Computer Graphics

- Light Transport -

Hendrik Lensch

Computer Graphics WS07/08 - Light Transport

Overview

- So far
 - simple shading

• Today

- Physics behind ray tracing
- Physical light quantities
- Perception of light
- Light sources
- Light transport simulation

• Next lecture

- Light-matter interaction
- Reflectance function
- Reflection models

What is Light ?

- Ray
 - Linear propagation
 - \Rightarrow Geometrical optics
- Vector
 - Polarization
 - \Rightarrow Jones Calculus: matrix representation
- Wave
 - Diffraction, Interference
 - \Rightarrow **Maxwell equations**: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - \Rightarrow Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - \Rightarrow Quantum Electrodynamics (QED): interaction between particles

What is Light ?

- Ray
 - Linear propagation
 - \Rightarrow Geometrical optics
- Vector
 - Polarization
 - \Rightarrow Jones Calculus: matrix representation
- Wave
 - Diffraction, Interference
 - \Rightarrow **Maxwell equations**: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - \Rightarrow Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - \Rightarrow Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

- Based on human visual perception
 - Macroscopic geometry
 - Tristimulus color model
 - Psycho-physics: tone mapping, compression, ...

Ray optics

- Light: scalar, real-valued quantity
- Linear propagation
- Macroscopic objects
- Incoherent light
- Superposition principle: light contributions add up linearly
- No attenuation in free space

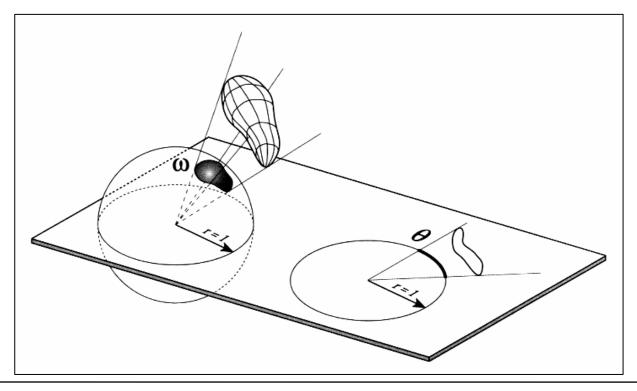
• Limitations

- Microscopic structures ($\approx\lambda$)
- Diffraction, Interference
- Polarization
- Dispersion

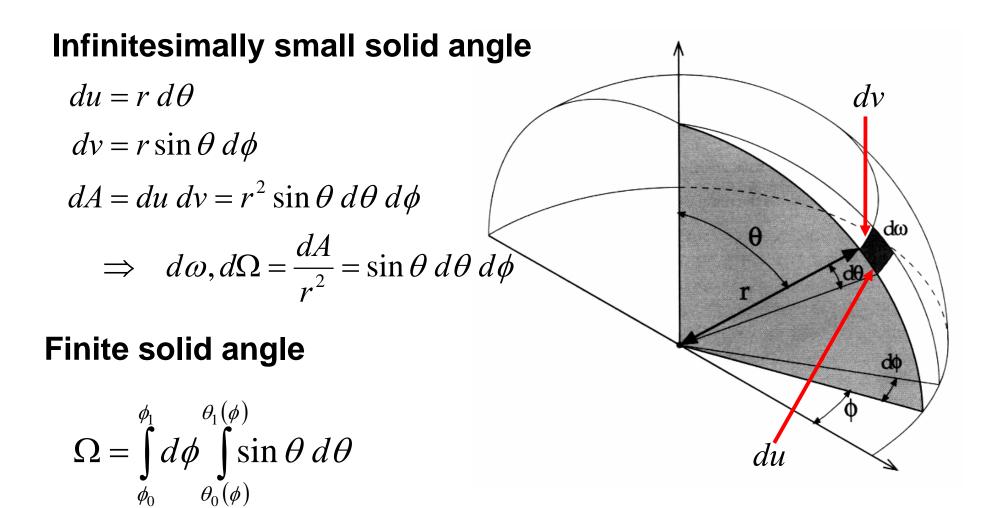
Angle and Solid Angle

- θ the angle subtended by a curve in the plane, is the length of the corresponding arc on the unit circle.
- $\Omega, d\omega$ the solid angle subtended by an object, is the surface area of its projection onto the unit sphere,

Units for measuring solid angle: steradians [sr]



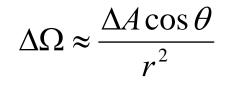
Solid Angle in Spherical Coordinates

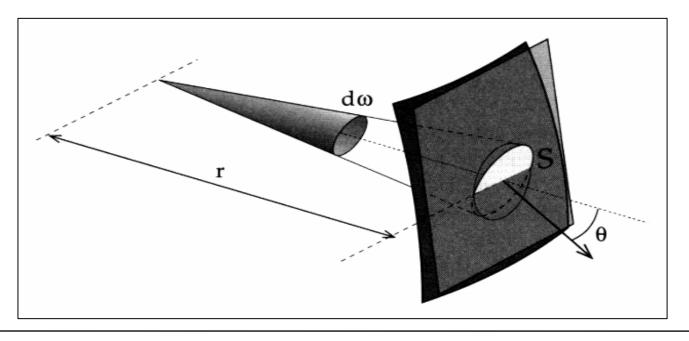


Projected Solid Geometry

The solid angle subtended by a small surface patch S with area ΔA is obtained (i) by projecting it orthogonal to the vector r to the origin $\Delta A \cos \theta$

and (ii) dividing by the square of the distance to the origin:





Radiometry

• Definition:

Radiometry is the science of measuring radiant energy transfers.
 Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Radiometric Quantities

– energy	[watt second]	n · h <i>v</i> (Photon Energy)
 radiant power (total flux) 	[watt]	Φ
 radiance 	[watt/(m ² sr)]	L
 irradiance 	[watt/m ²]	E
 radiosity 	[watt/m ²]	В
 intensity 	[watt/sr]	I

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer.
- Radiance *L* is defined as
 - the power (flux) traveling at some point \underline{x}
 - in a specified direction $\underline{\omega} = (\theta, \varphi)$,
 - per unit area perpendicular to the direction of travel,
 - per unit solid angle.
- Thus, the differential power $d^2\Phi$ radiated through the differential solid angle $d\omega$, from the projected differential area $dA \cos\theta$ is:

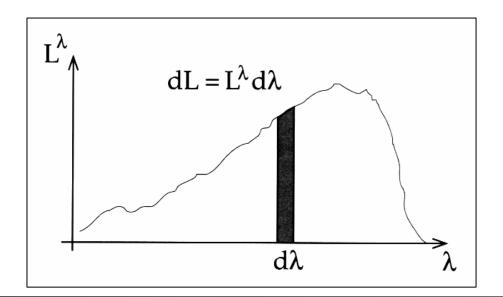
dA

$$d^{2}\Phi = L(\underline{x},\underline{\omega}) \, dA \cos\theta \, d\omega$$

Spectral Properties

Wavelength

- Since light is composed of electromagnetic waves of different frequencies and wavelengths, most of the energy transfer quantities are continuous functions of wavelength.
- In graphics each measurement $L(x, \omega)$ is for a discrete band of wavelength only (often some abstract R, B, G)



Radiometric Quantities: Irradiance

Irradiance *E* is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to dA, the incoming radiance L_i is integrated over the upper hemisphere Ω_+ above the surface:

$$E = \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega_{+}} L_{i}(\underline{x}, \underline{\omega}) \cos\theta \, d\omega\right] dA$$
$$E = \int_{\Omega_{+}} L_{i}(\underline{x}, \underline{\omega}) \cos\theta \, d\omega = \int_{0}^{\pi/2} \int_{0}^{2\pi} L_{i}(\underline{x}, \underline{\omega}) \cos\theta \sin\theta \, d\theta \, d\phi$$

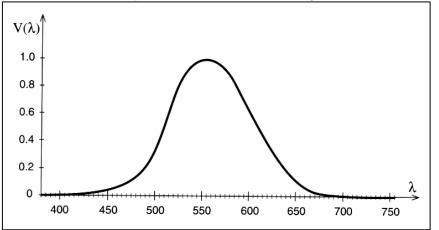
Radiometric Quantities: Radiosity

Radiosity *B* is defined as the total power per unit area (flux density) leaving a surface. To obtain the total flux radiated from dA, the **outgoing** radiance L_o is integrated over the upper hemisphere Ω_+ above the surface.

$$B = \frac{d\Phi}{dA}$$
$$d\Phi = \left[\int_{\Omega} L_o(\underline{x}, \underline{\omega}) \cos \theta \, d\omega\right] dA$$
$$B = \int_{\Omega} L_o(\underline{x}, \underline{\omega}) \cos \theta \, d\omega = \int_{0}^{\pi/2} \int_{0}^{2\pi} L_o(\underline{x}, \underline{\omega}) \cos \theta \sin \theta \, d\theta \, d\phi$$

Photometry

- Photometry:
 - The human eye is sensitive to a limited range of radiation wavelengths (roughly from 380nm to 770nm).
 - The response of our visual system is not the same for all wavelengths, and can be characterized by the luminuous efficiency function V(λ), which represents the average human spectral response.
 - A set of photometric quantities can be derived from radiometric quantities by integrating them against the luminuous efficiency function $V(\lambda)$.
 - Separate curves exist for light and dark adaptation of the eye.



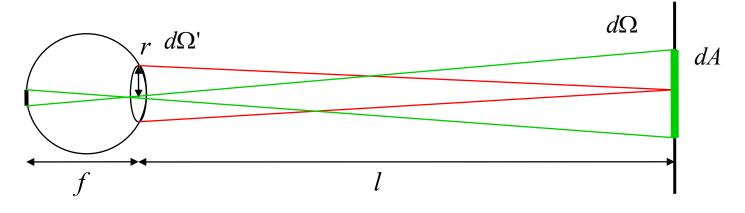
Radiometry vs. Photometry

Physics-based quantities

Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
W/m ² Radiosity Irradiance	\rightarrow	Luminosity	Lux (lm/m ²)	
		Illuminance		
W/m ² /sr	Radiance	\rightarrow	Luminance	cd/m ² (lm/m ² /sr)

Perception of Light



photons / second = flux = energy / time = power Φ angular extend of rod = resolution (\approx 1 arc minute²) projected rod size = area

Angular extend of pupil aperture ($r \le 4$ mm) = **solid angle**

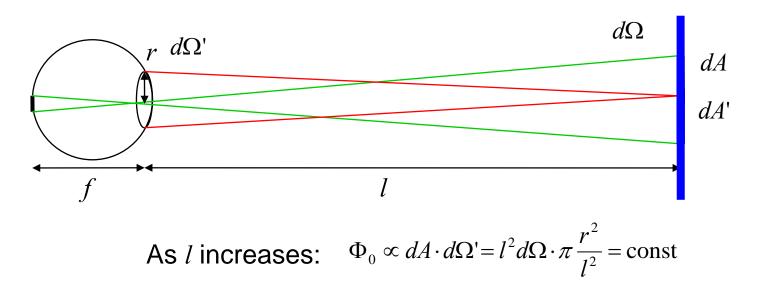
flux proportional to area and solid angle

radiance = flux per unit area per unit solid angle

The eye detects radiance

rod sensitive to flux $d\Omega$ $dA \approx l^{2} \cdot d\Omega$ $d\Omega' \approx \pi \cdot r^{2} / l^{2}$ $\Phi \propto d\Omega' \cdot dA$ $L = \frac{\Phi}{d\Omega' \cdot dA}$

Brightness Perception



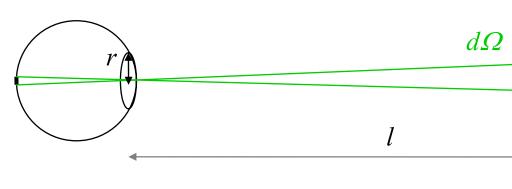
- dA' > dA: photon flux per rod stays constant
- dA' < dA : photon flux per rod decreases

Where does the Sun turn into a star ?

- Depends on apparent Sun disc size on retina
- \Rightarrow Photon flux per rod stays the same on Mercury, Earth or Neptune
- \Rightarrow Photon flux per rod decreases when d Ω ' < 1 arc minute (beyond Neptune)

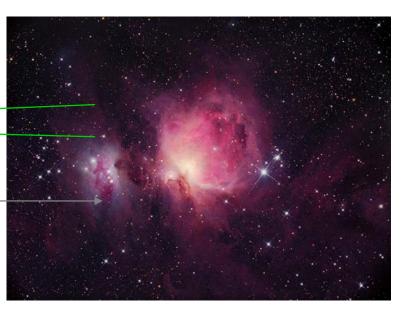
Brightness Perception II

Extended light source

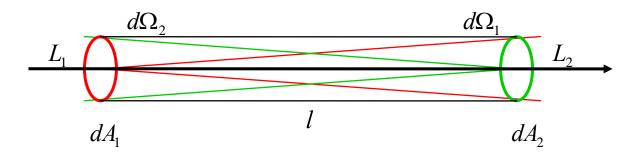


$$\Phi_0 = L_0 \cdot \pi \cdot r^2 \cdot d\Omega$$

 \Rightarrow Flux does not depend on distance / \Rightarrow Nebulae always appear b/w



Radiance in Space



Flux leaving surface 1 must be equal to flux arriving on surface 2

$$L_1 \cdot d\Omega_1 \cdot dA_1 = L_2 \cdot d\Omega_2 \cdot dA_2$$

From geometry follows
$$d\Omega_1 = \frac{dA_2}{l^2} \qquad d\Omega_2 = \frac{dA_1}{l^2}$$

Ray throughput
$$T = d\Omega_1 \cdot dA_1 = d\Omega_2 \cdot dA_2 = \frac{dA_1 \cdot dA_2}{l^2}$$
$$L_1 = L_2$$

The **radiance** in the direction of a light ray **remains constant** as it propagates along the ray

Point Light Source

• Point light with isotropic radiance

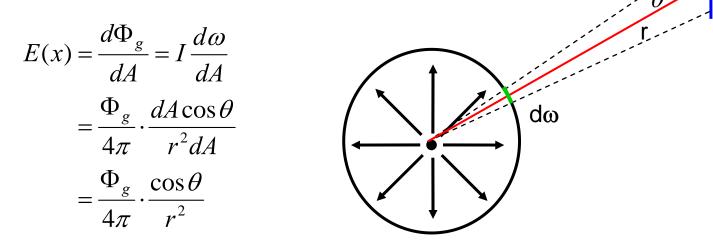
- Power (total flux) of a point light source

 $\forall \Phi_g =$ Power of the light source [watt]

- Intensity of a light source
 - $I = \Phi_g / (4\pi \operatorname{sr})$ [watt/sr]
- Irradiance on a sphere with radius *r* around light source:

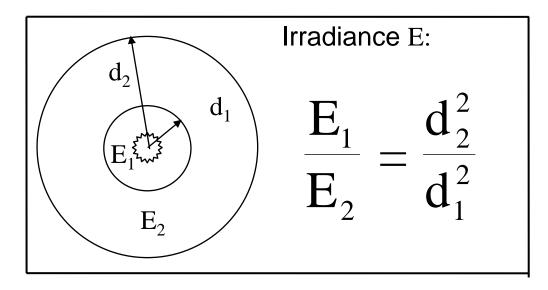
• $E_r = \Phi_g / (4 \pi r^2)$ [watt/m²]

- Irradiance on some other surface A



dA

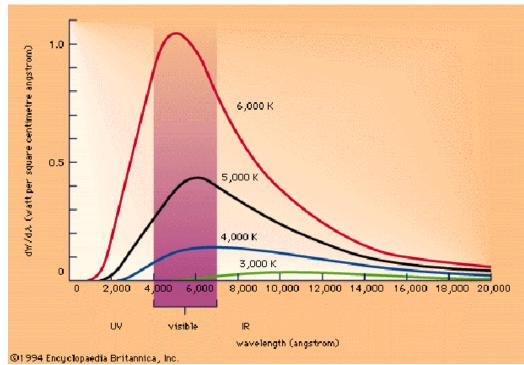
Inverse Square Law

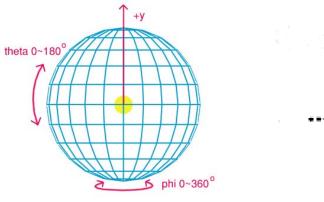


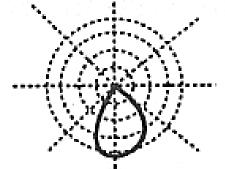
- Irradiance E: power per m²
 - Illuminating quantity
- Distance-dependent
 - Double distance from emitter: sphere area four times bigger
- Irradiance falls off with inverse of squared distance
 - For point light sources

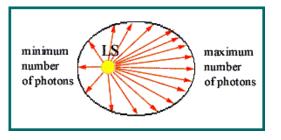
Light Source Specifications

- Power (total flux)
 - Emitted energy / time
- Active emission size
 - Point, area, volume
- Spectral distribution
 - Thermal, line spectrum
- Directional distribution
 - Goniometric diagram









Sky Light

- Sun
 - Point source (approx.)
 - White light (by def.)
- Sky
 - Area source
 - Scattering: blue

• Horizon

- Brighter
- Haze: whitish

Overcast sky

- Multiple scattering in clouds
- Uniform grey

Courtesy Lynch & Livingston

Light Source Classification

Radiation characteristics

- Directional light
 - Spot-lights
 - Beamers
 - Distant sources

• Diffuse emitters

- Torchieres
- Frosted glass lamps
- Ambient light
 - "Photons everywhere"

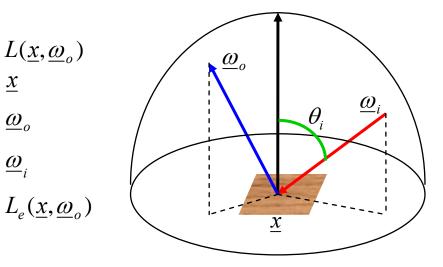
Emitting area

- Volume
 - neon advertisements
 - sodium vapor lamps
- Area
 - CRT, LCD display
 - (Overcast) sky
- Line
 - Clear light bulb, filament
- Point
 - Xenon lamp
 - Arc lamp
 - Laser diode

Surface Radiance

$$L(\underline{x},\underline{\omega}_{o}) = L_{e}(\underline{x},\underline{\omega}_{o}) + \int_{\Omega} f_{r}(\underline{\omega}_{i},\underline{x},\underline{\omega}_{o}) L_{i}(\underline{x},\underline{\omega}_{i}) \cos\theta_{i} d\underline{\omega}_{i}$$

- Visible surface radiance
 - Surface position
 - Outgoing direction
 - Incoming illumination direction
- Self-emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)



 $L_i(\underline{x},\underline{\omega}_i)$

 $f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o)$

Ray Tracing

$$L(\underline{x},\underline{\omega}_{o}) = L_{e}(\underline{x},\underline{\omega}_{o}) + \int_{\Omega} f_{r}(\underline{\omega}_{i},\underline{x},\underline{\omega}_{o}) L_{i}(\underline{x},\underline{\omega}_{i}) \cos\theta_{i} d\underline{\omega}_{i}$$

- Simple ray tracing
 - Illumination from light sources only local illumination (integral → sum)
 - Evaluates angle-dependent reflectance function - shading

• Advanced ray tracing techniques

- Recursive ray tracing
 - Multiple reflections/refractions (for specular surfaces)
- Forward ray tracing
 - Stochastic sampling (Monte Carlo methods)
 - Photon mapping
- Combination of both



Light Transport in a Scene

- Scene
 - Lights (emitters)
 - Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too !
 - Radiosity = Irradiance absorbed photons flux density
 - Radiosity: photons per second per m^2 leaving surface
 - Irradiance: photons per second per m^2 incident on surface
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
 - No absorption in-between objects
- Dynamic Energy Equilibrium
 - emitted photons = absorbed photons (+ escaping photons)

→ Global Illumination

(Surface) Rendering Equation

- In Physics: Radiative Transport Equation
- Expresses energy equilibrium in scene

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L_i(\underline{x},\underline{\omega}_i) \cos\theta_i d\underline{\omega}_i$$

total radiance = emitted radiance + reflected radiance

• First term: emissivity of the surface

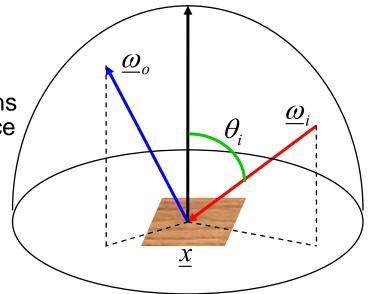
- non-zero only for light sources

• Second term: reflected radiance

 integral over all possible incoming directions of irradiance times angle-dependent surface reflection function

• Fredholm integral equation of 2nd kind

- unknown radiance appears on lhs and inside the integral
- Numerical methods necessary to compute approximate solution



Rendering Equation II

• Outgoing illumination at a point

$$L(\underline{x}, \underline{\omega}_{o}) = L_{e}(\underline{x}, \underline{\omega}_{o}) + L_{r}(\underline{x}, \underline{\omega}_{o})$$
$$= L_{e}(\underline{x}, \underline{\omega}_{o}) + \int_{\Omega_{+}} f_{r}(\underline{\omega}_{i}, \underline{x}, \underline{\omega}_{o}) L_{i}(\underline{x}, \underline{\omega}_{i}) \cos \theta_{i} d\underline{\omega}_{i}$$

• Linking with other surface points

- Incoming radiance at \underline{x} is outgoing radiance at \underline{y}

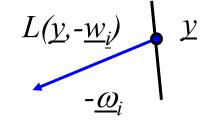
$$L_{i}(\underline{x},\underline{\omega}_{i}) = L(\underline{y},-\underline{\omega}_{i}) = L(RT(\underline{x},\underline{\omega}_{i}),-\underline{\omega}_{i})$$

- Ray-Tracing operator

$$\underline{y} = RT(\underline{x}, \underline{\omega}_i)$$

$$L_i(\underline{x}, \underline{w}_i)$$

$$\underline{\omega}_i$$



Rendering Equation III

• Directional parameterization

$$L(\underline{x}, \underline{\omega}_{o}) = L_{e}(\underline{x}, \underline{\omega}_{o}) + \int_{\Omega_{+}} f_{r}(\underline{\omega}_{i}, \underline{x}, \underline{\omega}_{o}) L(\underline{y}(\underline{x}, \underline{\omega}_{i}), -\underline{\omega}_{i}) \cos \theta_{i} d\omega_{i}$$
• **Re-parameterization over surfaces** S
$$d\omega_{i} = \frac{\cos \theta_{y}}{\|\underline{x} - \underline{y}\|^{2}} dA_{y}$$

$$\frac{n}{\|\underline{x} - \underline{y}\|^{2}} dA_{y}$$

$$L(\underline{x}, \underline{\omega}_{o}) = L_{e}(\underline{x}, \underline{\omega}_{o}) + \int_{\underline{y} \in S} f_{r}(\underline{\omega}_{i}, \underline{x}, \underline{\omega}_{o}) L(\underline{y}, \underline{\omega}_{i}(\underline{x}, \underline{y})) V(\underline{x}, \underline{y}) \frac{\cos \theta_{i} \cos \theta_{y}}{\|\underline{x} - \underline{y}\|^{2}} dA_{y}$$

Rendering Equation IV

$$L(\underline{x},\underline{\omega}_{o}) = L_{e}(\underline{x},\underline{\omega}_{o}) + \int_{\underline{y}\in S} f_{r}(\underline{\omega}_{i},\underline{x},\underline{\omega}_{o}) L(\underline{y},\underline{\omega}_{i}(\underline{x},\underline{y})) V(\underline{x},\underline{y}) \frac{\cos\theta_{i}\cos\theta_{y}}{\left\|\underline{x}-\underline{y}\right\|^{2}} dA_{y}$$

- Geometry term $G(\underline{x}, \underline{y}) = V(\underline{x}, \underline{y}) \frac{\cos \theta_i \cos \theta_y}{\|x y\|^2}$
- Visibility term $V(\underline{x}, \underline{y}) = \begin{cases} 1 & \text{if visible} \\ 0 & \text{if not visible} \end{cases}$
- Integration over all surfaces

$$L(\underline{x},\underline{\omega}_{o}) = L_{e}(\underline{x},\underline{\omega}_{o}) + \int_{\underline{y}\in S} f_{r}(\underline{\omega}_{i},\underline{x},\underline{\omega}_{o}) L(\underline{y},\underline{\omega}_{i}(\underline{x},\underline{y})) G(\underline{x},\underline{y}) dA_{y}$$

Rendering Equation: Approximations

- Using RGB instead of full spectrum
 - follows roughly the eye's sensitivity
- Dividing scene surfaces into small patches
 - Assumes locally constant reflection, visibility, geometry terms
- Sampling hemisphere along finite, discrete directions
 - simplifies integration to summation
- Reflection function model
 - Parameterized function
 - ambient: constant, non-directional, background light
 - diffuse: light reflected uniformly in all directions
 - specular: light of higher intensity in mirror-reflection direction
 - Lambertian surface (only diffuse reflection) Radiosity
- Approximations based on empirical foundations
 > An example: polygon rendering in OpenGL

Radiosity Equation

$$L(\underline{x},\underline{\omega}_{o}) = L_{e}(\underline{x},\underline{\omega}_{o}) + \int_{\underline{y}\in S} f_{r}(\underline{\omega}_{i},\underline{x},\underline{\omega}_{o}) L(\underline{y},\underline{\omega}_{i}(x,y)) G(\underline{x},\underline{y}) dA_{y}$$

Diffuse reflection only $\rho(\underline{x}) = \int_{0}^{\pi/2} \int_{0}^{2\pi} f_{r}(\underline{x}) \cos\theta \, d\omega = \int_{0}^{\pi/2} \int_{0}^{2\pi} f_{r}(\underline{x}) \cos\theta \, d\omega = \int_{0}^{\pi/2} \int_{0}^{2\pi} f_{r}(\underline{x}) \cos\theta \, d\phi \, d\theta$

$$f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o) = f_r(\underline{x}) \implies \rho(\underline{x}) = \pi f_r(\underline{x})$$
 diffuse
reflectance

• Radiance \Rightarrow Radiosity

•

 $L(\underline{x},\underline{\omega}_o) \rightarrow B(\underline{x})/\pi$

$$B(\underline{x}) = B_e(\underline{x}) + \rho(\underline{x}) E(\underline{x})$$

= $B_e(\underline{x}) + \rho(\underline{x}) \int_{\underline{y} \in S} F(\underline{x}, \underline{y}) B(\underline{y}) dA_y$
Form factor
 $F(\underline{x}, \underline{y}) = \frac{G(\underline{x}, \underline{y})}{\pi}$ percentage of light leaving dA_y that arrives at dA

Linear Operators

- Properties
 - Fredholm integral of 2nd kind
 - Global linking
 - Potentially each point with each other
 - Often sparse systems (occlusions)
 - No consideration of volume effects!!

• Linear operator

- acts on functions like matrices act on vectors
- Superposition principle
- Scaling and addition

$$B(\underline{x}) = B_e(\underline{x}) + \rho(\underline{x}) \int_{\underline{y} \in S} F(\underline{x}, \underline{y}) B(\underline{y}) dA_y$$

$$f(x) = g(x) + (K \circ f)(x)$$

$$(K \circ f)(x) \equiv \int k(x, y) f(y) dy$$

$$K \circ (af + bg) = a(K \circ f) + b(K \circ g)$$

Formal Solution of Integral Equations

$$B(\underline{x}) = B_e(\underline{x}) + \rho(\underline{x}) \int_{\underline{y} \in S} F(\underline{x}, \underline{y}) B(\underline{y}) dA_y$$

• Integral equation $B = B_e + K \circ B$

$$\Longrightarrow (I - K) \circ B = B_e$$

Formal solution

$$B = (I - K)^{-1} \circ B_e$$

• Neumann series

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots$$

$$\frac{1}{I-K} = I + K + K^{2} + \dots$$

$$(I-K)\frac{1}{I-K} = (I-K)(I + K + K^{2} + \dots)$$

$$= (I + K + K^{2} + \dots) - (K + K^{2} + \dots) = I$$

Formal Solutions II

Successive approximation

$$\frac{1}{I-K}B_e = B_e + K \circ B_e + K^2 \circ B_e + \dots$$
$$= (B_e + K \circ (B_e + K \circ (B_e + \dots$$

- Direct light from the light source
- Light which is reflected and transported one time
- Light which is reflected and transported n-times

$$B_1 = B_e$$
$$B_2 = B_e + K \circ B_1$$

$$\dots$$
$$B_n = B_e + K \circ B_{n-1}$$

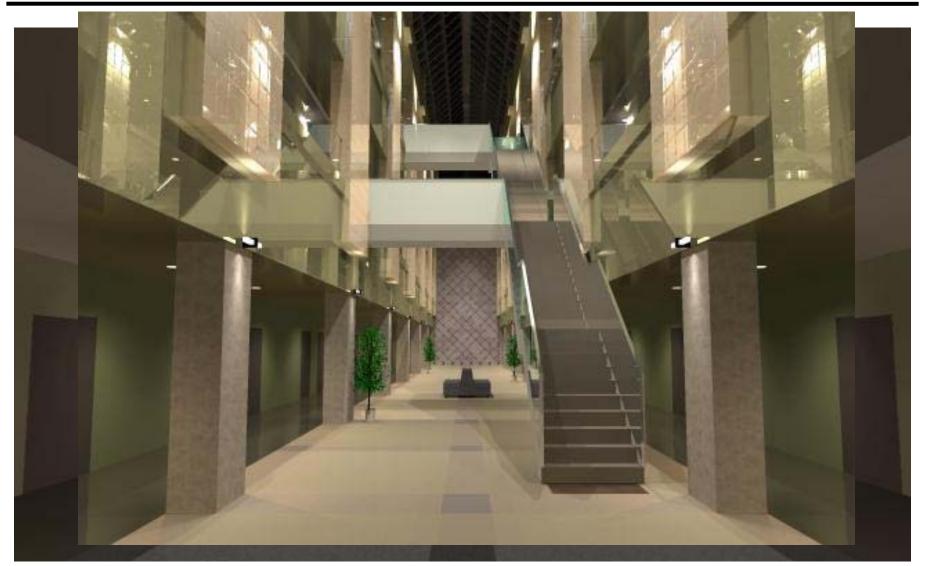
Lighting Simulation

Courtesy Karol Myszkowski, MPII

Lighting Simulation

Courtesy Karol Myszkowski, MPII

Lighting Simulation



Courtesy Karol Myszkowski, MPII

Wrap-up

Physical Quantities in Rendering

- Radiance
- Radiosity
- Irradiance
- Intensity
- Light Perception
- Light Sources

Rendering Equation

- Integral equation
- Balance of radiance

Radiosity

- Diffuse reflectance function
- Radiative equilibrium between emission and absorption, escape
- System of linear equations
- Iterative solution