Computer Graphics

Texture Filtering &
Sampling Theory

Hendrik Lensch

Computer Graphics WS07/08 — Texturing

Overview

e Lasttime
— Texture Parameterization
— Procedural Shading

« Today
— Texturing Filtering

Computer Graphics WS07/08 — Texturing

2D Texture Mapping

Texture space Object space Screen space
(1, V) {Vie P Tw) [X, ¥al

Forward mapping

-

Surface
parametrization

/ 4‘/ ‘ Inverse mappimg m Pixel J

‘Pre-image’ of pixel

 Forward mapping
— Object surface parameterization
— Projective transformation

e Inverse mapping
— Find corresponding pre-image/footprint of each pixel in texture
— Integrate over pre-image

Projection '—

Computer Graphics WS07/08 — Texturing

Forward Mapping

« Maps each texel to its position in the image

e Uniform sampling of texture space does not guarantee
uniform sampling in screen space

 Possibly used if
— The texture-to-screen mapping is difficult to invert
— The texture image does not fit into memory

Texture scanning:
for v

texture space — image space

for u e
compute x(u,v) and y(u,v) \

\\
A
RN

copy TEX[u,v] to SCRJx,y]

(or in general 1

-

rasterize image of TEX][u,V])

Computer Graphics WS07/08 — Texturing

Inverse Mapping

 Requires inverting the mapping transformation

 Preferable when the mapping is readily invertible and
the texture image fits into memory
« The most common mapping method

— for each pixel in screen space, the pre-image of the pixel in texture
space is found and its area is integrated over

/M"m
"i? I " ey,
Screen scanning: i j |
fory
for x hd _ j

compute u(x,y) and v(x,y) —

copy TEX[u,v] to SCRJx,y] oo |
(or in general s g

Teaxturs space) i Inage spacs

integrate over image of SCR[u,V])

Computer Graphics WS07/08 — Texturing

Pixel Pre-Image In Texture Space

A square screen pixel that intersects a curved surface has a
curvilinear quadrilateral pre-image in texture space. Most methods

approximate the true mapping by a quadrilateral or parallelogram. Or
they take multiple samples within a pixel. If pixels are instead

regarded as circles, their pre-images are ellipses.
i /.. Point sampling /
e 6 6 0660 8 o from pixel centre

@

/ texture
a b

NN

Approximating a quadrilateral texture *
area with (a) a square, (b) a rectangle, and (c) an
ellipse. Too small an area causes aliasing; too large
an area causes blurring.

Texture domain Screen domain

C

Computer Graphics WS07/08 — Texturing

Inverse Mapping: Filtering

e Integration of Pre-image

— Integration over pixel footprint
In texture space

e Aliasing
— Texture insufficiently sampled
— Incorrect pixel values

— “Randomly” changing pixels
when moving

—

With Without
anti-aliasing anti-aliasing

-0

Pixel
shade

With Without
anti-aliasing anti-aliasing

Pixel

. Pre-image of shade

pixel centre

With Without
anti-aliasing anti-aliasing

| — 0 O

() Pre_—pixcl imagc. ‘

Pixel
shade

— 9
— i -
[—
Inverse Pixel
mapping

Computer Graphics WS07/08 — Texturing

Filtering

 Magnification
— Map few texels onto many pixels
— Nearest:
« Take the nearest texel
— Bilinear interpolation:
* Interpolation between 4 nearest texels
* Need fractional accuracy of coordinates
e Minification
— Map many texels to one pixel
 Aliasing:
— Reconstructing high-frequency signals
with low level frequency sampling
— Filtering
e Averaging over (many) associated texels
« Computationally expensive

ixel

Teaxture

117

Computer Graphics WS07/08 — Texturing

Filtering — Texture Minification

e Space-variant filtering
— Mapping from texture space (u,v) to screen space (x,y) not affine
— Filtering changes with position
e Space variant filtering methods
— Direct convolution
* Numerically compute the Integral
— Pre-filtering
* Precompute the integral for certain regions -- more efficient
» Approximate footprint with regions

Computer Graphics WS07/08 — Texturing

Direct Convolution

« Convolution in texture space

— Texels weighted according to distance from pixel center (e.qg.
pyramidal filter kernel)

Texture space Screen space

2x2 pixel area

Inverse|
pixel
map

Pyramidal filter kernel

 Convolution in image space

1 Center the filter function on the pixel (in image space) and find its

bounding rectangle.

2 Transform the rectangle to the texture space, where it is a quadrilateral.
The sides of this rectangle are assumed to be straight. Find a bounding
rectangle for this quadrilateral.
Map all pixels inside the texture space rectangle to screen space.
Form a weighted average of the mapped texture pixels using a two-
dimensional lookup table indexed by each sample’s location within the
pixel.

W

Computer Graphics WS07/08 — Texturing

EWA Filtering

« Compensate aliasing artifacts due to perspective
projection

« EWA Filter = low-pass filter ® warped reconstruction filter

. . Low-Pass
Projection Eilter

»

|

|

:

S
e

|

:

|
NY

\\ \\
gy,

i TR TN

U 1 r
X, 1

L T o "

T

(1%
. W, ’

i

B 4

&

Texture
EWA texture resampling filter 0O,

Convolution

Computer Graphics WS07/08 — Texturing

EWA Filtering

* Four step algorithm
1) calculate the ellipse
2) choose filter
3) scan conversion in the ellipse
4) determine the color for the pixel.

Computer Graphics WS07/08 — Texturing

Without Anti-aliasing

« checker board gets distorted

Computer Graphics WS07/08 — Texturing

EWA Filtering

o elliptical filtering plus Gaussian

Computer Graphics WS07/08 — Texturing

EWA Filtering

e Gaussian blur selected too large -> blurry image

Computer Graphics WS07/08 — Texturing

EWA Splatting

eSSl e/ |\

Reconstruction filter only: 6.25 fps EWA filter: 4.97 fps

Low-pass filter only: 6.14 fps EWA filter: 3.79 fps

Computer Graphics WS07/08 — Texturing

Analysis of EWA Filter

Minification

Warped recon- Low-pass Resampling
struction kernel filter filter

~O-

I—|—|-€:3—I—|—|®II<>II

:/\::::
@V
|

;;) PN
G @ - D
e O -E5

Magnification

Computer Graphics WS07/08 — Texturing

Analysis of EWA Filter

« Shape of EWA Splat is dependent on
distance from the view plane

X

o

i

EWA splat

2 2 2
7 ro\l+ x5+ x
s 2 _ k(0 1)
ro—\/—+rh rl—\/ +7;

%
Nk

N

2
U,

Low-pass filter radius
Reconstruction filter radius

u, Distance to the view plane

Note that 1+x2 +x? € (1.0, 1.0+ Constant)

Computer Graphics WS07/08 — Texturing

Adaptive EWA Filtering

Warped recon- | ow-pass Resampling
struction kernel filter filter

if u,> A
use low-pass filter

if A<u,<B
use EWA filter

if u,<B
use reconstruction filter

Computer Graphics WS07/08 — Texturing

Anisotropic Filtering

 Footprint Assembly on GPUs
— Integration Across Footprint of Pixel
— HW: Choose samples that best approximate footprint
— Weighted average of samples

In die Rohre geblickt: ATl verwendet bei anisotroper Filterung haufig schon dicht beim Betrachter
die detailverminderte, rot dargestellte Texturstufe (links). Nvidia schaltet erst spater auf die erste

Verkleinerungsstufe um (rechts). © C't Magazine

Computer Graphics WS07/08 — Texturing

Texture Fllterlng In Hardware

£

Computer Graphics WS07/08 — Texturing Source: Anandtech, © 2006

Filtering — Texture Minification

e Direct convolution methods are slow

— A pixel pre-image can be arbitrarily large along silhouettes or at the
horizon of a textured plane

— Horizon pixels can require averaging over thousands of texture
pixels
— Texture filtering cost grows in proportion to projected texture area
. Speed up
— The texture can be prefiltered so that during rendering only a
few samples will be accessed for each screen pixel
. Two data structures are commonly used for prefiltering:
— Integrated arrays (summed area tables)
— Image pyramids (mipmaps) Space-variant filtering

Computer Graphics WS07/08 — Texturing

Summed Area Tables

 Per texel, store sum from (0, 0) to (u, v)

A B

N
 Many bits per texel (sum!)

 Evaluation of 2D integrals in constant time!
Ax Ay

Jj[(x,y)dxdy=A—B—C+D

BxCy
4H C
D

Computer Graphics WS07/08 — Texturing

Integrated Arrays

 Footprint assembly
— Good for space variant filtering
e e.g. inclined view of terrain

— Approximation of the pixel area
by rectangular texel-regions

— The more footprints the better accuracy

— Often fixed number of texels
because of economical reasons

Computer Graphics WS07/08 — Texturing

MipMapping

 Texture available in multiple resolutions
— Pre-processing step

 Rendering: select appropriate texture resolution
— Selection is usually per pixel !!
— Texel size(n) < extent of pixel footprint < texel size(n+1)

Computer Graphics WS07/08 — Texturing

MipMapping |

Multum In Parvo (MIP): much in little

Hierarchical resolution pyramid
— Repeated averaging over 2x2 texels

 Rectangular arrangement (RGB)
 Reconstruction

Original Texture

Pre-Filtered Images

— Tri-linear interpolation of 8 nearest texels

\W@@.

Computer Graphics WS07/08 — Texturing

MipMap Example

Computer Graphics WS07/08 — Texturing

MipMaps

« Why is MipMapping sometimes faster?
— Bottleneck is memory bandwidth
— Using of texture caches
— Texture minification required for far geometry
« No MipMap
— ,Random® access to texture
— Always 4 new texels
« MipMap
— Next pixel at about one texel distance (1:1 mapping)

— Access to 8 texels at a time, but
 Most texels are still in the cache

Computer Graphics WS07/08 — Texturing

{a) Simulation of a perfect line

(c) Simulation of a jagged line

(b) Fourier transform of (a)

() Fourier transform of (c)

Computer Graphics WS07/08 — Texturing

The Digital Dilemma

e Nature: continuous signal (2D/3D/4D with tim
— Defined at every point

Acquisition: sampling -
— Rays, pixel/texel, spectral values, frames, ...

Representation: discrete data
— Discrete points, discretized values

Reconstruction: filtering
— Mimic continuous signal

Display ang perception: faithful

— Hopefully similar to the original signal, no artifacts

Computer Graphics WS07/08 — Texturing

Sensors

« Sampling of signals
— Conversion of a continuous signal to discrete samples by
Integrating over the sensor field
— Required by physical processes

R(i, j) = [E(x,)P, (x,y)dxdy

1
« Examples
— Photo receptors in the retina
— CCD or CMOS cells in a digital camera

 Virtual cameras in computer graphics
— Integration is too expensive and usually avoided
— Ray tracing: mathematically ideal point samples
 Origin of aliasing artifacts !

Computer Graphics WS07/08 — Texturing

Allasing

 Ray tracing
— Textured plane with one ray for each pixel (say, at pixel center)
* No texture filtering: equivalent to modeling with b/w tiles
— Checkerboard period becomes smaller than two pixels
« At the Nyquist limit
— Hits textured plane at only one point, black or white by “chance

Computer Graphics WS07/08 — Texturing

Spatial Frequency

 Frequency: period length

of some structure in an image 2s

— Unit [1/pixel] 7

— Range: -0.5...0.5 (-%...7) S
 Lowest frequency .

— Image average

 Highest frequency: Nyquist limit et
— In nature: defined by wavelength of light Sege

— In graphics: defined by image resolution

—_—

B
= e N
e

Computer Graphics WS07/08 — Texturing

Nyquist Frequency

 Highest (spatial) frequency that can be represented
« Determined by image resolution (pixel size)

Samiphy points

Hat /;P,H fid
A / oY /,Functinn o he sampled
u
] | I —
e X
Sumpling
ntervnl
Spatial frequency < Nyquist Spatial frequency = Nyquist

2 samples / period

M)

MNANA DA
wm\N\w wwwv

‘l.||a il e —‘\l sed sine

Spatial frequency > Nyquist Spatial frequency >> Nyquist

Computer Graphics WS07/08 — Texturing

Fourier Transformation

 Any continuous function f(x) can be expressed as an
Integral over sine and cosine waves:

F)= EL 0= [e ar - analysis
f(—1[F J‘F 27thdk Synthesis * =

. Division into even and odd parts

76)= L) 2] £ x))= B+ o)

 Transform of each part

Flr (k)= [E(x)oos(2nk)dx—i [O(x)sin(2ako)ix

Computer Graphics WS07/08 — Texturing

Fourier Transformation

e Any periodic, continuous function can be expressed as
the sum of an (infinite) number of sine or cosine
waves:

f(x)=%, a, sin(2a*k*x) + b, cos(2n*k*x)

— Decomposition of signal into different frequency bands
e Spectral analysis
— k: frequency band

k=0 mean value

o k=1 function period, lowest possible frequency

o k=1.57 not possible, periodic function f(x) = f(x+1)

* Koo band limit, no higher frequency present in signal
— a,,b, : (real-valued) Fourier coefficients

« Even function f(x)= f(-x): a =0

e Odd function f(x)= -f(-x): b,=0

Computer Graphics WS07/08 — Texturing

Fourier Synthesis Example

 Periodic, uneven function: square wave

f(x)=0.5VO0<(xmod2rn) <=
=-0.5V n<(Xxmod 2n) < 2xn

a, = | sin(k*x)* f(x) dx f(x)=Z, a, sin(k*x)

e 3,=0
° 3-1:

e a,=0
e a;=1/3
e a,=0
e a;=1/5
e 3;,=0
e a,=1/7
e 33=0
e ay=1/9

)] 2r 4 G B 10m G P Ax B B 10m

Computer Graphics WS07/08 — Texturing

Discrete Fourier Transform

 Equally-spaced function samples
— Function values known only at discrete points
* Physical measurements
» Pixel positions in an image !

 Fourier Analysis
a=1UN Xsin2rki/N)f, b,=1/N 2 cos@rnki/N)f

— Sum over all measurement points N
— k=0,1,2, ..., ? Highest possible frequency ?
= Nyquist frequency
e Sampling rate N,
« 2 samples / period < 0.5 cycles per pixel
= k<N/2

Computer Graphics WS07/08 — Texturing

Spatial vs. Frequency Domain

- Examples (pixelvs ™ e
cycles per pixel) N /N o :

— Sine wave with

positive offset

— Square wave

‘1{ : 256
el b 192 & |
5 [UUUTE DU S tog| o

— Scanline of an
Image

i)

Computer Graphics WS07/08 — Texturing

2D Fourier Transform

— 2 separate 1D Fourier transformations along x- and y-direction
— Discontinuities: orthogonal direction in Fourier domain !

Computer Graphics WS07/08 — Texturing

ourier Transforms

{a) Bush Fourier transform | F (i, v) |

(b} Arcos da Lapa

(Rio de Janeiro) Fourier transform | F (i, v) |

Computer Graphics WS07/08 — Texturing

Spatial vs. Frequency Domain

* Important basis
functions
— Box €=» sinc

sinc(x) = sinx7)

XT
sinc(0) =1

[sinc(x)dx =1
* Wide box =
small sinc
* Negative values
* Infinite support

— Triangle €= sinc?
— Gauss €= Gauss

e ———, o B S P————

4 3240 1 2 3 4

(©)

4 -3 2 -1 0 1 2 3 4

Computer Graphics WS07/08 — Texturing

Spatial vs. Freqguency Domain

1
o Examp|e: rect(at) o .Ia

box function

e Transform behavior
\ ol
lm(gﬂ)

— Fourier transform: 1
sinc a=0,5

— Wide box: P
narrow sinc a=1 /

S

27

— Narrow box: 1
wide sinc a=2

o 4

Bl=
EN P

=Y

Computer Graphics WS07/08 — Texturing

Convolution

) ®g(x) = [f(r)g(x-r)dr i\ N
-00 b 50 * —> .,
« Two functions f, g ! :;/
 Shift one function against Ho
the other by x . 6
e Multiply function values ; *.,.__. M_\
* Integrate overlapping region ° ya i
* Numerical convolution: L
Expensive operation) 2]
— For each x: 10_,!1 ;r\ o
Integrate over non-zero domain o 5
sl / 11 AN

Computer Graphics WS07/08 — Texturing

Convolution

« Examples
— Box functions
— Gauss functions

Fg
i
III.E!'?f
= 0.6
0.4r
n.z
-2 -1.5 -1 -0.5 n.s 1 1.5 2

Computer Graphics WS07/08 — Texturing

Convolution and Filtering

e Technical Realization
— In image domain

— Pixel mask with weights
— OpenGL: Convolution extension v
 Problems (e.g. sinc) /% A

— Large filter support
« Large mask | L,
« A lot of computation ////////////
— Negative weights
* Negative light?

[/][]
////////////

Computer Graphics WS07/08 — Texturing

Convolution Theorem

e Convolution in image domain: multiplication in Fourier
domain
e Convolution in Fourier domain: multiplication in image

domain
— Multiplication much cheaper than convolution !

1 K 1 t+1 fir —1<t<0
* = z(t)=<¢ —t+1 fir0<t<l1
- 0 sonst,

A2 et A e t -1 | 1

rect(t) * rect(t) = z(¢)

O
] »

si(%)-si(%) = X(jw).
/% | A\ =N/T<i} mwwﬂ{@'

2" W 2") = =

Computer Graphics WS07/08 — Texturing

Filtering

e Low-pass filtering
— Convolution with sinc Iin M/ﬁ\m

spatial domain, or

— Multiplication with box (@

In frequency domain R :
 High-pass filtering ' '
— Only high frequencies 5

 Band-pass filtering ®

— Only intermediate JM_‘

d)

Low-pass filtering in frequency domain: multiplication with box

Computer Graphics WS07/08 — Texturing

Low-Pass Filtering

e ,Blurring®

Computer Graphics WS07/08 — Texturing

High-Pass Filtering

« Enhances discontinuities in image
— Useful for edge detection

Computer Graphics WS07/08 — Texturing

