
UNIVERSITÄT DES SAARLANDES
Dr.-Ing. Hendrik P.A. Lensch
Max Planck Institut Informatik
Art Tevs (tevs@mpi-inf.mpg.de)
Boris Ajdin (bajdin@mpi-inf.mpg.de)
Matthias Hullin (hullin@mpi-inf.mpg.de)

26. November 2007

Computer Graphics I
Assignment 5

Submission deadline for the exercises: Monday, 3th December 2007
Rule: Written solutions have to be submitted in the lecture room before the lecture. Solutions of
practical exercises have to be submitted until 8:30am, hence before the lecture!

5.1 Fourier Transformation (15 Points)

Show that the Fourier transformation of the box function B(x) is a sinc type function. The sinc function
is defined as sinc(x) = sin(πx)

πx and a definition of the Fourier transform can be found in Exercise 5.5.

B(x) =

 0 for x ≤ −1
1 for − 1 < x < 1
0 for 1 ≤ x

5.2 Procedural Shaders - Clouds (30 Points)

In this exercise we will implement a shader which is able to compute a cloud like structure. Look for
more information about procedural shaders or procedural textures on the internet.

Figure 1: Left: Cloud structure generated by perlin noise. Right: Cloud shader applied on the skydome
object.

For simulating clouds we incorporate the perlin noise algorithm which is capable of creating correlated
noise. Since the perlin noise depends on a random function, it is not necessary to create exactly the same
results as in the provided screenshots. See figure 1 as one example how your results should look like. As
atmosphere color value you can use color = (0.08, 0.15, 0.27).

a) Implement PerlinNoise2D in stdafx.cxx. The function should return a sampled value of a 2D
perlin noise function. (20 Points)

b) Implement the CloudShader::Shade() method. Incorporate the 2D perlin noise to generate nice
looking noise structures. (5 Points)



c) To emulate atmospheric scattering effects we linearly interpolate the computed color value with
white color based on the v-coordinate of the texture coordinates, i.e. (1− v)12. (5 Points)

d) Add skydome.obj into your scene and apply the CloudShader on it.

5.3 Alpha Blending (15 Points)

Until now we have handled textures with only three channels per pixel, i.e. RGB. However there are
also images/textures with 4 channels per pixel, i.e. RGBA. The fourth channel, called alpha-channel,
could store transparency information of the according pixel. In most of the cases alpha value is used as
a blending factor. There is a lot of possibilities of how to combine the source color c1 and destination
color c2. For the sake of simplicity we will limit ourself to the following formulation:

c.rgba = lerp(c2.rgba, c1.rgba, c1.a).

This blending mode is equivalent to the OpenGL’s blending mode specified by
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA).
In this exercise you have to implement missing parts of the FlatTransparentShader.hxx which should
support alpha blending as presented here.

• Combine all assigned textures as shown in the previous equation.

• Think about what is the main property of transparent objects. What should you do with your rays
to make object transparent? Implement the FlatTransparentShader::Shade() method.

• Add new object mesh/wisdom.obj into your scene. Apply the FlatTransparentShader on the
newly added object. Add the textures/wisdom.png to the shader. Setup linear interpolation mode
on this texture. Call wisdom->setCastShadows(false); to disable shadow casting of the wisdom
quad, since we currently do not support shadows of transparent objects.

If your implementation is correct you should get the following (i.e. result 5 3.png):

Note: The implementation of Image.cxx and Texture2D.hxx were changed to support RGBA textures.

5.4 Supersampling (40 Points)

A pixel actually corresponds to a square area. Currently you are sampling the pixels only at their center,
which lead to aliasing. As you have learned in the lecture, the most simple way for removing aliasing
artifacts from your image is supersampling, i.e. to shoot more than one ray per pixel. The three most
frequently used supersampling strategies are:

Regular Sampling: The Pixel is subdivided into n = m×m equally sized regions, which are sampled
in the middle:

samplepos =
(

i + 1
2

m
,
j + 1

2

m

)m−1

i,j=0

.

2



Random Sampling: The Pixel is sampled by n randomly placed samples ξi ∈ [0, 1):

samplepos = (ξi,1, ξi,2)
n−1
i=0 .

Stratified Sampling: Stratified sampling is a combination of regular and random sampling. One
sample is randomly placed in each of the n = m×m regions with ξi, ξj ∈ [0, 1):

samplepos =
(

i + ξi

m
,
j + ξj

m

)m−1

i,j=0

.

In this exercise your task is to implement these sampling strategies:
In the framework you can find an abstract base class SampleGenerator with one single virtual method
void SampleGenerator::GetSamples(int n, float *u, float *v, float *weight) that is sup-
posed to works as follows: n is the number of samples to be generated for a pixel. One sample consists
of two coordinates (u, v) that specify a position on a pixel. The n samples generated are to be returned
in the u and v arrays, where (u, v) should be in the domain [0, 1)× [0, 1). The weights for the individual
samples should sum up to 1. Here, just use uniform weights with weight[i]=1.0/n.

a) In your main loop, produce n samples, and fire n rays through the pixel at the respective sample
position. The resulting color values must be weighted by weight[i] and summed up yielding the
final pixel result. Implement the RenderSupersampledFrame() in MicroTrace.cxx(5 Points)

b) Implement the GetSamples-method in RegularSampleGenerator.hxx,
RandomSampleGenerator.hxx, and StratifiedSampleGenerator.hxx, which are derived classes
from SampleGenerator. (20 points)

c) Implement a different sampling strategy as described here. Find a suitable strategy, e.g. PossonDisc,
RotatedGrid, or any other which you like to use. (15 Points)

d) Compare results generated by different sampling strategies with the results generated without su-
persampling. Which differences can you see? Which one would you prefer?

To compare your implementation you can download the result images for this exercise from:
http://www.mpi-inf.mpg.de/departments/d4/teaching/ws2007-2008/cg/ex5/results.zip

5.5 Duality of Multiplication and Convolution* (20 Points)

The convolution of a function f(t) with a second function g(t) is defined as:

(f ⊗ g)(t) =
∫ +∞

−∞
f(τ) · g(t− τ)dτ

The multiplication of two function is defined as the point-wise multiplication:

(f · g)(t) = f(t) · g(t)

The transformation of a signal f(x) to Fourier space is given by:

F (k) =
∫ +∞

−∞
f(x) · e−2πikxdx

We call F the operator mapping f to Fourier space: Ff = F . Show that convolving in signal space is
the same as multiplication in Fourier space:

F [f ⊗ g] = F [f ] · F [g]

3


