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Overview
• So far

– simple shading
• Today

– Physics behind ray tracing
– Physical light quantities
– Perception of light
– Light sources
– Light transport simulation

• Next lecture
– Light-matter interaction
– Reflectance function
– Reflection models
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• Ray
– Linear propagation
⇒Geometrical optics

• Vector
– Polarization
⇒Jones Calculus: matrix representation

• Wave
– Diffraction, Interference
⇒Maxwell equations: propagation of light

• Particle
– Light comes in discrete energy quanta: photons
⇒Quantum theory: interaction of light with matter

• Field
– Electromagnetic force: exchange of virtual photons
⇒Quantum Electrodynamics (QED): interaction between particles

What is Light ?
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Light in Computer Graphics
• Based on human visual perception

– Macroscopic geometry
– Tristimulus color model
– Psycho-physics: tone mapping, compression, …

• Ray optics
– Light: scalar, real-valued quantity
– Linear propagation
– Macroscopic objects
– Incoherent light
– Superposition principle: light contributions add up linearly
– No attenuation in free space

• Limitations
– Microscopic structures (≈λ)
– Diffraction, Interference
– Polarization
– Dispersion
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Angle and Solid Angle
 the angle subtended by a curve in the plane, is the length of the 

corresponding arc on the unit circle.
 the solid angle subtended by an object, is the surface area of its 

projection onto the unit sphere,
 Units for measuring solid angle: steradians [sr] 

θ
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Projected Solid Geometry
 The solid angle subtended by a small surface patch S with area ΔA is 

obtained (i) by projecting it orthogonal to the vector r to the origin

 and (ii) dividing by the square of the distance to the origin:
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Radiometry
• Definition:

– Radiometry is the science of measuring radiant energy transfers.
Radiometric quantities have physical meaning and can be directly
measured using proper equipment such as spectral photometers.

• Radiometric Quantities
– energy [watt second] n · hν (Photon Energy)
– radiant power (total flux) [watt] Φ
– radiance [watt/(m2 sr)] L
– irradiance [watt/m2] E
– radiosity [watt/m2]   B
– intensity [watt/sr] I
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ωθω ddAxLd  cos ),(2 =Φ

Radiometric Quantities: Radiance
• Radiance is used to describe radiant energy transfer. 
• Radiance L is defined as 

– the power (flux) traveling at some point x
– in a specified direction ω = (θ,φ),
– per unit area perpendicular to the direction of travel,
– per unit solid angle. 

• Thus, the differential power d2Φ radiated through the differential solid 
angle dω, from the projected differential area dA cosθ is:  ω

dA

ωθω ddAxLd  cos ),(2 =Φ
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Spectral Properties
• Wavelength

– Since light is composed of electromagnetic waves of different 
frequencies and wavelengths, most of the energy transfer quantities 
are continuous functions of wavelength. 

– In graphics each measurement L(x,ω) is for a discrete band of 
wavelength only (often some abstract R, B, G)
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Radiometric Quantities: Irradiance
 Irradiance E is defined as the total power per unit area (flux density) 

incident onto a surface. To obtain the total flux incident to dA, the 
incoming radiance Li is integrated over the upper hemisphere Ω+
above the surface: 
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Radiometric Quantities: Radiosity
 Radiosity B is defined as the total power per unit area (flux density) 

leaving a surface. To obtain the total flux radiated from dA, the 
outgoing radiance Lo is integrated over the upper hemisphere Ω+
above the surface.
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Photometry
• Photometry:

– The human eye is sensitive to a limited range of radiation 
wavelengths (roughly from 380nm to 770nm).

– The response of our visual system is not the same for all 
wavelengths, and can be characterized by  the luminuous efficiency 
function V(λ), which represents the average human spectral 
response. 

– A set of photometric quantities can be derived from radiometric 
quantities by integrating them against the luminuous efficiency 
function V(λ).

– Separate curves exist for light and dark adaptation of the eye.
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Radiometry vs. Photometry

Physics-based quantities Perception-based quantities
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Perception of Light

The eye detects radiance

f

radiance = flux per unit area per unit solid angle
dAd

L
⋅Ω
Φ

=
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photons / second = flux = energy / time = power Φ rod sensitive to flux

A' dd ⋅Ω∝Φflux proportional to area and solid angle

r

22 /' lrd ⋅≈Ω πAngular extend of pupil aperture (r ≤ 4 mm) = solid angle
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projected rod size = area Ω⋅≈ dldA 2
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Brightness Perception
r

f l

'Ωd dA
Ωd

'dA

• dA’ > dA : photon flux per rod stays constant
• dA’ < dA : photon flux per rod decreases

Where does the Sun turn into a star ? 
− Depends on apparent Sun disc size on retina
⇒ Photon flux per rod stays the same on Mercury, Earth or Neptune
⇒ Photon flux per rod decreases when dΩ’ < 1 arc minute (beyond Neptune)

As l increases: const' 2

2
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Brightness Perception II

Ω⋅⋅⋅=Φ drL 2
00 π

l

dΩr

⇒ Flux does not depend on distance l
⇒ Nebulae always appear b/w  

Extended light source
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Radiance in Space

The radiance in the direction of a light ray 
remains constant as it propagates along the ray
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Point Light Source
• Point light with isotropic radiance

– Power (total flux) of a point light source
∀ Φg= Power of the light source [watt]

– Intensity of a light source
• I= Φg/(4π sr) [watt/sr]

– Irradiance on a sphere with radius r around light source:
• Er= Φg/(4π r2) [watt/m2]

– Irradiance on some other surface A
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Inverse Square Law
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Irradiance E:
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• Irradiance E:  power per m2

– Illuminating quantity
• Distance-dependent

– Double distance from emitter: sphere area four times bigger
• Irradiance falls off with inverse of squared distance

– For point light sources
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Light Source Specifications
• Power (total flux)

– Emitted energy / time
• Active emission size

– Point, area, volume
• Spectral distribution

– Thermal, line spectrum
• Directional distribution

– Goniometric diagram
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Sky Light

Courtesy Lynch & Livingston

• Sun
– Point source (approx.)
– White light (by def.)

• Sky
– Area source
– Scattering: blue

• Horizon
– Brighter
– Haze: whitish

• Overcast sky
– Multiple scattering

in clouds
– Uniform grey
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Light Source Classification
Emitting area

• Volume
– neon advertisements
– sodium vapor lamps

• Area 
– CRT, LCD display
– (Overcast) sky

• Line
– Clear light bulb, filament

• Point
– Xenon lamp
– Arc lamp
– Laser diode

Radiation characteristics

• Directional light
– Spot-lights
– Beamers
– Distant sources

• Diffuse emitters
– Torchieres
– Frosted glass lamps

• Ambient light
– “Photons everywhere”
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Surface Radiance

• Visible surface radiance 
– Surface position
– Outgoing direction
– Incoming illumination direction

• Self-emission
• Reflected light

– Incoming radiance from all 
directions

– Direction-dependent reflectance
(BRDF: bidirectional reflectance
distribution function)
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Ray Tracing

• Simple ray tracing
– Illumination from light sources only -

local illumination (integral sum)
– Evaluates angle-dependent reflectance 

function - shading
• Advanced ray tracing techniques

– Recursive ray tracing
• Multiple reflections/refractions (for 

specular surfaces)
– Forward ray tracing

• Stochastic sampling (Monte Carlo 
methods)

• Photon mapping
– Combination of both
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Light Transport in a Scene
• Scene

– Lights (emitters)
– Object surfaces (partially absorbing)

• Illuminated object surfaces become emitters, too !
– Radiosity = Irradiance – absorbed photons flux density

• Radiosity: photons per second per m^2 leaving surface
• Irradiance: photons per second per m^2 incident on surface

• Light bounces between all mutually visible surfaces
• Invariance of radiance in free space

– No absorption in-between objects
• Dynamic Energy Equilibrium

– emitted photons  = absorbed photons (+ escaping photons)

Global Illumination 
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(Surface) Rendering Equation
• In Physics: Radiative Transport Equation 
• Expresses energy equilibrium in scene

 total radiance = emitted radiance + reflected 
radiance

• First term: emissivity of the surface
– non-zero only for light sources 

• Second term: reflected radiance 
– integral over all possible incoming directions 

of irradiance times angle-dependent surface 
reflection function

• Fredholm integral equation of 2nd kind
– unknown radiance appears on lhs and 

inside the integral
– Numerical methods necessary to compute 

approximate solution
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Rendering Equation II
• Outgoing illumination at a point

• Linking with other surface points
– Incoming radiance at x is outgoing radiance at y

– Ray-Tracing operator

∫
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Rendering Equation III
• Directional parameterization

• Re-parameterization over surfaces S
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• Geometry term

• Visibility term

• Integration over all surfaces

Rendering Equation IV
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Rendering Equation: Approximations
• Using RGB instead of full spectrum

– follows roughly the eye’s sensitivity
• Dividing scene surfaces into small patches

– Assumes locally constant reflection, visibility, geometry terms
• Sampling hemisphere along finite, discrete directions

– simplifies integration to summation
• Reflection function model

– Parameterized function
• ambient: constant, non-directional, background light
• diffuse: light reflected uniformly in all directions
• specular: light of higher intensity in mirror-reflection direction

– Lambertian surface (only diffuse reflection) - Radiosity
• Approximations based on empirical foundations

An example: polygon rendering in OpenGL
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Radiosity Equation

• Diffuse reflection only

• Radiance  ⇒ Radiosity

• Form factor
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Linear Operators
• Properties

– Fredholm integral of 2nd kind
– Global linking

• Potentially each point with 
each other

• Often sparse systems 
(occlusions)

– No consideration of volume 
effects!!

• Linear operator
– acts on functions like 

matrices act on vectors
– Superposition principle
– Scaling and addition
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Formal Solution of Integral Equations

• Integral equation

• Formal solution

• Neumann series
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Formal Solutions II
• Successive approximation

– Direct light from the light 
source

– Light which is reflected and 
transported one time

– Light which is reflected and 
transported n-times
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Lighting Simulation

Courtesy Karol Myszkowski, MPII
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Wrap-up
• Physical Quantities in Rendering

– Radiance
– Radiosity
– Irradiance
– Intensity

• Light Perception
• Light Sources
• Rendering Equation

– Integral equation
– Balance of radiance

• Radiosity
– Diffuse reflectance function
– Radiative equilibrium between emission and absorption, escape
– System of linear equations
– Iterative solution


