
Computer Graphics WS07/08 – Texturing & Procedural Methods

Computer Graphics

- Texturing & Procedural Methods -

Hendrik Lensch

Computer Graphics WS07/08 – Texturing & Procedural Methods

Overview
• Last time

– Shading
– Texturing

• Today
– Texturing (Cont.)
– Procedural textures
– Fractal landscapes

• Next lecture
– Texture Filtering
– Alias & signal processing

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Mapping Transformations

Texture
Space (2-D)

Object
Space (3-D)

Image
Space (2-D)

Texture-Surface
Transformation

Viewing/Projection
Transformation

The texture is mapped onto a surface in 3-D object space, which is
then mapped to the screen by the viewing projection. These two
mappings are composed to find the overall 2-D texture space to 2-D
image space mapping, and the intermediate 3-D space is often
forgotten. This simplification suggests texture mapping’s close ties with
image warping and geometric distortion.

Texture space (u,v)
Object space (xo,yo,zo)
Screen space (x,y)

Computer Graphics WS07/08 – Texturing & Procedural Methods

2D Texturing

• 2D texture mapped onto object
• Object projected onto 2D screen
• 2D→2D: warping operation
• Uniform sampling ?
• Hole-filling/blending ?

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Mapping in a Ray
Tracer

• approximation:
– ray hits surface
– surface location corresponds to coordinate inside a texture

Computer Graphics WS07/08 – Texturing & Procedural Methods

2D Texture Mapping

• Forward mapping
– Object surface parameterization
– Projective transformation

• Inverse mapping
– Find corresponding pre-image/footprint of each pixel in texture
– Integrate over pre-image

Computer Graphics WS07/08 – Texturing & Procedural Methods

Forward Mapping
• Maps each texel to its position in the image
• Uniform sampling of texture space does not guarantee

uniform sampling in screen space
• Possibly used if

– The texture-to-screen mapping is difficult to invert
– The texture image does not fit into memory

Texture scanning:
for v

for u
compute x(u,v) and y(u,v)
copy TEX[u,v] to SCR[x,y]

(or in general
rasterize image of TEX[u,v])

Computer Graphics WS07/08 – Texturing & Procedural Methods

Surface Parameterization
• To apply textures we need 2D coordinates on surfaces

Parameterization
• Some objects have a natural parameterization

– Sphere: spherical coordinates (ϕ, θ) = (2π u, π v)
– Cylinder: cylindrical coordinates (ϕ, z) = (2 π u, H v)
– Parametric surfaces (such as B-spline or Bezier surfaces later)

• Parameterization is less obvious for
– Polygons, implicit surfaces, …

Computer Graphics WS07/08 – Texturing & Procedural Methods

Triangle Parameterization
• Triangle is a planar object

– Has implicit parameterization (e.g. barycentric coordinates)
– But we need more control: Placement of triangle in texture space

• Assign texture coordinates (u,v) to each vertex (xo,yo,zo)
• Apply viewing projection (xo,yo,zo) → (x,y)
• Yields full texture transformation (warping) (u,v)→(x,y)

– In homogeneous coordinates (by embedding (u,v) as (u',v',1))

– Transformation coefficients determined by 3 pairs (u,v)→(x,y)
• Three linear equations
• Invertible iff neither set of points is collinear

i+hv+gu
f+ev+du=y

i+hv+gu
c+bv+au=x

() ()

() ()wv'w,v'=vu,

wy'w,x'=yx,

q

v'

u'

ihg

fed

cba=

w

y'

x'
//

//

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Computer Graphics WS07/08 – Texturing & Procedural Methods

Triangle Parameterization II
• Given

• the inverse transform (x,y)→(u,v) is defined as

• Coefficients must be calculated for each triangle
– Rasterization

• Incremental bilinear update of (u’,v’,q) in screen space
• Using the partial derivatives of the linear function (i.e. constants)

– Ray tracing
• Evaluated at every intersection

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

q

v'

u'

ihg

fed

cba

w

y'

x'

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−
=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

w

y'

x'

bdaeahbgegdh

afcdcgaidifg

cebfbichfhei

q

v'

u'

w

y'

x'

IHG

FED

CBA

q

v'

u'

Computer Graphics WS07/08 – Texturing & Procedural Methods

Cylinder Parameterization
• Transformation from texture space to the cylinder

parametric representation can be written as:

• where H is the height
of the cylinder.

• The surface coordinates in
the Cartesian reference frame
can be expressed as:

() ()vHπu,=hθ, 2

h=z
θr=y
θr=x

o

o

o

sin
cos

Computer Graphics WS07/08 – Texturing & Procedural Methods

Two-Stage Mapping
• Inverse Mapping for arbitrary 3D surfaces too complex
• Approximation technique is used:

– Mapping from 2D texture space to a simple 3D intermediate surface
(S mapping)

• Should be a reasonable approximation of the destination surface
• E.g.: plane, cylinder, sphere, cube, ...

– Mapping from the intermediate surface to the destination object
surface (O mapping)

OS

Computer Graphics WS07/08 – Texturing & Procedural Methods

O-Mapping
• Determine point on intermediate surface through

– Reflected view ray
• Reflection or

environment
mapping

– Normal mapping
– Line through

object centroid
– Shrinkwrapping

• Forward mapping
• Normal mapping

from intermediate
surface

Computer Graphics WS07/08 – Texturing & Procedural Methods

Two-Stage Mapping: Problems
• Problems

– May introduce undesired texture distortions if the intermediate
surface differs too much from the destination surface

– Still often used in practice because of its simplicity

Computer Graphics WS07/08 – Texturing & Procedural Methods

Two-Stage Mapping: Example

• Different intermediate surfaces
• Plane

– Strong distortion where object surface normal ⊥ plane normal
• Cylinder

– Reasonably uniform mapping (symmetry !)
• Sphere

– Problems with concave regions

Computer Graphics WS07/08 – Texturing & Procedural Methods

Projective Textures
• Project texture onto

object surfaces
– Slide projector

• Parallel or perspective
projection

• Use photographs as
textures

• Multiple images
– View-dependent texturing

• Perspective Mapping

RenderMan Companion

Computer Graphics WS07/08 – Texturing & Procedural Methods

Projective Texturing: Examples

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Mapping
• Also called Environment Mapping
• Mirror reflections

– Surface curvature: beam tracing
– Map filtering

• Reflection map parameterization
– Intermediate surface in 2-stage mapping
– Often cube, sphere, or double paraboloid

• Assumption: Distant illumination
– Parallax-free illumination
– No self-reflections, distortion of near objects

• Option: Separate map per object
– Often necessary to be reasonable accurate
– Reflections of other objects
– Maps must be recomputed after changes

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Map Acquisition
• Generating spherical maps (original 1982/83)

– i.e. photo of a reflecting sphere (gazing ball)

Peter Chou

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Map Rendering
• Spherical parameterization
• O-mapping using reflected view ray intersection

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Map Parameterization
• Spherical mapping

– Single image
– Bad utilization of the image area
– Bad scanning on the edge
– Artifacts, if map and image do not

have the same direction
• Double parabolic mapping

– Subdivide in 2 images
(facing and back facing side)

– Less bias on the edge
– Arbitrarily reusable
– Supported by OpenGL extensions

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Map Parameterization
• Cubical environment map, cube map, box map

– Enclose object in cube
– Images on faces are easy to compute
– Poorer filtering at edges
– Support in OpenGL

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Mapping

Terminator II motion picture

Computer Graphics WS07/08 – Texturing & Procedural Methods

Reflection Mapping Example II
• Reflection mapping with Phong reflection

– Two maps: diffuse & specular
– Diffuse: index by surface normal
– Specular: indexed by reflected view vector

RenderMan
Companion

Computer Graphics WS07/08 – Texturing & Procedural Methods

Ray Tracing vs. Reflection Mapping
• Differences ?

Computer Graphics WS07/08 – Texturing & Procedural Methods

Recursive Ray Tracing
• How to fake it with reflection mapping?

Computer Graphics WS07/08 – Texturing & Procedural Methods

Light Maps
• Light maps (i.e. in Quake)

– Pre-calculated illumination (local irradiance)
• Often very low resolution

– Multiplication of irradiance with base texture
• Diffuse reflectance only

– Provides surface radiosity
• View-independent

– Animated light maps
• Animated shadows, moving light spots etc.

Reflectance Irradiance Radiosity

texture

mesh

Representing radiosity
in a mesh or texture

Computer Graphics WS07/08 – Texturing & Procedural Methods

Bump Mapping
• Modulation of the normal vector

– Surface normals changed only
• Influences shading only
• No self-shadowing, contour is not altered

Computer Graphics WS07/08 – Texturing & Procedural Methods

Bump Mapping
• Original surface O(u,v)

– Surface normals are known
• Bump map B(u,v)∈ R

– Surface is offset in normal direction
according to bump map intensity

– New normal directions N’(u,v) are
calculated based on virtually displaced
surface O’(u,v)

– Originals surface is rendered with new
normals N’(u,v)

Grey-valued texture used for bump height

Computer Graphics WS07/08 – Texturing & Procedural Methods

Bump Mapping

N’=N+D

Computer Graphics WS07/08 – Texturing & Procedural Methods

3-D Textures
• “Carving object shape out of material block”

David Ebert

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Examples
• Solid 3D textures (wood, marble)
• Bump map (middle)

RenderMan Companion

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Examples
• Complex optical effects

– Combination of multiple textures

RenderMan Companion

Computer Graphics WS07/08 – Texturing & Procedural Methods

Billboards
• Single textured polygons

– Often with transparency texture
• Rotates, always facing viewer
• Used for rendering distant objects
• Best results if approximately

radially or spherically symmetric

Computer Graphics WS07/08 – Texturing & Procedural Methods

Procedural Methods

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Maps vs. Procedural Textures
• Texture maps (photos, simulations, videos, ...)

– Simple acquisition
– Illumination „frozen“ during acquisition
– Limited resolution, aliasing
– High memory requirements
– Mapping issues

• Procedural textures
– Non-trivial programming
– Flexibility & parametric control
– Unlimited resolution
– Anti-aliasing possible
– Low memory requirements
– Low-cost visual complexity
– Can adapt to arbitrary geometry

Ken Perlin

Computer Graphics WS07/08 – Texturing & Procedural Methods

Procedural Textures
• Function of some shading parameter, e.g.

– world space, texture coordinates, ...
• Texturing: evaluation of function on object surface

– Ray tracing: At intersection point with surface
• Observation: Textures of natural objects

– Similarity between patches at different locations
• Repetitiveness, coherence (e.g. skin of a tiger)

– Similarity on different resolution scales
• Self-similarity

– But never completely identical
• Additional disturbances, turbulence, noise

• Goal: Generic procedural texture function
– Mimics statistical properties of natural textures
– Purely empirical approach

• Looks convincing, but has nothing to do with material’s physics

Computer Graphics WS07/08 – Texturing & Procedural Methods

Texture Examples
• Translational similarity

• Similarity on different scales

Computer Graphics WS07/08 – Texturing & Procedural Methods

3D / Solid Noise: Perlin Noise
• Noise(x,y,z)

– Statistical invariance under rotation
– Statistical invariance under translation
– Roughly one specific frequency

• Integer lattice (i,j,k)
– Value noise: Random number at lattice

• Look-up table or hashing function into hash map
– Gradient lattice noise

• Random (hashed) gradient vectors
– Fixed fundamental frequency of ~1 Hz over lattice

• Evaluation at (x,y,z)
– Tri-linear interpolation
– Cubic interpolation (Hermite spline → later)

• Unlimited domain due to lattice and hashing
• Also see

– http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

Computer Graphics WS07/08 – Texturing & Procedural Methods

Gradient vs. Value Noise
• Gradient noise better than value noise

• Less regularity artifacts
• More high frequencies in noise spectrum
• Even tri-linear interpolation produces good results

Computer Graphics WS07/08 – Texturing & Procedural Methods

Turbulence Function
• Noise function

– “White” frequency spectrum
• Natural textures

– Decreasing power spectrum towards
high frequencies

• Turbulence from noise
– Turbulence(x) = ∑k

i=0 abs(noise(2i x) / pi)
– persistence p typically p=2
– Summation truncation

• 1/2k+1 < size of one pixel (band limit)
– 1. Term: noise(x)
– 2. Term: noise(2x)/2
– …
– Power spectrum: 1/f
– (Brownian motion has 1/f2)

Computer Graphics WS07/08 – Texturing & Procedural Methods

Synthesis of Turbulence (1D)

Computer Graphics WS07/08 – Texturing & Procedural Methods

Synthesis of Turbulence (2D)

Computer Graphics WS07/08 – Texturing & Procedural Methods

Example: Marble Texture Function
• Overall structure: alternating layers of

white and colored marble
– fmarble(x,y,z) :=marble_color(sin(x))
– marble_color : transfer function (see lower left)

• Realistic appearance: simulated turbulence
– fmarble(x,y,z) :=marble_color(sin(x+turbulence(x,y,z)))

• Moving object: turbulence function also transformed

Computer Graphics WS07/08 – Texturing & Procedural Methods

Further Procedural Texturing Applications
• Bark

– Turbulated sawtooth function
– Bump mapping

• Clouds
– White blobs
– Turbulated transparency along edge
– Transparency mapping

• Animation
– Vary procedural texture function’s parameters over time

Computer Graphics WS07/08 – Texturing & Procedural Methods

Fractal Landscapes
• Procedural generation of geometry
• Complex geometry at virtually no memory cost

– Can be difficult to ray trace !!

Computer Graphics WS07/08 – Texturing & Procedural Methods

Fractal Landscapes
• Coarse triangle mesh approximation
• 1:4 triangle subdivision

– Vertex insertion at edge-midpoints
• New vertex perturbation

– Random displacement along normal
– Scale of perturbation depends on

subdivision level
• Decreasing power spectrum
• Parameter models surface roughness

• Recursive subdivision
– Level of detail (LOD) determined by # subdivisions

• All done inside renderer !
– LOD generated locally when/where needed (bounding box test)
– Minimal I/O cost (coarse mesh only)

Computer Graphics WS07/08 – Texturing & Procedural Methods

Fractal Landscapes
• Triangle subdivision

– Insert new vertices at edge midpoints
– 1:4 triangle subdivision

• Vertex displacement
– Along original triangle normal

Courtesy http://www.uni-paderborn.de/SFB376/projects/a2/zBufferMerging/

Computer Graphics WS07/08 – Texturing & Procedural Methods

Fractal Landscape Generation
• Base mesh
• Repeated subdivision &

vertex displacement
• Shading
• + Water surface
• + Fog
• + …

Courtesy http://www.uwp.edu/academic/computer.science/morris.csci/CS.320/Week.11/Ch11b.www/Ch11b.html

Computer Graphics WS07/08 – Texturing & Procedural Methods

Fractal Landscape Ray Tracing
• Fractal terrain generated on-the-fly
• Problem: where is the ray-surface interaction ?

– Triangle mesh not a-priori known
• Solution: bounding boxes

– Maximum possible bounding box around each triangle
– Decreasing displacement amplitude: finite bounding box

• Algorithm
– Intersect ray with bounding box
– Subdivide corresponding triangle
– Compute bounding boxes of 4 new triangles
– Test against 4 new bounding boxes
– Iterate until termination criterion fulfilled (LOD / pixel size)

