiable energy function, we compute the
critical point(s):

E(E (X))—) min
9,

o ElF00)-0

—Vi=1.k:

e For quadratic functionals, this leads to a linear system.

e For non-linear functionals, we can apply
= Newton-optimization
= Gradient descent
= etc.



Example

(Abstract) example:
e Minimize square integral of a differential operator
e Quadratic differential soft constraints
e We obtain a quadratic optimization problem

= The unknowns are the coefficients
(coordinates in function basis)



Example

(Abstract) example (cont):
E()= [0V f0f dx+ Y (09 fx) -y, |

fi(x)= 3 Ab, ()
E(?z) = j(D(l)Zk:ﬂ‘ibi (X)J dx + ﬂZH:(D(Z)Zk:/Iibi (X)_yz'j

[

i

2,[DDp, kx)] dx + ﬂZ(ZA D®p (x)- y,j

=1\ i=1

2
S [Ip9b, [x0[p®b, Jx)dx + yi(iw@bi (x)- yiT

j=1 i=1 \_i=1



Numerical Aspects




How to solve the problems?

Solving the discretized variational problem:

e Quadratic energy and quadratic constraints:

= The discretization is a quadratic function as well.

The gradient is a linear expression.

The matrix in this expression is symmetric.

Well-defined problem => matrix is semi-positive definite

Usually very sparse matrix
— coefficients of basis functions only interact with neighbors
— depends on overlap of support

We can use iterative sparse system solvers:

— frequently used: conjugate gradients (needs SPD matrix).
CG is available in GeoX.



How to solve the problems?

Solving the discretized variational problem:

* Non linear energy functions:
= |f the function is convex, we can get to a critical point that is the
global minimum.
= |[n general, we can only find a local optimum (or critical point).

= Frequently used techniques are:

— Newton optimization:

- Iteratively compute 2nd order Taylor expansions
(Hessian matrix, gradient) and solve linear problems.

- Typically, Hessian matrices are sparse.
Use conjugate gradients to solve for critical points.

- Variants — Quasi Newton: Gauss-Newton, (L)BFGS
— Non-linear conjugate gradients with line search.
— In any case, we need a good initialization.



Hard Constraints




Hard Constraints

Hard Constraints:

e Sometimes, we want some properties of the solution to
be met exactly rather than approximately.
= Interpolation vs. approximation

= Includes complex constraints (area constraints, differential
properties etc.)

e Three options to implement hard constraints:
= Strong soft constraints (easy, but not exact)
= Variable elimination (exact, but limited)
= Lagrange multipliers (most complex method)



Hard Soft Constraints

Simplest Implementation:

e Use soft constraints with a large weight
E(f) _ E(regularizer) (f)_i_/fiE(constraints) (f); Wlth /Ivery large (Say 106)

e This is simple to implement.

e A few serious problems:
= The technique is not exact
— For some applications this might be not acceptable.
= The stronger the constraints, the larger the weight:

— The condition number of the quadric matrix (condition of
the Hessian in the non-linear case) becomes worse.

— At some point, no solution is possible anymore.
— lterative solvers are slowed down (e.g. conjugate gradients)



Variable Elimination

Idea: Variable elimination
e We just replace variables by fixed numbers.
e Then solve the remaining system.

Example:

4.5
4.0

Vi , Yo
2y y, °
Ve yo 25 V6 77

f'(xo) = hi(y, — 4.0)

—

f’(X3) = h_l(y4 - y3)



Variable Elimination

Advantages:
e Exact constraints
e Conceptually simple

Problems:

e Only works for simple constraints (variable = value)

* Need to augment system (not so easy to implement
generically)

e Does not work for FE methods (general basis functions)
= Values at any point are a sum of scaled basis functions

e Does not work for complex constraints (area/integral
constraints, differential constraints etc.)



Lagrange Multipliers

Most general technique: Lagrange multipliers
e This method works for complex, composite constraints
* No problems with general basis functions

= Not restricted to finite difference discretizations

e The technique is exact.



Lagrange Multipliers

Here is the idea:

e Assume we want to optimize E(x,, ..., x,) subject to an
implicitly formulated constraint g(x,, ..., x,) = 0.

e This looks like this:

¥ “l
A | &
' | Y
7 N
\ N
J N
E A\
VE VE =AVg, g(x)=0



Lagrange Multipliers

Formally:

e Optimize E(xy, ..., x,) subject to g(xy, ...

e Formally, we want:
VE(x)=AVg(x) and g(x)=0
e We get a local optimum for:
LG(x)=E(x)+ Ag(Xx)
V., LG(x)=0
ie.:(0, .0, ,0, LG(X)=0

Xl JLLL)

e A critical point of this equation
satisfies both VE(x) = AVg(x)
and g(x)=0.

VE

VE =AVg




Example

Example: Optimizing a quadric subject to a linear
equality constraint
« We want to optimize: E(x)=x'Ax+bx
e Subjectto: g(x)=mx+n=0

We obtain:
* LG(x)=E(x)+Ag(x)=x"Ax + bx + A(mx +n)
V_ (LG(x))=2Ax+b+m
vV, (LG(X)) =mX+n

. 2A m\ x —b
e Linear system: —
m' O0/\A) (—n



Multiple Constraints

Multiple Constraints:
e Similar idea
e Introduce multiple “Lagrange multipliers” A.
E(x)— min
subjectto: Vi=1..k:g.(x)=0

Lagrangian objective function:

LGa(x)=E(x)+ iﬂ“igi (%)

i=1

VA LG(x)=0
ie.:(0, 0, 0, 4@, JLGX)=0

Xl JLLL) )



Multiple Constraints

Example: Linear subspace constraints
* E(x)=x Ax+bx subjectto g(x)=Mx+n=0

*LG(x)=E(x)+ Zn:,t.gi(x) =x AX+bx+ ZH:/II. (m,.X + n,.)
i=1 =1

. 2A M'|x) (-b
e Linear system: —
M 0 \A —n

e Remark: M must have full rank for this to work.



What can we do with this?

Multiple linear equality constraints:

e We can constrain
= multiple function values
= differential properties
= integral values
e Area constraints:
= Sample at each basis function of the discretization
= and prescribe a value
e Need to take care:

= Need to make sure that constraints are linearly independent



What can we do with this?

Inequality constraints:

e There are efficient quadratic programming algorithmes.

= |dea: turn on and off the constraints intelligently.

e Examples:
= Simplex method
= Interior-point method



The Euler Lagrange Equation
(some more math)



The Euler-Lagrange Equation

Theoretical Result:

e Anintegral energy minimization problem can be reduced
to a differential equation.

 We look at energy functions of a specific form:
f:[la,b] > R

E(f)= IF(X,f(X),f'(X))dX

= fis the unknown function
= Fis the energy at each point x to be integrated

= F depends (at most) on the position x, the function value f(x) and
the first derivative f'(x).



The Euler-Lagrange Equation

Now we look for a minimum:

e Necessary condition:

"d" - .
. % E(f)=0 (critical point)

e In order to compute this:
= Approximate f by a polygon (finite difference approximation)

A
- f= ((X]_I yl)) ceey (an yn))
= Equally spaced: x,—x,, = h

Y10
Vs Yo
& Ya ys ye V7 e

Y1
(Can be formalized more precisely
using functional derivatives)



The Euler-Lagrange Equation

Minimum condition:
E(f)=[F(x, f(x), f'(x))dx

Vs Y10
_ n V. -y, y2 y y y9
E(f)zE(y)=ZF£X,-,yi, : h llj >V, Ve Ve V7 8
i=2
v,E=0, .0,
:ZVYF(Xi'.yi'yi _hyilj
=2
_ O N\
: Yi=Yia)o|, 5 1 Yi=Yia | 4
=Y |0,F| x,,y,, +0;—F| X, );,




The Euler-Lagrange Equation

Minimum condition:

0 0

N~ Yi— Vi (:) 1 Yi—=Via —:1

VyE—Z 82F[x1.,yi, . j . +832F(xi,yi, . ) )

=2 . :
ithentry:

=~ Yi—Vi- 1 Yiaa— Vi Yi—Via
0,,E _aZF(Xi’yi' h 1j_h[a3F(Xi'.yi’ 1h ]_asF(wazv ; jj

Letting h — 0, we obtain the continuous Euler-Lagrange
differential equation:

@zF(X,f(X),f'(X))—d%@gF(X»f(X),f'(X)) =0



The Euler-Lagrange Equation

f'x)

- —f

AN p
52F(X»f(X),f'(X))—EﬁgF(X,f(X),f'(XD =0

(at every point x)




Example

Example: Harmonic Energy

E()=| ( f(x)j

F(x, f(x), f'(x))= f'(x)°

32F(X,f(X),f'(X))—;—XagF(X;f(X),f'(X)) =0

@O—diaf.( () =0

d . d
<:>:—2f(x) 0



Generalizations

Multi-dimensional version:
f:RPoO->R

E(f)= [Floty r X4 fX),0,, f(X), 0, F(X))dx, ..dx,

Necessary condition for extremum:

8f (x) ,ledx 8f

\fx,. - /)
Xi

This is a partial differential equation (PDE).



Example

Example: General Harmonic energy
E(harmonic)(f) _ j(Vf(X))Z dx
Q

Euler Lagrange equation:

0

OX

Af(x)=£ 22 F(X)+ ot

‘ Zf(X)j=0

OX



Summary

Euler Lagrange Equation:
e Converts integral minimization problem into ODE or PDE.

e Gives a necessary, but not sufficient condition for
extremum (critical “point”, read: function f)
e Application:
= From a numerical point of view, no big difference:
— We can directly optimize the integral expression
— Same discrete system of equations
= Analytical tool
— Helps understanding the minimizer functions.



Surface Modeling




Applications

Variational Surface Modeling:

Two Examples:

e Parametric surfaces
[Welch & Witkin: “Variational Surface Modeling”, Siggraph 1992]

e Implicit surfaces

[Turk, O'Brien: “Variational Implicit Surfaces.”, TR, Georgia-Tec,
1999]



Parametric Surfaces

Domain:
e Parametric patch: f: [0,1]? —> R3.
e Representation (discretization):

= Grid of uniform tensor-product B-Splines
= Refine by dilated functions (subdivision) until convergence

e Energy:
= Thin-plate-spline energy
Constraints:
= Points (soft / hard, langrange multipliers)
= Transfinite constraints (curves, soft constraints only)
e Numerics:
= Quadratic objective — solver sparse linear system



Implicit Surface

Domain:
e Implicit function: f: [0,1]° — R.
e Representation (discretization):

= Radial basis functions of
fundamental solutions

e Energy:
= Thin-plate-spline energy +1
Constraints:
= Points with normals (hard, variable elimination)
e Numerics:
= Radial basis functions around points and + normal

= Solve linear system for interpolation problem
= Energy implicitly encoded in fundamental solutions




Other Applications




Variational Animation Modeling

f(x, t) — deformation field

X — point on urshape S




Variational Framework

E(f) Ematch (f) + (Engld + Evolume Eaccel + Evelocity) (f)
\ﬁ/.—J _/

constraints deformatlon

E,n ()= Y Y dist(d,, £(S))

t=1i=1

Enga(£)= [y 1] dx

V(S)

E o) = [0,V £(x,8) -1 dx

V(S)

Eaccel(f) Ia)acc (X)L—f(x t)j

veloc Ly(f) J- veloci ty(X)( f(X,t)) dx






Meshless Modeling of
Deformable Shapes

and their Motion

Bart Adams'? Maks Ovsjanikov! Michael Wand?
Hans-Peter Seidel* Leonidas J. Guibas!

IStanford University
2Katholieke Universiteit Leuven
*Max Planck Center for Visual Computing and Communication
*Max Planck Institut Informatik




Data Set:
"Popcorn Tin"

94 frames
data: 53K points/frame
rec: 25K points /frame

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)



