
Computer Graphics WS07/08 – Rendering with Rasterization

Computer Graphics
- Rasterization & Clipping -

Hendrik Lensch

Computer Graphics WS07/08 – Rendering with Rasterization

Overview
• Last lecture:

– Camera Transformations
– Projection

• Today:
– Rasterization of Lines and Triangles
– Clipping

• Next lecture:
– OpenGL

Computer Graphics WS07/08 – Rendering with Rasterization

Rasterization
• Definition

– Given a primitive (usually 2D lines, circles, polygons), specify which
pixels on a raster display are covered by this primitive

– Extension: specify what part of a pixel is covered
→ filtering & anti-aliasing

• OpenGL lecture
– From an application programmer‘s point of view

• This lecture
– From a graphics package implementer‘s point of view

• Usages of rasterization in practice
– 2D-raster graphics

• e.g. Postscript
– 3D-raster graphics
– 3D volume modeling and rendering
– Volume operations (CSG operations, collision detection)
– Space subdivision

• Construction and traversing

Computer Graphics WS07/08 – Rendering with Rasterization

Rasterization
• Assumption

– Pixels are sample points on a 2D-integer-grid
• OpenGL: integer-coordinate bottom left; X11, Foley: in the center

– Simple raster operations
• Just setting pixel values

– Antialiasing later
– Endpoints at pixel coordinates

• simple generalization with fixed point
– Limiting to lines with gradient |m| ≤ 1

• Separate handling of horizontal and vertical lines
• Otherwise exchange of x & y: |1/m| ≤ 1

– Line size is one pixel
• |m| ≤ 1: 1 pixel per column (X-driving axis)
• |m| > 1: 1 pixel per row (Y-driving axis)

x

y

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: As Functions
• Specification

– Initial and end points: (x0, y0), (xe, ye)
– Functional form: y = mx + B with m = dy/dx

• Goal
– Find pixels whose distance to the line is smallest

• Brute-Force-Algorithm
– It is assumed that +X is the driving axis

for xi = x0 to xe
yi = m * xi + B
setpixel(xi, Round(yi)) // Round(yi)=Floor(yi+0.5)

• Comments
– Variables m and yi must be calculated in floating-point
– Expensive operations per pixel (e.g. in HW)

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: DDA
• DDA: Digital Differential Analyzer

– Origin of solvers for simple incremental differential equations
(the Euler method)

• Per step in time: x´ = x + dx/dt, y´ = y + dy/dt

• Incremental algorithm
– Per pixel

• xi+1 = xi + 1
• yi+1 = m (xi + 1) + B = yi + m
• setpixel(xi+1, Round(yi+1))

• Remark
– Utilization of line coherence trough incremental calculation

• Avoid the costly multiplication
– Accumulates error over the length of the line
– Floating point calculations may be moved to fixed point

• Must control accuracy of fixed point representation

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: Bresenham (´63)
• DDA analysis

– Critical point: decision by rounding up or down
– Integer-based decision through implicit functions

• Implicit version

BdxcdxbdyacbyaxyxF
BdxydxxdyyxF

=−===++=
=+−=

,, where0),(
0),(

F(x,y) = 0

F(x,y) > 0

F(x,y) < 0

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: Bresenham
• Decision variable (the midpoint formulation)

– Measures the vertical distance of midpoint from line:
di+1 = F(Mi+1)=F(xi+1, yi+1/2) = a(xi+1) + b(yi+1/2) + c

• Preparations for the next pixel
– if (di ≤ 0)

• di+1= di + a = di + dy // incremental calculation
– else

• di+1= di + a + b = di + dy – dx
• y= y + 1

– x = x +1

Mi+1

i i+1

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: Integer Bresenham
• Initialization

– dstart = F(x0+1, y0+1/2) = a(x0+1) + b(y0+1/2) + c
= ax0+ by0+c + a + b/2= F(x0, y0) + a + b/2
= a + b/2

– Because F(x0, y0) is zero by definition (line goes through end point)
• Pixel is always set

• Elimination of fractions
– Any positive scale factor maintains the sign of F(x,y)
– F(x0, y0) = 2(ax0 + by0 + c) → dstart= 2a + b

• Observation:
– When the start and end points have integer coordinates then

b= dx and a= -dy have also integer values
– Floating point computation can be eliminated
– No accumulated error

Computer Graphics WS07/08 – Rendering with Rasterization

Lines: Arbitrary Directions
• 8 different cases

– Driving (active) axis: ±X or ±Y
– Increment/decrement of y or x, respectively

+Y,x+++Y,x--

-Y,x-- -Y,x++

+X,y--

+X,y++-X,y++

-X,y--

Computer Graphics WS07/08 – Rendering with Rasterization

Thick Lines
• Pixel replication

– Problems with even-numbered widths,
– Varying intensity of a line as a function of slope

• The moving pen

– For some pen footprints the thickness of a line might change as a
function of its slope

– Should be as „round“ as possible

• Filling areas between boundaries

Computer Graphics WS07/08 – Rendering with Rasterization

Reminder: Polygons
• Types

– Triangles
– Trapezoids
– Rectangles
– Convex polygons
– Concave polygons
– Arbitrary polygons

• Holes
• Non-coherent

• Two approaches
– Polygon tessellation into triangles

• edge-flags for internal edges
– Direct scan-conversion

Computer Graphics WS07/08 – Rendering with Rasterization

Triangle Rasterization
Raster3_box(vertex v[3])
{
int x, y;
bbox b;
bound3(v, &b);
for (y= b.ymin; y < b.ymax; y++)
for (x= b.xmin; x < b.xmax; x++)
if (inside(v, x, y))
fragment(x,y);

}

• Brute-Force algorithm
• Possible approaches for dealing with scissoring

– Iterate over intersection of scissor box and bounding box,
then test against triangle (as above)

– Iterate over triangle, then test against scissor box

Computer Graphics WS07/08 – Rendering with Rasterization

Incremental Rasterization
• Approach

– Implicit edge functions
to describe the triangle
Fi(x,y)= ax+by+c

– Point inside triangle,
if every Fi(x,y) <= 0

– Incremental evaluation
of the linear function F
by adding a or b

Computer Graphics WS07/08 – Rendering with Rasterization

Incremental Rasterization
Raster3_incr(vertex v[3])
{
edge l0, l1, l2;
value d0, d1, d2;
bbox b;
bound3(v, &b);
mkedge(v[0],v[1],&l2);
mkedge(v[1],v[2],&l0);
mkedge(v[2],v[0],&l1);

d0 = l0.a * b.xmin + l0.b * b.ymin + l0.c;
d1 = l1.a * b.xmin + l1.b * b.ymin + l1.c;
d2 = l2.a * b.xmin + l2.b * b.ymin + l2.c;

for(y=b.ymin; y<b.ymax, y++) {
for(x=b.xmin; x<b.xmax, x++) {

if(d0<=0 && d1<=0 && d2<=0) fragment(x,y);
d0 += l0.a; d1 += l1.a; d2 += l2.a;

}
d0 += l0.a * (b.xmin - b.xmax) + l0.b; . . . }

}

v0

v1v2
l0

l1
l2

Computer Graphics WS07/08 – Rendering with Rasterization

Triangle Scan Conversion
Raster3_scan(vert v[3])
{
int y;
edge l, r;
value ybot, ymid, ytop;

ybot = ceil(v[0].y);
ymid = ceil(v[1].y);
ytop = ceil(v[2].y);

differencey(v[0],v[2],&l,ybot);
differencey(v[0],v[1],&r,ybot);

for(y=ybot; y<ymid; y++) {
scanx(l,r,y);
l.x += l.dxdy; r.x += r.dxdy;

}
differencey(v[1],v[2],&r,ymid);
for(y=ymid; y<ytop; y++) {

scanx(l,r,y);
l.x += l.dxdy; r.x += r.dxdy;

}
}

v2

v1v0
l0

l1
l2

differencey(vert a, vert b,
edge* e, int y) {

e->dxdy=(b.x-a.x)/(b.y-a.y);
e->x=a.x+(y-a.y)*e->dxdy;

}

scanx(edge l, edge r, int y){
lx= ceil(l.x);
rx= ceil(r.x);
for (x=lx; x < rx; x++)

// ggf. Scissor-Test
fragment(x,y);

}

Computer Graphics WS07/08 – Rendering with Rasterization

Gap and T-Vertices

OK not OK
Modeling problem

Computer Graphics WS07/08 – Rendering with Rasterization

Problem on Edges
• Singularity

– If term d= ax+by+c = 0
– Multiple pixels for d <= 0:

• Problem with some algorithms
– transparency, XOR, CSG, ...

– Missing pixels for d < 0:
• Partial solution: shadow test

– Pixels are not drawn
on the right and bottom edges

– Pixels are drawn on the left and
upper edges

inside(value d, value a, value b) { // ax + by + c = 0
return (d < 0) || (d == 0 && !shadow(a,b));

shadow(value a, value b) {
return (a > 0) || (a == 0 && b > 0) }

Not solved by the
shadow test!

Computer Graphics WS07/08 – Rendering with Rasterization

Inside-Outside Tests
• What is the interior of a polygon?

– Jordan Curve Theorem
• Any continuous simple closed curve in

the plane, separates the plane into two
disjoint regions, the inside and the outside,
one of which is bounded.

– Even-odd rule (odd parity rule)
• Counting the number of edge crossings

with a ray starting at the queried point P
• Inside, if the number of

crossings is odd
– Nonzero winding number rule

• Signed intersections with a ray
• Inside, if the number is

not equal to zero
– Differences only in the case of

non-simple curves (self-intersection)

0
1

2
3

4

-1

+1

-1

1 0
1

1
1

1
1 1

1
1
2

1

Even-Odd Winding

Winding

Even-Odd

Computer Graphics WS07/08 – Rendering with Rasterization

Polygon Scan-Conversion
• Special cases

– Edge along a scanline
• shadow test:

– draw the upper edge
– skip the bottom edge

– Vertex at a scanline
• If edges sharing the vertex are located on the same side of the

scanline – properly handled
• If edges sharing the vertex are located on the opposite sides of the

scanline – one edge (bottom) is shortened: the ymin/ymax rule
• Complex situations

– In general use randomization: Offset point by ε

scanlines

Computer Graphics WS07/08 – Rendering with Rasterization

Scanline Algorithm
• Incremental algorithm

– Use the odd-even parity rule to detemine that a point is inside a
polygon

– Utilization of coherence
• along the edges
• on scanlines
• „sweepline-algorithm“

– Edge-Table initialization :
• Bucket sort (one bucket for each scanline)
• Edges ordered by xmin
• Linked list of edge-entries

– ymax
– xmin
– dx/dy
– link to triangle data

l1 l2

l3

l3

l2
l1

Computer Graphics WS07/08 – Rendering with Rasterization

Scanline Algorithm
• For each scan line

– Update the Active-Edge-Table
• Linked-list of entries

– Link to edge-entries,
– x, horizontal increment of depth, color, etc

• Remove edges if theirs ymax is reached
• Insert new edges (from Edge-Table)

– Sorting
• Incremental update of x
• Sorting by X-coordinate of the intersection point with scanline

– Filling the gap between pairs of entries

Computer Graphics WS07/08 – Rendering with Rasterization

Clipping
• Motivation

– Happens after transformation from 3D to 2D
– Many primitives will fall (partially) outside of display window

• E.g. if standing inside a building
– Eliminates non-visible geometry early in the pipeline
– Must cut off parts outside the window

• Cannot draw outside of window (e.g. plotter)
• Outside geometry might not be representable (e.g. in fixed point)

– Must maintain information properly
• Drawing the clipped geometry should give the correct results
• Type of geometry might change

– Cutting off a vertex of a triangle produces a quadrilateral
– Might need to be split into triangle again

• Polygons must remain closed after clipping

Computer Graphics WS07/08 – Rendering with Rasterization

Line clipping
• Definition Clipping:

– Cut off parts of objects, which lie outside/inside of a defined region.
– Often: Clipping against a viewport (2D) or

a canonical view-volume (3D)

pa

pe

Computer Graphics WS07/08 – Rendering with Rasterization

Brute-force method
• Brute-Force line clipping at the viewport

– If both points pa and pe are inside,
• Accept the whole line

– Otherwise, clip the line at each edge

• Intersection point, if 0 ≤ tline, tedge ≤ 1
• Pick up suitable end points from the intersection points for the line

)()(aeedgeaaelinea
eetepptpp −+=−+=

pa

pe

ea

ee

Computer Graphics WS07/08 – Rendering with Rasterization

Cohen-Sutherland (´74)
• Advantage: divide and conquer

– Efficient trivial accept and trivial reject
– Non-trivial case: divide and test

• Outcodes of points:
– Bit encoding (outcode, OC)

• Each edge defines a half space
• Set bit, if point is outside

• Trivial cases
– Trivial accept:

• (OC(pa) OR OC(pe)) = 0
– Trivial reject:

• (OC(pa) AND OC(pe)) ≠ 0
– Edges has to be clipped to all edges where bits are set:

• OC(pa) XOR OC(pe)

0000

1000 1010

0010

011001000101

0001

1001

Bit order: Top, Bottom, Right, Left

Viewport (xmin, ymin, xmax, ymax)

Computer Graphics WS07/08 – Rendering with Rasterization

Cohen-Sutherland
• Clipping

... // trivial cases
for each vertex p
oc= OC(p)
for each edge e

if (oc[e]) {
p= cut(p,e);
oc= OC(p);

}
Reject, if point outside

• Intersection calculation for x=xmin

1010

0101

1000

0001

ae

ae
aa

ae

a

ae

a

xx
yyxxyy

xx
xx

yy
yy

−
−

−+=

−
−

=
−
−

)(

Computer Graphics WS07/08 – Rendering with Rasterization

Cyrus-Beck (´78) Clipping against Polygons

• Parametric line-clipping algorithm
– Only convex polygons: max. 2 intersection points
– Use edge orientation

• Idea:
– Clipping line pa+ ti(pe-pa) with each edge
– Intersection points sorted by parameter ti
– Select

• tin: entry point ((pe-pa)·Ni < 0) with largest ti and
• tout: exit point ((pe-pa)·Ni > 0) with smallest ti

– If tout < tin, line lies completely outside
• Intersection calculation:

NNii

pa

pe

pepa

pedge NNii

p

pa

pa

pe

tin

tout

tout

tin

()
() ()

()
() iae

iaedge
i

iedgeaiaei

iedge

Npp
Npp

=t

=Npp+Nppt

=Npp

⋅−

⋅−

⋅−⋅−

⋅−

0

0

Computer Graphics WS07/08 – Rendering with Rasterization

Liang-Barsky (´84)
• Cyrus-Beck for axis-parallel rectangles

– Using Window-Edge-Coordinates
(with respect to an edge T)

• Example: top (y= ymax)

– Window-Edge-Coordinate (WEC): Decision function for an edge
• Directed distance to edge

– Only sign matters, similar to Cohen-Sutherland opcode
• Sign of the dot product determines whether the point is in or out
• Normalization unimportant

NNTT

xx

yy

()
()

()
() () ea

maxa

eTaT

aT

Tea

TTa
T

maxa

maxa
TaT

yy
yy=

pWECpWEC
pWEC=

Npp
Npp=t

yy
xx

=pp,=N

−
−

−⋅−
⋅−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
0

pe

pa

() () TTT Npp=pWEC ⋅−

Computer Graphics WS07/08 – Rendering with Rasterization

Line clipping - Summary
• Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky

algorithms readily extend to 3D
• Cohen-Sutherland algorithm

+ Efficient when a majority of lines can trivially accepted or rejected
• Very large clip rectangles: almost all lines inside
• Very small clip rectangles: almost all lines outside

– Repeated clipping for remaining lines
– Testing for 2D/3D point coordinates

• Cyrus-Beck (Liang-Barsky) algorithms
+ Efficient when many lines must be clipped
+ Testing for 1D parameter values
– Testing intersections always for all clipping edges (in the Liang-

Barsky trivial rejection testing possible)

Computer Graphics WS07/08 – Rendering with Rasterization

Polygon Clipping
• Extending line clipping

– Polygons have to remain closed
• Filling, hatching, shading, ...

Computer Graphics WS07/08 – Rendering with Rasterization

Sutherland-Hodgeman (´74)
• Idea:

– Iterative clipping against each clipping line

– Local operations on pi-1 and pi

pi

pi-1

inside outside

pi

inside outside
pi

inside outside

pi

inside outside

pi-1

pi-1 pi-1

output: pi output : p output : -
first output : p and
second output: pi

p

p

Computer Graphics WS07/08 – Rendering with Rasterization

Other clipping algorithms
• Weiler & Atherton (´77)

– Arbitrary concave polygons with holes against each other
• Vatti (´92)

– Also with self-overlap
• Greiner & Hormann (TOG ´98)

– Simpler and faster as Vatti
– Also supports boolean operations
– Idea:

• Odd winding number rule
– Intersection with the polygon leads

to a winding number ±1
• Walk along both polygons
• Alternate winding number
• Mark point of entry and point of exit
• Combine results

Non-zero WN: In
Even WN: Out

Computer Graphics WS07/08 – Rendering with Rasterization

Greiner & Hormann

A in B B in A (A in B) U (B in A)

Computer Graphics WS07/08 – Rendering with Rasterization

3D Clipping against View Volume
• Requirements

– Avoid unnecessary rasterization
– Avoid overflow on transformation at fixed point !

• Clipping against viewing frustum
– Enhanced Cohen-Sutherland with 6-bit outcode
– After perspective division

• -1 < y < 1
• -1 < x < 1
• -1 < z < 0

– Clip against side planes of the viewing frustum
– Works analogous with Liang-Barsky or Sutherland-Hodgeman

Computer Graphics WS07/08 – Rendering with Rasterization

• Clipping in homogeneous coordinates
– Avoid division by w
– Inside test with a linear distance function (WEC)

• Left: X/W > -1 W+X= WECL(p) > 0
• Top: Y/W < 1 W -Y= WECT(p) > 0
• Back: Z/W > -1 W+Z= WECB(p) > 0
• ...

– Intersection point calculation (before homogenizing)
• Test: WECL(pa) > 0 and WECL(pe) < 0
• Calculation:

)()(
)(

)()(

0)()(

0))((

eLaL

aL

eeaa

aa

aeaaea

aea

pWECpWEC
pWEC

XWXW
XWt

XXtXWWtW

pptpWEC

−
=

+−+
+

=

=−++−+

=−+

3D Clipping against View Volume

Computer Graphics WS07/08 – Rendering with Rasterization

Problems with Homog. Coord.
• Negative w

– Points with w < 0 or lines with wa < 0 and we < 0
• Negate and continue

– Lines with wa ·we < 0 (NURBS)
• Line moves through infinity

– External line
• Clipping two times

– Original Line
– Negated line

• Generates up to two segments

w

x

pa

pe

-pe

-pa

W=1

Computer Graphics WS07/08 – Rendering with Rasterization

Practical Implementations
• Combining clipping and scissoring

– Clipping is expensive and should be avoided
• Intersection calculation
• Variable number of new points

– Enlargement of clipping region
• Larger than viewport, but
• Still avoiding overflow due to fixed-point representation

– Result
• Less clipping
• Applications should avoid drawing

objects which are lying outside of
the viewing frustum

• Objects which are lying partially
outside will be clipped implicitly
during rasterization.

Clipping region

Viewport

