Computer Graphics

- Texturing & Procedural Methods -

Hendrik Lensch

Computer Graphics WS07/08 — Texturing & Procedural Methods

Overview

« Lasttime

— Shading

— Texturing
 Today

— Texturing (Cont.)

— Procedural textures
— Fractal landscapes

* Next lecture
— Texture Filtering
— Alias & signal processing

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Mapping Transformations

Texture Object Image
Space (2-D) Space (3-D) Space (2-D)

Texture-Surface Viewing/Projection
Transformation Transformation

The texture is mapped onto a surface in 3-D object space, which is
then mapped to the screen by the viewing projection. These two
mappings are composed to find the overall 2-D texture space to 2-D
image space mapping, and the intermediate 3-D space is often
forgotten. This simplification suggests texture mapping’s close ties with
image warping and geometric distortion.

Texture space (u,v)
Object space (x,,y,z,)
Screen space (x,y)

Computer Graphics WS07/08 — Texturing & Procedural Methods

2D Texturing

ce :
textured surfa texture pixel center

screen pixel center

SCTEen

« 2D texture mapped onto object

* Object projected onto 2D screen

« 2D—2D: warping operation

* Uniform sampling ?
« Hole-filling/blending ?

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Mapping in a Ray

Tracear

ce .
textured surfa texture pixel center

o000 o0
oo o ¢ ¢
o0 o000
o0 o000
o000 o0

screen pixel center

e approximation:
— ray hits surface
— surface location corresponds to coordinate inside a texture

Computer Graphics WS07/08 — Texturing & Procedural Methods

2D Texture Mapping

Texture space Object space Screen space
(1, V) {Vie P Tw) [X, ¥al

Forward mapping

B -
Surface
parametrization Project ion

/ 4‘/ ‘ Inverse mappimg m Pixel J

‘Pre-image’ of pixel

 Forward mapping
— Object surface parameterization
— Projective transformation

* Inverse mapping
— Find corresponding pre-image/footprint of each pixel in texture
— Integrate over pre-image

Computer Graphics WS07/08 — Texturing & Procedural Methods

Forward Mapping

 Maps each texel to its position in the image

« Uniform sampling of texture space does not guarantee
uniform sampling in screen space

 Possibly used if
— The texture-to-screen mapping is difficult to invert
— The texture image does not fit into memory

Texture scanning:
for v

texture space — image space

for u .
compute x(u,v) and y(u,v) \

\\
A
RN

copy TEX[u,v] to SCR[x,y]

(or in general 1

-

rasterize image of TEX][u,Vv])

Computer Graphics WS07/08 — Texturing & Procedural Methods

Surface Parameterization

 To apply textures we need 2D coordinates on surfaces
=>» Parameterization
« Some objects have a natural parameterization
— Sphere: spherical coordinates (¢, 6) = (27 u, V)
— Cylinder: cylindrical coordinates (@, z) = (2 T u, H V)
— Parametric surfaces (such as B-spline or Bezier surfaces - later)

« Parameterization is less obvious for
— Polygons, implicit surfaces, ...

Computer Graphics WS07/08 — Texturing & Procedural Methods

Triangle Parameterization

« Triangle is a planar object
— Has implicit parameterization (e.g. barycentric coordinates)
— But we need more control: Placement of triangle in texture space

« Assign texture coordinates (u,v) to each vertex (X,,Y,.Z,)
* Apply viewing projection (X,,Y,,Z,) = (X,y)

* Yields full texture transformation (warping) (u,v)—=(x,y)
_autbvtc dutevtf

- :
gu+hv+i gu+hv+i
— In homogeneous coordinates (by embedding (u,v) as (u',v',1))
(x2)=("Tw,y'Iw)

X

=la b c |u

d e f
g h i

x!

y’ V! (u,v)z(v’/w,v’/w)

w q

— Transformation coefficients determined by 3 pairs (u,v) >(x,y)
* Three linear equations
* Invertible iff neither set of points is collinear

Computer Graphics WS07/08 — Texturing & Procedural Methods

Triangle Parameterization I

a b c ||u

d e f
g h i

v!

e Given
y']

« theinverse transform (x,y)—=(u,v) is defined as

q

u'| |4 B Cl|x' u'| |ei—fh ch-bi bf—ce |x'
VIIEID E F) VT fe—di ai-cg cd—af | V'
9 G H Ilw 9 dh—eg bg—ah ae—bd |-W

« Coefficients must be calculated for each triangle
— Rasterization

* Incremental bilinear update of (1’,v’,¢g) in screen space

» Using the partial derivatives of the linear function (i.e. constants)
— Ray tracing

« Evaluated at every intersection

Computer Graphics WS07/08 — Texturing & Procedural Methods

Cylinder Parameterization

« Transformation from texture space to the cylinder
parametric representation can be written as:

(9,]1) — (ZEM,VH) Texture space Object space
v A T(u,v) A @

« where H is the height
of the cylinder.

* The surface coordinates in
the Cartesian reference frame .
can be expressed as:

x, = rcost
y, =rsind
z =h

Computer Graphics WS07/08 — Texturing & Procedural Methods

Two-Stage Mapping

* Inverse Mapping for arbitrary 3D surfaces too complex

« Approximation technique is used:
— Mapping from 2D texture space to a simple 3D intermediate surface
(S mapping)
« Should be a reasonable approximation of the destination surface
* E.g.: plane, cylinder, sphere, cube, ...
— Mapping from the intermediate surface to the destination object
surface (O mapping)

2D texture map

Computer Graphics WS07/08 — Texturing & Procedural Methods

O-Mapping

« Determine point on intermediate surface through
— Reflected view ray

(i, wis Zi)

* Reflection or I y
. View point termediate
environment ,\\\ surface
mapplng s e : : f\'r{__.'l."w,:l:'w. ZW}

[Xwe Vs Zw) : ;
— Normal mapping
— Lm_e through_ Object
object centroid :
— Shrinkwrapping (1) Reflected ray (2) Object normal

* Forward mapping

* Normal mapping
from intermediate
surface

(X5, Vi Zi)

(Xw, Yy Zue)

N, v, 2i)

(e, Yo, Tw)

(3) Object centroid {4) Intermediate surface normal

Computer Graphics WS07/08 — Texturing & Procedural Methods

Two-Stage Mapping: Problems

* Problems

— May introduce undesired texture distortions if the intermediate
surface differs too much from the destination surface

— Still often used in practice because of its simplicity

Planar Intermediate Surface

Object
Surface

/\u

Texture
runs
forwards

Texture
runs
backwards

Surface concavities can cause the texture
pattern to reverse if the object normal mapping is
used.

Computer Graphics WS07/08 — Texturing & Procedural Methods

Two-Stage Mapping: Example

Different intermediate surfaces

Plane
— Strong distortion where object surface normal L plane normal

Cylinder

— Reasonably uniform mapping (symmetry !)

Sphere

— Problems with concave regions

Computer Graphics WS07/08 — Texturing & Procedural Methods

Projective Textures

* Project texture onto ¥ aN—
object surfaces
— Slide projector

« Parallel or perspective

projection
* Use photographs as
textures }c
* Multiple images
— View-dependent texturing 2 —
» Perspective Mapping el TR
2
lu/% ol

RenderMan Campanion

T, v

Computer Graphics WS07/08 — Texturing & Procedural Methods

Projective Texturing: Examples

By
Wahl Ty

¥ "

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Mapping

« Also called Environment Mapping .

Mirror reflections C@(/

— Surface curvature: beam tracing e
— Map filtering " A

Reflection map parameterization
— Intermediate surface in 2-stage mapping
— Often cube, sphere, or double paraboloid

Assumption: Distant illumination
— Parallax-free illumination
— No self-reflections, distortion of near objects

Option: Separate map per object
— Often necessary to be reasonable accurate ...
— Reflections of other objects
— Maps must be recomputed after changes

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Map Acquisition

« Generating spherical maps (original 1982/83)
— i.e. photo of a reflecting sphere (gazing ball)

Peter Chou

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Map Rendering

« Spherical parameterization
« O-mapping using reflected view ray intersection

2\ Kamera

E(W,R)
=f(9,6)

P-W
Objekt

W Welt-
mittel—
punkt

Reflection Map auf der
Innenflache einer virtuellen
Kugel K

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Map Parameterization

« Spherical mapping
— Single image ' ‘
— Bad utilization of the image area
— Bad scanning on the edge

— Atrtifacts, if map and image do not
have the same direction

 Double parabolic mapping
— Subdivide in 2 images
(facing and back facing side)
— Less bias on the edge
— Arbitrarily reusable
— Supported by OpenGL extensions

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Map Parameterization

« Cubical environment map, cube map, box map
— Enclose object in cube
— Images on faces are easy to compute
— Poorer filtering at edges
— Support in OpenGL

£\ Kamera
\ E~| E
Pixel Rleﬂecm)n beam
Vo R, E
2 N R
. reflektierte/r
Sichtkegel Sichtkegel 2 subtended
(—pyramide) (-pyramide) Texture area subtende
by reflection beam
F
‘ o W Welt-
Objekt mittel-
punkt
Environment Map auf der
Innenflache eines virtuellen
Wiirfels C

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Mapping

Terminator I motion picture

Computer Graphics WS07/08 — Texturing & Procedural Methods

Reflection Mapping Example |l

« Reflection mapping with Phong reflection
— Two maps: diffuse & specular
— Diffuse: index by surface normal
— Specular: indexed by reflected view vector

" RenderMan
Companion

Computer Graphics WS07/08 — Texturing & Procedural Methods

Ray Tracing vs. Reflection Mapping

 Differences ?

Computer Graphics WS07/08 — Texturing & Procedural Methods

Recursive Ray Tracing

« How to fake it with reflection mapping?

Figure 18.11
A recursive depth demonstration. The trace terminates at depth 2, 3, 4 and 5 (zoom image) respectively. ‘Unassigned’ pixels are co
grey. Bad aliasing as a function of recursive depth (the light cable) is apparent.

Computer Graphics WS07/08 — Texturing & Procedural Methods

Light Maps

« Light maps (i.e. in Quake)

— Pre-calculated illumination (local irradiance)
« Often very low resolution

— Multiplication of irradiance with base texture
 Diffuse reflectance only

— Provides surface radiosity
* View-independent

— Animated light maps
« Animated shadows, moving light spots etc.

Reflectance Irradiance Radiosity
Representing radiosity

in a mesh or texture

Computer Graphics WS07/08 — Texturing & Procedural Methods

Bump Mapping

* Modulation of the normal vector
— Surface normals changed only
* Influences shading only
* No self-shadowing, contour is not altered

Computer Graphics WS07/08 — Texturing & Procedural Methods

Bump Mapping

« QOriginal surface O(u,v)
— Surface normals are known

« Bump map B(u,v)eR
— Surface is offset in normal direction
according to bump map intensity
— New normal directions N’(u,v) are
calculated based on virtually displaced
surface O’(u,v)

— Originals surface is rendered with new
normals N’(u,v)

used for bump height

Olu)

Original surface

Bluj
A bump map

(v

Lengthening or shortening
{(u) using B{u)

) 3k

|"|"|:Lr]

The vectors to the
‘new” surface

).

Computer Graphics WS07/08 — Texturing & Procedural Methods

Bump Mapping

o’ (u, v) = O(u, v) + B(u, v) ?‘

Now differentiating this equation gives:

N
| (u)

Original surface

' =0,+B,—+B | —
RN N,

Blu)

N (N
0,=0,+B,—+ B | —
|| AN,

If B is small (that is, the bump map displacement func-
tion is small compared with its spatial extent) the last
term in each equation can be ignored and

A bump map
N N
N’ (u,v) =0,%x 0, + B, mxov +B, O”XThT[

0 (u)
Lengthening or shortening
{(u) using B{u)
. [N X N]
+ B,B,
|N|2

i
The first term is the normal to the surface and the last { N'(i)
term is zero, giving: The vectars {o the
/‘\ ‘new’ surface

D= Bu(Nx O,_,) - Bv(Nx OH)
N’=N+D

Computer Graphics WS07/08 — Texturing & Procedural Methods

3-D Textures

- “Carving object shape out of material block”

David Ebert

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Examples

« Solid 3D textures (wood, marble)
« Bump map (middle)

RenderMan Companion

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Examples

« Complex optical effects
— Combination of multiple textures

PLASTIC COATED

Brunswick

RenderMan Companion

Computer Graphics WS07/08 — Texturing & Procedural Methods

Billboards

« Single textured polygons
— Often with transparency texture

* Rotates, always facing viewer
 Used for rendering distant objects

« Best results if approximately
radially or spherically symmetric

Computer Graphics WS07/08 — Texturing & Procedural Methods

Procedural Methods

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Maps vs. Procedural Textures

« Texture maps (photos, simulations, videos, ...)
— Simple acquisition
— lllumination ,frozen” during acquisition
— Limited resolution, aliasing
— High memory requirements
— Mapping issues

* Procedural textures
— Non-trivial programming
— Flexibility & parametric control
— Unlimited resolution
— Anti-aliasing possible
— Low memory requirements
— Low-cost visual complexity
— Can adapt to arbitrary geometry

Ken Perlin

Computer Graphics WS07/08 — Texturing & Procedural Methods

Procedural Textures

* Function of some shading parameter, e.g.
— world space, texture coordinates, ...

« Texturing: evaluation of function on object surface
— Ray tracing: At intersection point with surface

 Observation: Textures of natural objects
— Similarity between patches at different locations
» Repetitiveness, coherence (e.g. skin of a tiger)
— Similarity on different resolution scales
» Self-similarity
— But never completely identical
« Additional disturbances, turbulence, noise

« Goal: Generic procedural texture function
— Mimics statistical properties of natural textures
— Purely empirical approach
* Looks convincing, but has nothing to do with material’s physics

Computer Graphics WS07/08 — Texturing & Procedural Methods

Texture Examples

« Translational similarity

« Similarity on different scales

fnitiaten

VAN

Fenarator

Computer Graphics WS07/08 — Texturing & Procedural Methods

3D / Solid Noise: Perlin Noise

* Noise(x,y,z)
— Statistical invariance under rotation
— Statistical invariance under translation

— Roughly one specific frequency ,\ /

Integer lattice (i,],k) \/\/

— Value noise: Random number at lattice
» Look-up table or hashing function into hash map

— Gradient lattice noise
« Random (hashed) gradient vectors
— Fixed fundamental frequency of ~1 Hz over lattice

Evaluation at (Xx,y,z)
— Tri-linear interpolation
— Cubic interpolation (Hermite spline — later)

Unlimited domain due to lattice and hashing

Also see
— http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faqg.html

Computer Graphics WS07/08 — Texturing & Procedural Methods

Gradient vs. Value Noise

 Gradient noise better than value noise
* Less regularity artifacts
» More high frequencies in noise spectrum
« Even tri-linear interpolation produces good results

gradient

Computer Graphics WS07/08 — Texturing & Procedural Methods

Turbulence Function

* Noise function
— “White” frequency spectrum

 Natural textures

— Decreasing power spectrum towards
high frequencies

 Turbulence from noise
— Turbulence(x) = 2X_,abs(noise(2' x) / p')
— persistence p typically p=2
— Summation truncation
« 1/2k+1 < size of one pixel (band limit)
— 1. Term: noise(x)
— 2. Term: noise(2x)/2

— Power spectrum: 1/f
— (Brownian motion has 1/?)

Computer Graphics WS07/08 — Texturing & Procedural Methods

Synthesis of Turbulence (1D)

Amplitude - 128 Amplitude - 54 Amplitude - 32
frequency : 4 frequency : 8 frequency : 18

Amplitude - 16 Amplitude - 8 Sum of Moise Functions = (Perlin Noise)
frequency : 32 frequency : 64

T ; A Ea o - - — & = - o
b= _ﬂ_’_;—ﬁ e =AY S ﬁ\‘_“\-\x‘ o T e W W W T

e

Computer Graphics WS07/08 — Texturing & Procedural Methods

Synthesis of Turbulence (2D)

Computer Graphics WS07/08 — Texturing & Procedural Methods

Example: Marble Texture Function

« OQOverall structure: alternating layers of
white and colored marble
— famie(X,Y,2) :=marble_color(sin(x))
— marble_color : transfer function (see lower left)

« Realistic appearance: simulated turbulence
— famie(X,Y,2) :=marble_color(sin(x+turbulence(x,y,z)))

 Moving object: turbulence function also transformed

Computer Graphics WS07/08 — Texturing & Procedural Methods

Further Procedural Texturing Applications

e Bark
— Turbulated sawtooth function
— Bump mapping

 Clouds
— White blobs
— Turbulated transparency along edge
— Transparency mapping

« Animation
— Vary procedural texture function’s parameters over time

Computer Graphics WS07/08 — Texturing & Procedural Methods

Fractal Landscapes

 Procedural generation of geometry

« Complex geometry at virtually no memory cost
— Can be difficult to ray trace !!

Computer Graphics WS07/08 — Texturing & Procedural Methods

Fractal Landscapes

Coarse triangle mesh approximation
1:4 triangle subdivision

— Vertex insertion at edge-midpoints

New vertex perturbation

— Random displacement along normal

— Scale of perturbation depends on
subdivision level

« Decreasing power spectrum
« Parameter models surface roughness

Recursive subdivision
— Level of detail (LOD) determined by # subdivisions

All done inside renderer !
— LOD generated locally when/where needed (bounding box test)
— Minimal I/O cost (coarse mesh only)

Computer Graphics WS07/08 — Texturing & Procedural Methods

Fractal Landscapes

« Triangle subdivision
— Insert new vertices at edge midpoints
— 1:4 triangle subdivision

 Vertex displacement
— Along original triangle normal

v Courtesy http://www.uni-paderborn.de/SFB376/projects/a2/zBufferMerging/

Computer Graphics WS07/08 — Texturing & Procedural Methods

Fractal Landscape Generation

 Repeated subdivision &
vertex displacement

« Shading
« + Water surface

- Base mesh \/\/
\/

« +Fog

P Ak FTAYAYSN

fgﬁﬂ?hi#%ﬁz&}:":$;¢=-.s:-=. F‘i""#ﬁi‘r!‘g%}?ﬁ'gg*ﬂ%‘
v#{_mﬁmﬁiﬁwﬁ%{{ﬁﬁrﬁ%ﬁfﬁﬁ@‘ J
R ARA AR PR SRy AR
R e

SN A
PSR

Courtesy http://www.uwp.edu/academic/computer.science/morris.csci/CS.320/Week.11/Ch11b.www/Ch11lb.html

Computer Graphics WS07/08 — Texturing & Procedural Methods

Fractal Landscape Ray Tracing

* Fractal terrain generated on-the-fly

 Problem: where is the ray-surface interaction ?
— Triangle mesh not a-priori known

e Solution: bounding boxes
— Maximum possible bounding box around each triangle
— Decreasing displacement amplitude: finite bounding box

« Algorithm
— Intersect ray with bounding box
— Subdivide corresponding triangle
— Compute bounding boxes of 4 new triangles
— Test against 4 new bounding boxes
— lterate until termination criterion fulfilled (LOD / pixel size)

Computer Graphics WS07/08 — Texturing & Procedural Methods

