Computer Graphics

- The Human Visual System -

Hendrik Lensch

Computer Graphics WS07/08 – Human Visual System

Overview

- Last time
 - Antialiasing
 - Super-Sampling

• Today

- The Human Visual System
 - The eye
 - Early vision
 - High-level analysis
 - Color perception
- Next lecture
 - Color spaces

Light

- Electromagnetic radiation
- Visible spectrum: ~ 400 to 700 nm

Radiation Law

Physical model for light

- Wave/particle-dualism
 - Electromagnetic radiation wave model
 - Photons: $E_{ph}=hv$

particle model & ray optics

- Plenoptic function
 - L= L(x, ω, t, ν, γ), 5 dimensional,

Photometry

Equivalent units to radiometry

- Weight with luminous efficiency function $V(\lambda)$ (luminous efficiency function)
- Spectral or "total" units

$$\Phi_{v} = K_{m} \int V(\lambda) \Phi_{e}(\lambda) d\lambda$$

$$K_m = 680 \, lm / W$$

- Distinction in English simple:
 - "rad": radiometric unit
 - "lum": photometric unit

Radiometric Units

Specification	Definition	Symbol	Unit	Notation
Energie energy		Q _e	[J= Ws] Joule	Strahlungsenergie radiant energy
Leistung, Fluß power, flux	dQ/dt	Φ_{e}	[W= J/s]	Strahlungsfluß radiant flux
Flußdichte flux density	dQ/dAdt	E _e	[W/m ²]	Bestrahlungsstärke Irradiance
Flußdichte flux density	dQ/dAdt	$M_e = B_e$	[W/m ²]	Radiom. Emissionsvermögen Radiosity
	dQ/dA [⊕] dωdt	L _e	[W/m ² /sr]	Strahlungsdichte Radiance
Intensität intensity	dQ/dωdt	۱ _e	[W/sr]	Strahlungsstärke radiant intensity

Photometric Units

With luminous efficiency function weighted units

Specification	Definition	Symbol	Units	Notation
Energie energy		Q _v	[talbot]	Lichtmenge Iuminous energy
Leistung, Fluß power, flux	dQ/dt	Φ _v	[Im (Lumen) = talbot/s]	Lichtstrom Iuminous flux
Flußdichte flux density	dQ/dAdt	Ev	[lux= lm/m ²]	Beleuchtungsstärke Illuminance
Flußdichte flux density	dQ/dAdt	[M _v =] B _v	[lux]	Photom. Emissionsvermögen Luminosity
	dQ/dA [⊕] dωdt	L _v	[lm/m²/sr]	Leuchtdichte Luminance
Intensität intensity	dQ/d∞dt	I _v	[cd (candela) = lm/sr]	Lichtstärke radiant intensity

Luminance Range

Contrast (Dynamic Range)

High Dynamic Range (HDR)

Illumination: samples

• Typical illumination intensities

Light source	Illumination intensity [lux]	
Direct solar radiation	25.000 - 110.000	
Day light	2.000 - 27.000	
Sunset	1 – 108	
Moon light	0.01 – 0.1	
Starry night	0.0001 - 0.001	
TV studio	5.000 - 10.000	
Shop lighting	1.000 – 5.500	
Office lighting	200 – 550	
Home lighting	50 – 220	
Street lighting	0.1 – 20	

Percept. Effects – Vision Modae

Simulation requires:

- control over color reproduction
- local reduction of detail visibility (computationally expensive)

Percept. Effects – Light Adaptation

I sudden change in illumination

Adaptation to dark much slower Simulation requires:

- time-dependent filtering of light adaptation

Human Visual Perception

early vision (eyes)

image appearance

- Determines how real-world scenes appear to us
- Understanding of visual perception is necessary to reproduce appearance in tone mapping

Computer Graphics WS07/08 – Human Visual System

Distribution of Rods and Cones

approximate a Poisson disc distribution

Human Visual System

- Physical structure well established
- Perceptual behaviour is a complex process

Human Visual System

- Physical structure well established
- Perceptual behaviour is a complex process

optic chiasm

HVS - Relationships

Perception and Eye

Retina

Computer Graphics WS07/08 - Human Visual System

Eye as a Sensor

Relative Sensitivity of Cones

- S scaled by 3x
- Z (Zäpfchen cones) total sensitivity

Eye

- Fovea:
 - Ø 1-2 visual degrees
 - 6-7 Mio. cones, about 0.4 arc seconds wide
 - No rods, but three different cone types:
 - L(ong, 64%), M(edium, 32%), S(hort wavelength, 4%)
 - Results in varying resolution depending on color
 - Resolution: 10 arc minutes (S, blue), 0.5 arc minutes (L, M)
 - Linked directly with optical nerves
 - Adaptation of light intensity only through cones

• Periphery:

- 75-150 Mio. *rods*, night vision, S/W
- Response to stimulation of approx. 5 photons/sec. (@ 500 nm)
- Many thousands of cells are combined before linked with nerves
 - Bad resolution
 - Good flickering sensitivity

This is a text in red

This is a text in green

This is a text in blue

This is a text in red

This is a text in green

This is a text in blue

This is a text in red

This is a text in green

This is a test in blue

Visual Acuity

Resolution of the Eye

• Resolution-experiments

- Line pairs: 50-60/degree → resolution .5 arc minutes
- Line offset: 5 arc seconds (hyperacuity)
- Eye micro-tremor: 60-100 Hz, 5 μ m (2-3 photoreceptor spacings)
 - Allows to reconstruct from super-resolution
- Together corresponds to
 - 19" display at 60 cm: 18.000² Pixel (3000² w/out hyperacuity)

• Automatic fixation of eye onto region of interest

- Automatic gaze tracking
- Apparent overall high resolution of fovea

Visual acuity increased by

- Brighter objects
- High contrast

Luminance Contrast Sensitivity

Contrast Sensitivity

- Sensitivity:
 1 / threshold contrast
- Maximum acuity at 5 cycles/degree (0.2 %)
 - Decrease toward low frequencies: lateral inhibition
 - Decrease toward high frequencies: sampling rate (Poisson disk)
 - Upper limit: 60 cycles/degree
- Medical diagnosis

Human Contrast Sensitivity

- Spatial Frequency (cycles/degree)
- Glaucoma (affects peripheral vision: low frequencies)
- Multiple sclerosis (affects optical nerve: notches in contrast sensitivity)

www.psychology.psych.ndsu.nodak.edu

Color Contrast Sensitivity

- Color vs. luminance
 vision system
 - Higher sensitivity at lower frequencies
 - High frequencies less visible
- Image compression

Threshold Sensitivity Function

- Weber-Fechner Law (Treshhold Versus Intensity, TVI)
 - Perceived brightness = log (radiant intensity)

E=K+c log l_v

- Perceivable intensity difference
 - 10 cd vs. 12 cd: ΔL=2cd
 - 20 cd vs. 24 cd: ΔL=4cd
 - 30 cd vs. 36 cd: AL=6cd

Computer Graphics WS07/08 – Human Visual System

Weber-Fechner Examples

Computer Graphics WS07/08 – Human Visual System

Mach Bands

- "Overshooting" along edges
 - Extra-bright rims on bright sides
 - Extra-dark rims on dark sides
- Due to "Lateral Inhibition"

Distance from left edge

dark

Lateral Inhibition

• Pre-processing step within retina

- Surrounding brightness level weighted negatively
 - A: high stimulus, maximal bright inhibition
 - B: high stimulus, reduced inhibition \rightarrow stronger response
 - D: low stimulus, maximal inhibition
 - C: low stimulus, increased inhibition → weaker response

High-pass filter

- Enhances contrast along edges
- Difference-of-Gaussians (DOG) function

Lateral Inhibition: Hermann Grid

- Dark dots at crossings
- Explanation
 - Crossings (A)
 - More surround stimulation (more bright area)
 - \Rightarrow Less inhibition
 - \Rightarrow Weaker response
 - Streets (B)
 - Less surround stimulation
 - \Rightarrow More inhibition
 - \Rightarrow Greater response
- Simulation
 - Darker at crossings, brighter in streets
 - Appears more steady
 - What if reversed ?

High-Level Contrast Processing

High-Level Contrast Processing

Cornsweet Illusion

 Apparent contrast due to gradual darkening / brightening towards a contrasting edge

Percept. Effects – Veiling Glare

Simulation requires:

 scatter (blur) of sources of high luminance (computationally expensive)

Shape Perception

- Depends on surrounding primitives
 - Directional emphasis
 - Size emphasis

Shape Processing: Geometrical Clues

- Automatic geometrical interpretation
 - 3D perspective
 - Implicit scene depth

Visual "Proofs"

HVS: High-Level Scene Analysis

- Experience
- Expectation
- Local clue consistency

Impossible Scenes

- Escher et.al.
 - Confuse HVS by presenting contradicting visual clues

Single Image Random Dot Stereograms

- Vergence: both eyes rotate to look at the same spot
- Accommodation: focussing at a particular depth plane

SIRDS Construction

- Assign arbitrary color to p_0 in image plane
- Trace from eye points through p₀ to object surface
- Trace back from object to corresponding other eye
- Assign color at p_0 to intersection points p_{1L} , p_{1R} with image plane
- Trace from eye points through p_{1L},p_{1R} to object surface
- Trace back to eyes
- Assign p_0 color to p_{2L} , p_{2R}
- Repeat until image plane is covered

Another Optical Illusion

• If you stare for approx. 20 seconds some of you will actually see a giraffe.

Color

- Physics
 - Continuous spectral energy distribution

Human color perception

- Cones in retina
- 3 different cone types
- Spectral mapping to 3 channels

Computer Graphics WS07/08 – Human Visual System

Visual Acuity and Color Perception

Color Perception

- Di-chromaticity (dogs, cats)
 - Yellow & blue-violet
 - Green, orange, red indistinguishable
- **Tri-chromaticity (humans, monkeys)**
 - Red, green, blue
 - Color-blindness
 - Most often men, green color-blindness

www.lam.mus.ca.us/cats/color/

Computer Graphics WS07/08 - Human Visual System