
Geometric Modeling
Summer Semester 2012

Variational Modeling
Basic Techniques · Surface Modeling · Other Applications

Overview...

Topics:

• Triangle Meshes & Multi-Resolution Representations

• Implicit Functions

• Subdivision Surfaces

• Variational Modeling
 Introduction

 Variational Framework

 Variational Function Fitting Toolkit

 Euler & Lagrange – Some More Mathematical Background

 Surface Modeling

 Other Applications

Variational Modeling
Introduction

 Motivation

Surface modeling techniques we have seen so far:

• Bivariate polynomial spline patches

 Quad (tensor product) patches

 Triangular patches

• Subdivision surfaces

• Implicit functions

 Motivation

Problems:

• Bivariate polynomial spline patches

 General topologies are hard to handle

 Need to adapt base mesh to user constraints

– control points, boundaries, etc.

• Subdivision surfaces

 More flexible than spline patches

 Problems:

– Continuity at extraordinary vertices

– Still need to build a base mesh

• Implicit functions

 Nice tool – but how do we construct actual surfaces?

Variational Modeling

Variational Modeling:

• Different approach:

 Formulate smoothness in terms of a penalty function

 Set additional constraints (handle points, normals, etc)

 Then solve for the “optimal function”

• No direct manipulation of control points...

 No direct user interaction

– Use e.g. B-Splines or implicit functions
as numerical representation

– Control points moved “automatically”

– “Meta tool”: compute control points automatically

 Instead: Sparse control points/handles with more semantics

Two Views:

In this lecture:

• Narrow view:

 Use variational techniques for modeling shapes

• General view:

 Short introduction / overview to variational calculus and
practical techniques.

 Application examples in geometry processing.

Applications beyond geometric modeling:

• Variational approaches ubiquitous

 in computer graphics

 in computer vision (in particular)

Variational Modeling
Basic Techniques

Calculus of Variation

Basic Idea:

• We look at a set of functions f: S  D

• Define “energy functional” E: (S  D)  

 Functional: assigns real numbers to functions

 Each function gets a “score”

 “Energy” means: the smaller the better

• Add additional requirements (“constraints”) on f.

 Soft constraints  violation increases energy.

 Hard constraints  violation not allowed.

• Compute function(s) f that minimize E.

Calculus of Variation

Very general framework:

• Many problems directly formulated this way

• Example 1:

 Looking for a curve.

 As smooth as possible (energy = non-smoothness).

 It should go through a number of points (hard constraints).

E large
E small

constraints

Calculus of Variation

Another example:

• Problem: We want to go to the moon.

• Given:

 Orbits of moons, planets and star(s).

 Flight conditions (athmosphere, gravitation of stellar bodies)

• Unknowns:

 Throttle (magnitude, direction) from rocket motors (vector
function)

• Energy function:

 Usage of rocket fuel (the fewer the better)

 Perhaps: Overall travel time (maybe not longer than a week)

Calculus of Variation

To the moon:

• Constraints:

 We want to start in Cape Canaveral (upright trajectory) and end
up on the moon.

 We do not want to hit moons or planets on our way.

 We want to approach the moon at no more than 20 km/h
relative speed upon touchdown.

 The rocket motor has a limited range of forces it can create (not
more than a certain thrust, no backward thrust)

So flying to the moon is just minimizing a functional.
(ok, this is slightly simplified)

A Simple Example

Simple example: variational splines

• Energy:

 We want smooth curves

 Smooth translates to minimum curvature

 Quadratic penalty:


curve

2|)(|)(dttcurvaturefE f

A Simple Example

Simple example: variational splines

• Energy:

 Problem: curvature is non-linear

 Easier to minimize: second derivatives

 Equivalent in case of a unit-speed parametrization
(which is tricky to enforce)

 









curve

2

2

2

)()(dtt
dt

d
fE f

A Simple Example

Simple example: variational splines

• Constraints:

 Hard constraints: we are given parameter values t1, ..., tn

at which we should meet control points p1, ..., pn.

 We already know the solution to this problem: Piecewise cubic
interpolating spline.














nt

tt

dtt
dt

d
fE

1

2

2

2

)()(f

A Simple Example

Simple example: variational splines

• More interesting: soft constraints

 We are given parameter values t1,...,tn at which we should
approximately meet control points p1, ..., pn.

  controls the smoothness of the result. Large values reduce
smoothness to meet the control points more precisely.

 












n

i
ii

t

tt

tdtt
dt

d
fE

n

1

2

2

2

2

)()()(
1

pff 

A Simple Example

Simple example: variational splines

• Soft constraints

 We are given parameter values t1,...,tn at which we should
approximately meet control points p1, ..., pn, up to a specific
accuracy for each point.

 We can specify the accuracy by error quadrics Q1, ..., Qn.

   












n

i
iiiii

t

tt

ttdtt
dt

d
fE

n

1

T

2

2

2

)()()()(
1

pfQpff

Rank-Deficient Quadrics

The rank deficient error quadric trick:

• A rank-1 matrix constraints the curve in one direction only

• Useful for point-to-surface constraints (minimize normal
direction deviation, tangential motion is free)

n
 TnnQ i

ti

Numerical Treatment

Numerical computation:

• No closed form solution

• Instead:

 Discretize (finite dimensional function space)

 Solve for coefficients (coordinate vector in this function space)

Finite Differences

FD solution:

• Represent curve as array of k values:

• Unknowns are the curve points y1, ..., yk

t 0 0.1 0.2 ... 7.4 7.5

y y0 y1 y2 ... Y74 y75

y1

y2

yk

Discretized Energy Function

Discretized Energy Function:

• Energy is a squared linear expression  quadratic
discrete objective function

• Constraints are quadratic by construction

• Yields quadratic energy function

 solved by a linear system

   

   
















 












n

i
itindexiitindex

k

i

iiidiscr

n

i
iiiii

t

tt

ii

n

h
fE

ttdtt
dt

d
fE

1
)(

T

)(

2

1
2

11)(

1

T

2

2

2

2
)(

)()()()(
1

pyQpy
yyy

pfQpff

(neglected here: handling boundary values)

Summary

Summary:

• Variational approaches look like this:

• Connection to statistics:

 Bayesian maximum a posteriori estimation

 E(data) is the data likelihood (log space)

 E(regularizer) is a prior distribution (log space)

s}constraint hard satifies |{

 ,)()()(

),(minarg compute

)()(

ffFf

fEfEfE

fE

rregularizedata

Ff







Variational Toolbox:
Data Fitting, Regularizer

Functionals, Discretizations

Toolbox

In the following:

• We will discuss...

 ...useful standard functionals.

 ...how to model soft constraints.

 ...how to model hard constraints.

 ...how to discretize the model.

• Then snap & click your favorite custom variational
modeling scheme.

• (Click & snap means: add together to a composite energy)

Functionals

Functionals

Standard Functional #1: Function norm

• Given a function f: m    n

• Minimize:

• Means: the function values should not become too large

• Often useful to avoid numerical problems:

 Assume an SPD quadratic functional

 Add E(zero)

– smallest eigenvalue cannot become smaller than 
( condition number)

– system is always solvable




 xxf dfE zero 2)()()(

Functionals

Standard Functional #2: Harmonic energy

• Given a function f: m    n

• Minimize:

• Objective: minimize differences to neighboring points

• Appears all the time in physics & engineering.

 not really what we want for smooth curves...

 


 xxf dfE harmonic 2)()()(

Harmonic Energy

Example: Heat equation

• Given a metal plate

• Hard constraints:

 A heat source

 A heat sink

• What is the final heat distribution?

 Heat flow tends to equalize temperature.

– Stronger heat flow for larger temperature gradients.

 Gradients become as small as possible.

heat sink heat source

Harmonic Energy

Example: Harmonic energy

• Curves that minimize the harmonic energy:

 Shortest path, a.k.a. polygons

• Two-dimensional parametric surface:

• Useful in parametrization (conformal mappings are
harmonic)

Functionals

Standard Functional #3: Thin plate spline energy

• Given a function f: m    n

• Minimize:

• Objective: minimize integral second derivatives

 approximately: minimize curvature

• More common in geometric modeling/processing

 yields smooth curves & surfaces

 A true curvature based energy is rarely used (non-quadratic).


   

















 xxff d

xx
E

m

i

m

j ji

TSS

1 1

2
2

)()()(

Energies for Vector Fields

Vector fields:

• The following energies are useful for mappings from
n  n (e.g.: space deformations).

• Think of an object moving (over time).

• f(x) describes its deformation.

• f(x,t) describes its motion over time.

  n f()  n

f: n  n

Functionals

Standard Functional #4: Green’s deformation tensor
• Given a function f: n    n

• Minimize:

• Objective: minimize metric distortion
 Metric distortion = non-identity first fundamental form

• Basis for physically-based deformation modeling:
 Energy is invariant under rigid transformations.

 Bending, scaling, shearing is penalized.

 Energy is non-quadratic (non-linear optimization required).

 Matrix M encodes material properties (often M = I).

– Important: read M·[...] as Matrix-Vector product

 


 xIffMf dE
F

deform
2

T)()(

How to Detect Deformations?

Model

• Map volume to volume

• Function 𝑓: 𝑉 → ℝ3

S1

V1
f

S2

f

f (V1)

How to Detect Deformations?

Detect deformation

• Look at “deformation gradients”

• Jacobian matrix 𝛻𝑓

• Function 𝛻𝑓: 𝑉 → ℝ3

Criterion

• No deformation: 𝛻𝑓 orthogonal

• Deformation: 𝛻𝑓 non-orthogonal

f
𝛻𝑓

Elastic Volume Model

Extrinsic Volumetric “As-Rigid-As Possible”

• Measure orthogonality

• Integrate over deviation from orthogonality

S1

V1
f

S2

f

f (V1)

𝐸 𝑓 = 𝛻𝑓 𝐱 𝛻𝑓 𝐱 T − 𝐈
𝐹

2
𝑑𝐱

𝑉1

Functionals

Standard Functional #5: Volume preservation
• Given a function f: n    n

• Minimize:

• Objective: minimize local volume changes

• This energy tries to preserve the volume at any point.

 Physics: Incompressible materials (for example fluids)

 The energy is invariant under rigid transformations.

 This energy is non-quadratic (non-linear optimization required).

 Often used in conjunction with deformation models.

 


 xff dE volume 2)(1)det()(

Detect local change of volume

• Look at “deformation gradients”

• Jacobian matrix 𝛻𝑓

• Function 𝛻𝑓: 𝑉 → ℝ3

Criterion

• Same volume: 𝛻𝑓 maintains volume (= determinant)

• Volume change: det 𝛻𝑓 changes

Volume Preservation

𝛻𝑓 f

Functionals

Standard Functional #6: Infinitesimal volume preservation

• Given a function v: n    n, 𝐯 𝐱, 𝑡 =
𝑑

𝑑𝑡
𝐟(𝐱, 𝑡)

• Minimize:

• Minimize local volume changes in a velocity field

• Difference to the previous case:
 The vectors are instantaneous motions (v(x) = d/dt f(x,t))

 A divergence free (time dependent) vector field will not
introduce volume changes

 This functional is linear, but does not work for large (rotational)
displacements.

𝐸 𝑣𝑜𝑙𝑢𝑚𝑒 𝐯 = div 𝐯 𝐱
2
𝑑𝐱

Ω

=
𝜕

𝜕𝑥1
𝐯1 𝐱 + ⋯+

𝜕

𝜕𝑥𝑛
𝐯𝑛 𝐱

2

𝑑𝐱
Ω

Functionals

Standard Functionals #7 & #8: Velocity & acceleration
• Given a function v: (n  )    n

• Minimize:

• Objective: minimize velocity / acceleration

• Models air resistance, inertia.


























 dtdt

dt

d
Edtdt

dt

d
E accvelocity xxffxxff

2

2

2
)(

2

)(),()(,),()(

Soft Constraints

Soft Constraints

Penalty functions
• Uniform
• General quadrics
• Differential constraints

Types of soft constraints
• Point-wise constraints
• Line / area constraints

Constraint functions
• Least-squares
• M-estimators

Uniform Soft Constraints

Uniform, point-wise soft constraints:
• Given a function f: n    n

• Minimize:

 




n

i
iii

constr qE
1

2)()()(yxff

constraint weights (certainty)

prescribed values (x,y)i

Uniform Soft Constraints

General quadratic, point-wise soft constraints:
• Given a function f: n    n

• Minimize:

   




n

i
iiiii

constrE
1

T)()()()(yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,y)i

Uniform Soft Constraints

Differential constraints:
• Given a function f: n    n

• Minimize:

     




n

i
iiiii

constr DDDDE
1

T)()()()(yxfQyxff

constraint weights (general quadratic form, non-negative)

prescribed values (x,Dy)i

Differential operator:

































mmkm

k

ii

ii

xx

xx

D

,,1

1,11,1

...

...



This is still a quadratic constraints ( linear system).

Examples

Examples of differential constraints:

• Prescribe normal orientation of a surface

• Prescribe rotation of a deformation field

• Prescribe velocity or acceleration of a particle trajectory

2

)(

1

)(,:





































 nfff v

u

constr qE 

2)()(,:
F

constr qE Rfff   

 2)(),(),(),()(,),(,: tttxqEt constr xaxffposxff   

Line / Area Soft Constraints

Line and area constraints:
• Given a function f: n    n

• Minimize:

• A.k.a: “Transfinite Constraints”

   



A

constrE)()()()()()(
T)(xyxfxQxyxff

quadric error weights (may be position dependent)

prescribed values y(x) (function of position x)

area A   on which the constraint is placed (line, area, volume...)

Constraint Functions

Constraint Functions:
• Typically, we use quadratic constraints

 E(x) = f (x)2

 Easy to optimize (linear system)

 Well-defined critical point (gradient vanishes)

 Sensitive to outliers

• Constraints come from measured data
 E.g.: 3D scanner data

 Quadratic constraints may case trouble

Constraint Functions

Constraint Functions:
• Alternatives:

 L1-norm constraints:

– E(x) = |f (x)|

– more robust and still convex, i.e. can be optimized

 Non-convex, truncated constraints:

– E(x) = min(|f (x)|, C), C>0

– yet more robust

– finding a global optimum can be problematic

– c.f. least-squares chapter

Discretization

Finite Element Discretization

Finite-element discretization:

• Step 1: Choose a finite dimensional function space

 Spanned by basis functions

• Step 2: Compute optimum in that space only

• Finite differences (FD) is a special case

 grid of piecewise constant basis functions

• General approach:








k

i
ii

f

xbxf

fEfE

1

)()(
~

)
~

(minarg)(minarg






Finite Element Discretization

Derive a discrete equation:
• Just plug in the discrete f.

• Then minimize the it over the .

• For a differentiable energy function, we compute the
critical point(s):

• For quadratic functionals, this leads to a linear system.

• For non-linear functionals, we can apply
 Newton-optimization
 Gradient descent
 etc.

~

 
  0)(
~

:...1

min)(
~









xfEki

xfE

i







Example

(Abstract) example:

• Minimize square integral of a differential operator

• Quadratic differential soft constraints

• We obtain a quadratic optimization problem

 The unknowns are the coefficients
(coordinates in function basis)

Example

(Abstract) example (cont):

   

 

      

  

  



 

   

  

  



 





















































n

i
i

k

i
ii

k

i

k

j
jiji

n

i
i

k

i
ii

k

i
ii

n

i
i

k

i
ii

k

i
ii

k

i
ii

n

i
ii

yxbDdxxbDxbD

yxbDdxxbD

yxbDdxxbDfE

xbxf

yxfDdxxfDfE

1

2

1

)2(

1 1

)1()1(

1

2

1

)2(

2

1

)1(

1

2

1

)2(

2

1

)1(

1

1

2)2(2)1(

)()()(

)()(

)()()
~

(

)()(
~

)()()(















Numerical Aspects

How to solve the problems?

Solving the discretized variational problem:

• Quadratic energy and quadratic constraints:

 The discretization is a quadratic function as well.

 The gradient is a linear expression.

 The matrix in this expression is symmetric.

 Well-defined problem => matrix is semi-positive definite

 Usually very sparse matrix

– coefficients of basis functions only interact with neighbors

– depends on overlap of support

 We can use iterative sparse system solvers:

– frequently used: conjugate gradients (needs SPD matrix).
CG is available in GeoX.

How to solve the problems?

Solving the discretized variational problem:

• Non linear energy functions:

 If the function is convex, we can get to a critical point that is the
global minimum.

 In general, we can only find a local optimum (or critical point).

 Frequently used techniques are:

– Newton optimization:
- Iteratively compute 2nd order Taylor expansions

(Hessian matrix, gradient) and solve linear problems.

- Typically, Hessian matrices are sparse.
Use conjugate gradients to solve for critical points.

- Variants – Quasi Newton: Gauss-Newton, (L)BFGS

– Non-linear conjugate gradients with line search.

– In any case, we need a good initialization.

Hard Constraints

Hard Constraints

Hard Constraints:

• Sometimes, we want some properties of the solution to
be met exactly rather than approximately.

 Interpolation vs. approximation

 Includes complex constraints (area constraints, differential
properties etc.)

• Three options to implement hard constraints:

 Strong soft constraints (easy, but not exact)

 Variable elimination (exact, but limited)

 Lagrange multipliers (most complex method)

Hard Soft Constraints

Simplest Implementation:

• Use soft constraints with a large weight

• This is simple to implement.

• A few serious problems:

 The technique is not exact

– For some applications this might be not acceptable.

 The stronger the constraints, the larger the weight:

– The condition number of the quadric matrix (condition of
the Hessian in the non-linear case) becomes worse.

– At some point, no solution is possible anymore.

– Iterative solvers are slowed down (e.g. conjugate gradients)

)10 (say large very with),()()(6)()( fEfEfE sconstraintrregularize 

Variable Elimination

Idea: Variable elimination

• We just replace variables by fixed numbers.

• Then solve the remaining system.

Example:

4.0

2.5

4.5

y1
y2

y3
y4 y5 y6

y7
y8

y9

f ’(x0) = h-1(y1 – 4.0)

f ’(x3) = h-1(y4 – y3)

Variable Elimination

Advantages:
• Exact constraints

• Conceptually simple

Problems:
• Only works for simple constraints (variable = value)

• Need to augment system (not so easy to implement
generically)

• Does not work for FE methods (general basis functions)
 Values at any point are a sum of scaled basis functions

• Does not work for complex constraints (area/integral
constraints, differential constraints etc.)

Lagrange Multipliers

Most general technique: Lagrange multipliers

• This method works for complex, composite constraints

• No problems with general basis functions

 Not restricted to finite difference discretizations

• The technique is exact.

Lagrange Multipliers

Here is the idea:

• Assume we want to optimize E(x1, ..., xn) subject to an
implicitly formulated constraint g(x1, ..., xn) = 0.

• This looks like this:

E g 0)(,  xggE 

E

E g

E

g

Lagrange Multipliers

Formally:

• Optimize E(x1, ..., xn) subject to g(x1, ..., xn) = 0.

• Formally, we want:

• We get a local optimum for:

• A critical point of this equation
satisfies both
and .

gE  

0)(and)()( xxx ggE 

  0)(,,...,:i.e.

0)(

)()()(

1

,







x

x

xxx

x

LG

LG

gELG

nxx 





0)(xg
)()(xx gE  

E

g

Example

Example: Optimizing a quadric subject to a linear
 equality constraint

• We want to optimize:

• Subject to:

We obtain:

•

• Linear system:

bxAxxx  T)(E

0)( ng mxx

 nxELG  mxbxAxxgxx  T)()()(

 
  nLG

LG





mxx

mbAxxx

)(

2)(



































n

b



x

m

mA

0

2
T

Multiple Constraints

Multiple Constraints:

• Similar idea

• Introduce multiple “Lagrange multipliers” .

  0)(,...,,,...,:i.e.

0)(

)()()(

0)(:...1 :to subject

min)(

11

,

1














x

x

xxx

λx

LG

LG

gELG

xgki

xE

knxx

k

i
ii

i





Lagrangian objective function:

Multiple Constraints

Example: Linear subspace constraints

• subject to

•

• Linear system:

• Remark: M must have full rank for this to work.

bxAxxx  T)(E 0nMxx )(g

 



n

i
iii

n

i
ii nxELG

1

T

1

)()()(xmbxAxxgxx 




































n

b

λ

x

M

MA

0

2 T

What can we do with this?

Multiple linear equality constraints:

• We can constrain

 multiple function values

 differential properties

 integral values

• Area constraints:

 Sample at each basis function of the discretization

 and prescribe a value

• Need to take care:

 Need to make sure that constraints are linearly independent

What can we do with this?

Inequality constraints:

• There are efficient quadratic programming algorithms.

 Idea: turn on and off the constraints intelligently.

• Examples:

 Simplex method

 Interior-point method

The Euler Lagrange Equation
(some more math)

The Euler-Lagrange Equation

Theoretical Result:

• An integral energy minimization problem can be reduced
to a differential equation.

• We look at energy functions of a specific form:

 f is the unknown function

 F is the energy at each point x to be integrated

 F depends (at most) on the position x, the function value f (x) and
the first derivative f'(x).

],[: baf


b

a

dxxfxfxFfE))('),(,()(

The Euler-Lagrange Equation

Now we look for a minimum:

• Necessary condition:

• (critical point)

• In order to compute this:

 Approximate f by a polygon (finite difference approximation)

 f = ((x1, y1), ..., (xn, yn))

 Equally spaced: xi – xi-1 = h

0)(
""

fE
df

d

^

y6

y1
y2

y3
y4 y5 y7

y8
y9

y10

(Can be formalized more precisely
using functional derivatives)

The Euler-Lagrange Equation

Minimum condition:

y6

y1
y2

y3
y4 y5 y7

y8
y9

y10







 






 




n

i

ii
ii

b

a

h

yy
yxFEfE

dxxfxfxFfE

2

1,,)(
~

)(

))('),(,()(

y

 
























































 



























 









 




n

i

ii
ii

ii
ii

n

i

ii
ii

yy

h

yy
yxF

hh

yy
yxF

h

yy
yxF

EE
n

2

0

1

1

0

1
3

0

1

0

0

1
2

2

1

,,
1

,,

,,

~
,...,

~
1









y

y

The Euler-Lagrange Equation

Minimum condition:


















 








 








 













































 



























 








h

yy
yxF

h

yy
yxF

hh

yy
yxFE

i

h

yy
yxF

hh

yy
yxFE

ii
ii

ii
ii

ii
iiy

n

i

ii
ii

ii
ii

i

1
3

1
3

1
2

2

0

1

1

0

1
3

0

1

0

0

1
2

,,,,
1

,,
~

:entry th

,,
1

,,
~









y

0))('),(,())('),(,(32  xfxfxF
dx

d
xfxfxF

Letting h  0, we obtain the continuous Euler-Lagrange
differential equation:

The Euler-Lagrange Equation

0))('),(,())('),(,(32  xfxfxF
dx

d
xfxfxF

f '(x)

f

(at every point x)

f (x)

x

Example

Example: Harmonic Energy

 









b

a

dxxf
dx

d
fE

2

)()(

2)('))('),(,(xfxfxfxF 

0)(

0)(20

0))('(0

0))('),(,())('),(,(

2

2

2
)('

32









xf
dx

d

xf
dx

d

dx

d

xf
dx

d

xfxfxF
dx

d
xfxfxF

xf

Generalizations

Multi-dimensional version:

 df :

 


 dxxd dxdxffxfxxFfE
d

...)(),...,(),(,,...,)(11 1
xx

Necessary condition for extremum:

0
)(1













d

i xi i
f

E

dx

d

f

E

x

)(: xf
x

f
i

xi 




This is a partial differential equation (PDE).

Example

Example: General Harmonic energy

 


 xxf dfE harmonic 2)()()(

0)(...)()(
2

2

2

1

2
























 xxxf f

x
f

x d

Euler Lagrange equation:

Summary

Euler Lagrange Equation:
• Converts integral minimization problem into ODE or PDE.

• Gives a necessary, but not sufficient condition for
extremum (critical “point”, read: function f)

• Application:
 From a numerical point of view, no big difference:

– We can directly optimize the integral expression

– Same discrete system of equations

 Analytical tool

– Helps understanding the minimizer functions.

Surface Modeling

Applications

Variational Surface Modeling:

Two Examples:

• Parametric surfaces
[Welch & Witkin: “Variational Surface Modeling”, Siggraph 1992]

• Implicit surfaces
[Turk, O'Brien: “Variational Implicit Surfaces.”, TR, Georgia-Tec,
1999]

Parametric Surfaces

Domain:
• Parametric patch: f: [0,1]2  3.

• Representation (discretization):
 Grid of uniform tensor-product B-Splines

 Refine by dilated functions (subdivision) until convergence

• Energy:
 Thin-plate-spline energy

• Constraints:
 Points (soft / hard, langrange multipliers)

 Transfinite constraints (curves, soft constraints only)

• Numerics:
 Quadratic objective  solver sparse linear system

Implicit Surface

Domain:
• Implicit function: f: [0,1]3  .

• Representation (discretization):
 Radial basis functions of

fundamental solutions

• Energy:
 Thin-plate-spline energy

• Constraints:
 Points with normals (hard, variable elimination)

• Numerics:
 Radial basis functions around points and  normal

 Solve linear system for interpolation problem

 Energy implicitly encoded in fundamental solutions

-1
-1

-1 -1

+1
+1

+1 +1
0

0
0 0

Other Applications

Variational Animation Modeling

f (x, t) – deformation field

t = 0 t = 1 t = 2

x – point on urshape S
S

f
f

Variational Framework

 
)(

2

),(),()()(
SV

F

T
rigidrigid dxttxE Ixfxff xx

  
)(

2
1),()()(

SV

volvolume dxtxE xff x

 


















S

accaccel dxt
t

xE

2

2

2

),()()(xff 

 













S

velocityvelocity dxt
t

xE

2

),()()(xff 


 


T

t

n

i
imatch

t

SfddistE
1 1

2))(,()(f

))(()()(

ndeformatiosconstraint

fff
   velocityaccelvolumerigidmatch EEEEEE 

[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008]

[B. Adams, M. Ovsjanikov, M. Wand, L. Guibas, H.-P. Seidel, SCA 2008]

[M. Wand, B. Adams, M. Ovsjanikov, M. Bokeloh, A. Berner,
 P. Jenke, L. Guibas, H.-P. Seidel, A. Schilling, 2008] (data set courtesy of P. Phong, Stanford. U.)

