
Computer Graphics WS07/08 – Texturing

Computer Graphics

Texture Filtering &
Sampling Theory

Hendrik Lensch

Computer Graphics WS07/08 – Texturing

Overview
• Last time

– Texture Parameterization
– Procedural Shading

• Today
– Texturing Filtering

Computer Graphics WS07/08 – Texturing

2D Texture Mapping

• Forward mapping
– Object surface parameterization
– Projective transformation

• Inverse mapping
– Find corresponding pre-image/footprint of each pixel in texture
– Integrate over pre-image

Computer Graphics WS07/08 – Texturing

Forward Mapping
• Maps each texel to its position in the image
• Uniform sampling of texture space does not guarantee

uniform sampling in screen space
• Possibly used if

– The texture-to-screen mapping is difficult to invert
– The texture image does not fit into memory

Texture scanning:
for v

for u
compute x(u,v) and y(u,v)
copy TEX[u,v] to SCR[x,y]

(or in general
rasterize image of TEX[u,v])

Computer Graphics WS07/08 – Texturing

Inverse Mapping
• Requires inverting the mapping transformation
• Preferable when the mapping is readily invertible and

the texture image fits into memory
• The most common mapping method

– for each pixel in screen space, the pre-image of the pixel in texture
space is found and its area is integrated over

Screen scanning:
for y

for x
compute u(x,y) and v(x,y)
copy TEX[u,v] to SCR[x,y]

(or in general
integrate over image of SCR[u,v])

Computer Graphics WS07/08 – Texturing

Pixel Pre-Image in Texture Space
 A square screen pixel that intersects a curved surface has a

curvilinear quadrilateral pre-image in texture space. Most methods
approximate the true mapping by a quadrilateral or parallelogram. Or
they take multiple samples within a pixel. If pixels are instead
regarded as circles, their pre-images are ellipses.

Computer Graphics WS07/08 – Texturing

Inverse Mapping: Filtering
• Integration of Pre-image

– Integration over pixel footprint
in texture space

• Aliasing
– Texture insufficiently sampled
– Incorrect pixel values
– “Randomly” changing pixels

when moving

Computer Graphics WS07/08 – Texturing

Filtering
• Magnification

– Map few texels onto many pixels
– Nearest:

• Take the nearest texel
– Bilinear interpolation:

• Interpolation between 4 nearest texels
• Need fractional accuracy of coordinates

• Minification
– Map many texels to one pixel

• Aliasing:
– Reconstructing high-frequency signals

with low level frequency sampling
– Filtering

• Averaging over (many) associated texels
• Computationally expensive

Texture

Pixel

Texture

Pixel

Computer Graphics WS07/08 – Texturing

Filtering – Texture Minification
• Space-variant filtering

– Mapping from texture space (u,v) to screen space (x,y) not affine
– Filtering changes with position

• Space variant filtering methods
– Direct convolution

• Numerically compute the Integral
– Pre-filtering

• Precompute the integral for certain regions -- more efficient
• Approximate footprint with regions

Computer Graphics WS07/08 – Texturing

Direct Convolution
• Convolution in texture space

– Texels weighted according to distance from pixel center (e.g.
pyramidal filter kernel)

• Convolution in image space
1 Center the filter function on the pixel (in image space) and find its

bounding rectangle.
2 Transform the rectangle to the texture space, where it is a quadrilateral.

The sides of this rectangle are assumed to be straight. Find a bounding
rectangle for this quadrilateral.

3 Map all pixels inside the texture space rectangle to screen space.
4 Form a weighted average of the mapped texture pixels using a two-

dimensional lookup table indexed by each sample’s location within the
pixel.

Computer Graphics WS07/08 – Texturing

EWA Filtering

• Compensate aliasing artifacts due to perspective
projection

• EWA Filter = low-pass filter warped reconstruction filter

W

Texture

Low-Pass
Filter

kx

0r

1r

EWA texture resampling filter kρ

Projection

Convolution

Computer Graphics WS07/08 – Texturing

EWA Filtering
• Four step algorithm

1) calculate the ellipse
2) choose filter
3) scan conversion in the ellipse
4) determine the color for the pixel.

Computer Graphics WS07/08 – Texturing

Without Anti-aliasing
• checker board gets distorted

Computer Graphics WS07/08 – Texturing

EWA Filtering
• elliptical filtering plus Gaussian

Computer Graphics WS07/08 – Texturing

EWA Filtering
• Gaussian blur selected too large -> blurry image

Computer Graphics WS07/08 – Texturing

EWA Splatting

Reconstruction filter only: 6.25 fps EWA filter: 4.97 fps

Low-pass filter only: 6.14 fps EWA filter: 3.79 fps

Computer Graphics WS07/08 – Texturing

Analysis of EWA Filter

Warped recon-
struction kernel

Low-pass
filter

Resampling
filter

Minification

Magnification

Computer Graphics WS07/08 – Texturing

Analysis of EWA Filter

• Shape of EWA Splat is dependent on
distance from the view plane

rk Reconstruction filter radius
u2 Distance to the view plane

rh Low-pass filter radius0r

1r

EWA splat

Note that

x
() 2

2
2

2
1

2
0

2

1
2

2
2

0
1

h
k

h
k r

u
xxrrr

u
rr +

++
=+=

()ttanCons.,.xx +∈++ 01011 2
1

2
0

Computer Graphics WS07/08 – Texturing

Adaptive EWA Filtering

Warped recon-
struction kernel

Low-pass
filter

Resampling
filter

if u2 > A
use low-pass filter

if u2< B
use reconstruction filter

if A<u2< B
use EWA filter

Computer Graphics WS07/08 – Texturing

Anisotropic Filtering
• Footprint Assembly on GPUs

– Integration Across Footprint of Pixel
– HW: Choose samples that best approximate footprint
– Weighted average of samples

© C`t Magazine

Computer Graphics WS07/08 – Texturing

Texture Filtering in Hardware

G70

G80

Source: Anandtech, © 2006

Computer Graphics WS07/08 – Texturing

Filtering – Texture Minification
• Direct convolution methods are slow

– A pixel pre-image can be arbitrarily large along silhouettes or at the
horizon of a textured plane

– Horizon pixels can require averaging over thousands of texture
pixels

– Texture filtering cost grows in proportion to projected texture area
• Speed up

– The texture can be prefiltered so that during rendering only a
few samples will be accessed for each screen pixel

• Two data structures are commonly used for prefiltering:
– Integrated arrays (summed area tables)
– Image pyramids (mipmaps) Space-variant filtering

Computer Graphics WS07/08 – Texturing

Summed Area Tables
• Per texel, store sum from (0, 0) to (u, v)

• Many bits per texel (sum !)
• Evaluation of 2D integrals in constant time!

A

∫ ∫ +−−=
Ax

Bx

Ay

Cy

DCBAdxdyyxI),(

B

C
D D

A

C
D

B

Computer Graphics WS07/08 – Texturing

Integrated Arrays
• Footprint assembly

– Good for space variant filtering
• e.g. inclined view of terrain

– Approximation of the pixel area
by rectangular texel-regions

– The more footprints the better accuracy
– Often fixed number of texels

because of economical reasons

Computer Graphics WS07/08 – Texturing

MipMapping
• Texture available in multiple resolutions

– Pre-processing step
• Rendering: select appropriate texture resolution

– Selection is usually per pixel !!
– Texel size(n) < extent of pixel footprint < texel size(n+1)

Computer Graphics WS07/08 – Texturing

MipMapping II
• Multum In Parvo (MIP): much in little
• Hierarchical resolution pyramid

– Repeated averaging over 2x2 texels
• Rectangular arrangement (RGB)
• Reconstruction

– Tri-linear interpolation of 8 nearest texels

u

v

u
v
d d

Computer Graphics WS07/08 – Texturing

MipMap Example

Computer Graphics WS07/08 – Texturing

MipMaps
• Why is MipMapping sometimes faster?

– Bottleneck is memory bandwidth
– Using of texture caches
– Texture minification required for far geometry

• No MipMap
– „Random“ access to texture
– Always 4 new texels

• MipMap
– Next pixel at about one texel distance (1:1 mapping)
– Access to 8 texels at a time, but

• Most texels are still in the cache

Computer Graphics WS07/08 – Texturing

Aliasing

Computer Graphics WS07/08 – Texturing

The Digital Dilemma
• Nature: continuous signal (2D/3D/4D with time)

– Defined at every point

• Acquisition: sampling
– Rays, pixel/texel, spectral values, frames, ...

• Representation: discrete data
– Discrete points, discretized values

• Reconstruction: filtering
– Mimic continuous signal

• Display and perception: faithful
– Hopefully similar to the original signal, no artifacts

not

Computer Graphics WS07/08 – Texturing

Sensors
• Sampling of signals

– Conversion of a continuous signal to discrete samples by
integrating over the sensor field

– Required by physical processes

• Examples
– Photo receptors in the retina
– CCD or CMOS cells in a digital camera

• Virtual cameras in computer graphics
– Integration is too expensive and usually avoided
– Ray tracing: mathematically ideal point samples

• Origin of aliasing artifacts !

∫=
ijA

ij dydxyxPyxEjiR),(),(),(

Computer Graphics WS07/08 – Texturing

Aliasing
• Ray tracing

– Textured plane with one ray for each pixel (say, at pixel center)
• No texture filtering: equivalent to modeling with b/w tiles

– Checkerboard period becomes smaller than two pixels
• At the Nyquist limit

– Hits textured plane at only one point, black or white by “chance

Computer Graphics WS07/08 – Texturing

Spatial Frequency
• Frequency: period length

of some structure in an image
– Unit [1/pixel]
– Range: -0.5…0.5 (-π…π)

• Lowest frequency
– Image average

• Highest frequency: Nyquist limit
– In nature: defined by wavelength of light
– In graphics: defined by image resolution

...

Computer Graphics WS07/08 – Texturing

Nyquist Frequency
• Highest (spatial) frequency that can be represented
• Determined by image resolution (pixel size)

Spatial frequency < Nyquist Spatial frequency = Nyquist
2 samples / period

Spatial frequency > Nyquist Spatial frequency >> Nyquist

Computer Graphics WS07/08 – Texturing

Fourier Transformation
• Any continuous function f(x) can be expressed as an

integral over sine and cosine waves:

• Division into even and odd parts

• Transform of each part

() ()[]() ()

() ()[]() () dkekF=xkFF=xf

dxexf=kxfF=kF

πikx
x

πikx
x

21

2

∫

∫
∞

∞−

−

−
∞

∞−

Analysis

Synthesis

()[]() () () () ()dxπkxxOidxπkxxE=kxfF 2sin2cos ∫∫
∞

∞−

∞

∞−

−

() () ()[] () ()[] () ()xO+xE=xfxf+xf+xf=xf −−−
2
1

2
1

Computer Graphics WS07/08 – Texturing

Fourier Transformation
• Any periodic, continuous function can be expressed as

the sum of an (infinite) number of sine or cosine
waves:

f(x)=Σk ak sin(2π*k*x) + bk cos(2π*k*x)

– Decomposition of signal into different frequency bands
• Spectral analysis

– k: frequency band
• k=0 mean value
• k=1 function period, lowest possible frequency
• k=1.5? not possible, periodic function f(x) = f(x+1)
• kmax? band limit, no higher frequency present in signal

– ak,bk : (real-valued) Fourier coefficients
• Even function f(x)= f(-x): ak = 0
• Odd function f(x)= -f(-x): bk = 0

Computer Graphics WS07/08 – Texturing

Fourier Synthesis Example
• Periodic, uneven function: square wave

f(x) = 0.5 ∀ 0 < (x mod 2π) < π
= -0.5 ∀ π < (x mod 2π) < 2π

ak = ∫ sin(k*x)* f(x) dx f(x)=Σk ak sin(k*x)
• a0 = 0
• a1 = 1
• a2 = 0
• a3 = 1/3
• a4 = 0
• a5 = 1/5
• a6 = 0
• a7 = 1/7
• a8 = 0
• a9 = 1/9
• …

Computer Graphics WS07/08 – Texturing

Discrete Fourier Transform
• Equally-spaced function samples

– Function values known only at discrete points
• Physical measurements
• Pixel positions in an image !

• Fourier Analysis

ak = 1/ N ∑i sin(2π k i / N) fi , bk = 1/ N ∑i cos(2π k i / N) fi

– Sum over all measurement points N
– k=0,1,2, …, ? Highest possible frequency ?
⇒Nyquist frequency

• Sampling rate Ni

• 2 samples / period ⇔ 0.5 cycles per pixel
⇒ k ≤ N / 2

Computer Graphics WS07/08 – Texturing

Spatial vs. Frequency Domain
• Examples (pixel vs

cycles per pixel)
– Sine wave with

positive offset

– Square wave

– Scanline of an
image

Computer Graphics WS07/08 – Texturing

2D Fourier Transform
– 2 separate 1D Fourier transformations along x- and y-direction
– Discontinuities: orthogonal direction in Fourier domain !

Computer Graphics WS07/08 – Texturing

2D Fourier Transforms

Computer Graphics WS07/08 – Texturing

Spatial vs. Frequency Domain
• Important basis

functions
– Box sinc

• Wide box
small sinc

• Negative values
• Infinite support

– Triangle sinc2

– Gauss Gauss

∫ =

=

=

1)sinc(

1)0sinc(

)sin()sinc(

dxx

x
xx
π
π

Computer Graphics WS07/08 – Texturing

Spatial vs. Frequency Domain
• Transform behavior
• Example:

box function

– Fourier transform:
sinc

– Wide box:
narrow sinc

– Narrow box:
wide sinc

Computer Graphics WS07/08 – Texturing

Convolution

• Two functions f, g
• Shift one function against

the other by x
• Multiply function values
• Integrate overlapping region
• Numerical convolution:

Expensive operation
– For each x:

integrate over non-zero domain

∫
∞

∞

=⊗
-

)d-)g(xf(g(x) f(x) τττ

Computer Graphics WS07/08 – Texturing

Convolution
• Examples

– Box functions
– Gauss functions

Computer Graphics WS07/08 – Texturing

Convolution and Filtering
• Technical Realization

– In image domain
– Pixel mask with weights
– OpenGL: Convolution extension

• Problems (e.g. sinc)
– Large filter support

• Large mask
• A lot of computation

– Negative weights
• Negative light?

Computer Graphics WS07/08 – Texturing

Convolution Theorem
• Convolution in image domain: multiplication in Fourier

domain
• Convolution in Fourier domain: multiplication in image

domain
– Multiplication much cheaper than convolution !

=.

Computer Graphics WS07/08 – Texturing

Filtering
• Low-pass filtering

– Convolution with sinc in
spatial domain, or

– Multiplication with box
in frequency domain

• High-pass filtering
– Only high frequencies

• Band-pass filtering
– Only intermediate frequencies

Low-pass filtering in frequency domain: multiplication with box

Computer Graphics WS07/08 – Texturing

Low-Pass Filtering
• „Blurring“

Computer Graphics WS07/08 – Texturing

High-Pass Filtering
• Enhances discontinuities in image

– Useful for edge detection

