Computer Graphics

- Camera Transformations -

Hendrik Lensch

Overview

- Last lecture:
- Transformations
- Today:
- Generating 2D image from 3D world
- Coordinate Spaces
- Camera Specification
- Perspective transformation
- Normalized screen coordinates
- Next lecture:
- Rasterization
- Clipping

Camera Transformations

- Goal
- Compute the transformation between points in 3D and pixels on the screen
- Required for rasterization algorithms (OpenGL)
- They project all primitives from 3D to 2D
- Rasterization happens in 2D (actually 2-1/2D)
- Given
- Camera description
- Pixel raster description

Camera Transformations

- Model transformation
- Object space to world space
- View transformation
- World space to eye space
- Combination: Modelview transformation
- Used by OpenGL

Camera Transformation

- Projection transformation
- Eye space to normalized device space
- Parallel or perspective projection
- Viewport transformation

- Normalized device space to window (raster) coordinates

Coordinate Transformations

- Local (object) coordinate system (3D)
- Object vertex positions
- World (global) coordinate system (3D)
- Scene composition and object placement
- Rigid objects: constant translation, rotation per object
- Animated objects: time-varying transformation in world-space
- Illumination
- Camera/View/Eye coordinate system (3D)
- Camera position \& direction specified in world coordinates
- Illumination \& shading can also be computed here
- Normalized device coordinate system (2-1/2D)
- Normalization to viewing frustum
- Rasterization
- Shading is executed here (but computed in world or camera space)
- Window/Screen (raster) coordinate system (2D)
- 3D to 2D transformation: projection

Per-Vertex Transformations

Viewing Transformation

- Camera position and orientation in world coordinates
- Center of projection, projection reference point (PRP)
- Optical axis, view plane normal (VPN)
- View up vector (VUP) (not necessarily perpendicular to VPN)
\Rightarrow External (extrinsic) camera parameters
- Transformation
1.) Translation of all vertex positions by projection center
2.) Rotation of all vertex position by camera orientation
convention: view direction along negative Z axis

Perspective Transformation

- Camera coordinates to screen coordinate system
\Rightarrow Internal (intrinsic) camera parameters
- Field of view (fov)
- Distance of image plane from origin (focal length) or field of view (angle)
- Screen window
- Window size on image plane
- Also determines viewing direction (relative to view plane normal)
- Near and far clipping planes
- Avoids singularity at origin (near clipping plane)

View Frustum

- Restriction of dynamic depth range (near\&far clipping plane)
- Together define „View Frustum"
- Projection (perspective or orthographic)
- Mapping to raster coordinates
- Resolution
- Adjustment of aspect ratio

Camera Parameters: Simple

- Camera definition in ray tracer
- \underline{o} : center of projection, point of view
- \boldsymbol{f} : vector to center of view, optical axis
- $\boldsymbol{x}, \underline{y}$: span of half viewing window
- xres, yres: image resolution
$-x, y$: screen coordinates

Camera Parameters: RMan

Camera Model

Lens Camera

Lens Formula

$$
\frac{1}{f}=\frac{1}{b}+\frac{1}{g}
$$

Object center in focus

$$
b=\frac{f g}{g-f}
$$

Object front in focus $\quad b^{\prime}=\frac{f(g-r)}{(g-r)-f}$

Lens Camera: Depth of Field

Circle of Confusion

Sharpness Criterion $\Delta s>\Delta e$

Depth of Field (DOF) $\quad r<\frac{g \Delta s(g-f)}{a f+\Delta s(g-f)} \quad \Rightarrow \quad r \propto \frac{1}{a}$
DOF: Defined as length of interval (b') with CoC smaller than $\Delta \mathrm{s}$

The smaller the aperture, the larger the depth of field

Pinhole Camera Model

Perspective Transformation

- 3D to 2D projection
- Point in eye coordinates: $\mathrm{P}\left(x_{e}, y_{e}, z_{e}\right)$
- Distance: center of projection to image plane: D
- Image coordinates: $\left(x_{s}, y_{s}\right)$

$$
\begin{aligned}
& x_{\mathrm{s}}=D \frac{x_{\mathrm{e}}}{z_{\mathrm{e}}} \\
& y_{\mathrm{s}}=D \frac{y_{\mathrm{e}}}{z_{\mathrm{e}}}
\end{aligned}
$$

Transformations

- Homogeneous coordinates (reminder :-)

$$
R^{3} \ni\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \rightarrow\left(\begin{array}{l}
x \\
y \\
Z \\
1
\end{array}\right) \in \mathrm{P}\left(\mathrm{R}^{4}\right), \quad \text { and }\left(\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right) \rightarrow\left(\begin{array}{l}
X / W \\
Y / W \\
Z / W
\end{array}\right)
$$

- Transformations
- 4x4 matrices
- Concatenation of transformations by matrix multiplication

$$
T\left(d_{x}, d_{y}, d_{z}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right) \quad R(\alpha, \beta, \gamma)=\left(\begin{array}{cccc}
r_{00} & r_{01} & r_{02} & 0 \\
r_{10} & r_{11} & r_{12} & 0 \\
r_{20} & r_{21} & r_{22} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Viewing Transformation

- Goal:
- Camera: at origin, view along -Z, Y upwards (right hand)
- Translation of PRP to the origin
- Rotation of VPN to Z-axis
- Rotation of projection of VUP to Y-axis
- Rotations
- Build orthonormal basis for the camera and form inverse
- $\mathrm{Z}^{\prime}=\mathrm{VPN}, \mathrm{X}^{\prime}=$ normalize(VUP $\left.\times \mathrm{VPN}\right), \mathrm{Y}^{\prime}=\mathrm{Z}^{\prime} \times \mathrm{X}^{\prime}$
- Viewing transformation

$$
V=R T=\left(\begin{array}{cccc}
X_{x}^{\prime} & Y_{x}^{\prime} & Z_{x}^{\prime} & 0 \\
X_{y}^{\prime} & Y_{y}^{\prime} & Z_{y}^{\prime} & 0 \\
X_{z}^{\prime} & Y_{z}^{\prime} & Z_{z}^{\prime} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)^{T} T(-P R P)
$$

Backface Culling

- Polygon normal in world coordinates

$$
N_{P}=V_{1} \times V_{2}
$$

Oriented polygon edges $\boldsymbol{V}_{\mathbf{1}}, \boldsymbol{V}_{\mathbf{2}}$

- Line-of-sight vector V
- Dot product

$$
N_{P} \bullet V
$$

>0 : surface visible
< 0 : surface not visible
\Rightarrow Draw only visible surfaces
\Rightarrow Applicable to closed objects only

Sheared Perspective Transformation

- Step 1: Optical axis may not go through screen center
- Oblique viewing configuration

\Rightarrow Shear (Scherung)

- Shear such that viewing direction is along Z-axis
- Window center CW (in 3D view coordinates)
- $\mathrm{CW}=((\text { right+left }) / 2,(\text { top+bottom }) / 2,- \text { focal })^{\top}$
- Shear matrix

$$
H=\left(\begin{array}{cccc}
1 & 0 & -\frac{C W_{x}}{C W_{z}} & 0 \\
0 & 1 & -\frac{C W_{y}}{C W_{z}} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Projection plane

View from top

Normalizing

- Step 2: Scaling to canonical viewing frustum
- Scale in X and Y such that screen window boundaries open at 45 degree angles
- Scale in Z such that far clipping plane is at $Z=-1$

- Scaling matrix

$$
S=S_{\text {far }} S_{x y}=\left(\begin{array}{cccc}
1 / \text { far } & 0 & 0 & 0 \\
0 & 1 / \text { far } & 0 & 0 \\
0 & 0 & 1 / \text { far } & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
\frac{2 \text { focal }}{\text { right-left }} & 0 & 0 & 0 \\
0 & \frac{2 \text { focal }}{\text { top }- \text { bottom }} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Perspective Transformation

- Step 3: Perspective Transformation
- From canonical perspective viewing frustum (= cone at origin around -Z-axis) to regular box [-1 .. 1] ${ }^{2} \times[0$.. 1]
- Mapping of X and Y
- Lines through the origin are mapped to lines parallel to the Z-axis
- $x^{\prime}=x /-z$ und $y^{\prime}=y /-z$
- Perspective Transformation

- Perspective Projection =

Perspective Transformation + Parallel Projection

Perspective Transformation

- Computation of the coefficients
- No shear w.r.t. X and Y
- $A=B=0$
- Mapping of two known points
- Computation of the two remaining parameters C and D
- $\mathrm{n}=$ near/far

$$
\begin{aligned}
& (0,0,-1,1)^{T}=P(0,0,-1,1)^{T} \\
& (0,0,0,1)^{T}=P(0,0,-n, 1)^{T}
\end{aligned}
$$

- Projective Transformation

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1-n} & \frac{n}{1-n} \\
0 & 0 & -1 & 0
\end{array}\right)
$$

Parallel Projection to 2D

- Parallel projection to [-1 .. 1] ${ }^{2}$
- Scaling in Z with factor 0
- Transformation from [-1 .. 1] ${ }^{2}$ to [0 .. 1] ${ }^{2}$
- Scaling (by $1 / 2$ in X and Y) and translation (by (1/2,1/2))
- Projection matrix for combined transformation
- Delivers normalized device coordinates

$$
P_{\text {parallel }}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Viewport Transformation

- Scaling and translation in 2D
- Adjustment of aspect ratio
- Size of screen/window
- Size in raster coordinates
- Scaling matrix $\mathrm{S}_{\text {raster }}$
- May be non-uniform \rightarrow Distortion
- Positioning on the screen
- Translation $\mathrm{T}_{\text {raster }}$

Orthographic Projection

- Step 2a: Translation (orthographic)
- Bring near clipping plane into the origin
- Step 2b: Scaling to regular box [-1 .. 1] ${ }^{2} \times[0$.. -1]
- Mapping of X and Y

$$
P_{o}=S_{x y z} T_{\text {near }}=\left(\begin{array}{cccc}
\frac{2}{l-r} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{1}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \text { near } \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Camera Transformation

- Complete Transformation
- Perspective Projection

$$
K=T_{\text {raster }} S_{\text {raster }} \quad P_{\text {parallel }} \quad P_{\text {persp }} S_{\text {far }} S_{x y} H \quad R T
$$

- Orthographic Projection

$$
K=T_{\text {raster }} S_{\text {raster }} \quad P_{\text {parallel }} \quad S_{x y z} T_{\text {near }} H \quad R T
$$

- Other representations
- Different camera parameters as input
- Different canonical viewing frustum
- Different normalized coordinates
- $\left[-1\right.$.. 1] ${ }^{3}$ versus $\left[0\right.$..1] ${ }^{3}$ versus ...
\rightarrow Different transformation matrices

Coordinate Systems

- Normalized (projection) coordinates
- 3D: Normalized [-1 .. 1] ${ }^{3}$ oder [-1 .. 1] ${ }^{2} \times[0$.. -1]
- Clipping
- Parallel projection
- Normalized 2D device coordinates [-1 .. 1] ${ }^{2}$
- Translation and scaling
- Normalized 2D device coordinates [0.. 1] ${ }^{2}$
- Where is the origin?
- RenderMan, X11: Upper left
- OpenGL: Lower left
- Viewport-Transformation
- Adjustment of aspect ratio
- Position in raster coordinates
- Raster Coordinates
- 2D: Units in pixels [0 .. xres-1, 0 .. yres-1]

OpenGL

- ModelView Matrix
- Modeling transformations AND viewing transformation
- No explicit world coordinates
- Perspective transformation
- simple specification
- gIFrustum(left, right, bottom, top, near, far)
- glOrtho(left, right, bottom, top, near, far)
- Viewport transformation
- glViewport(x, y, width, height)

Limitations

- Pinhole camera model
- Linear in homogeneous coordinates
- Fast computation
- Missing features
- Depth-of-field
- Lens distortion, aberrations
- Vignetting
- Flare

Wrap-Up

- World coordinates
- Scene composition
- Camera coordinates
- Translation to camera position
- Rotation to camera view orientation, optical axis along z axis
- Different camera specifications
- Normalized coordinates
- Scaling to canonical frustum
- Perspective transformation
- Lines through origin \rightarrow parallel to z axis
- Parallel projection to 2D
- Omit depth
- Viewport transformation
- Aspect ratio adjustment
- Origin shift in image plane

