Computer Graphics - Rasterization & Clipping -

Hendrik Lensch

Computer Graphics WS07/08 – Rendering with Rasterization

Overview

- Last lecture:
 - Camera Transformations
 - Projection
- Today:
 - Rasterization of Lines and Triangles
 - Clipping
- Next lecture:
 - OpenGL

Rasterization

- Definition
 - Given a primitive (usually 2D lines, circles, polygons), specify which pixels on a raster display are covered by this primitive
 - Extension: specify what part of a pixel is covered
 → filtering & anti-aliasing
- OpenGL lecture
 - From an application programmer's point of view
- This lecture
 - From a graphics package implementer's point of view
- Usages of rasterization in practice
 - 2D-raster graphics
 - e.g. Postscript
 - 3D-raster graphics
 - 3D volume modeling and rendering
 - Volume operations (CSG operations, collision detection)
 - Space subdivision
 - Construction and traversing

Rasterization

- Assumption
 - Pixels are sample *points* on a 2D-integer-grid
 - OpenGL: integer-coordinate bottom left; X11, Foley: in the center
 - Simple raster operations
 - Just setting pixel values
 - Antialiasing later
 - Endpoints at pixel coordinates
 - simple generalization with fixed point
 - Limiting to lines with gradient $|m| \le 1$
 - Separate handling of horizontal and vertical lines
 - Otherwise exchange of x & y: $|1/m| \le 1$
 - Line size is one pixel
 - $|m| \le 1$: 1 pixel per column (X-driving axis)
 - |m| > 1: 1 pixel per row (Y-driving axis)

Lines: As Functions

Specification

- Initial and end points: (x_0, y_0) , (x_e, y_e)
- Functional form: y = mx + B with m = dy/dx
- Goal
 - Find pixels whose distance to the line is smallest

Brute-Force-Algorithm

- It is assumed that +X is the driving axis

```
for x_i = x_0 to x_e

y_i = m * x_i + B

setpixel(x_i, Round(y_i)) // Round(y_i)=Floor(y_i+0.5)
```

Comments

- Variables m and y_i must be calculated in floating-point
- Expensive operations per pixel (e.g. in HW)

Lines: DDA

- DDA: Digital Differential Analyzer
 - Origin of solvers for simple incremental differential equations (the Euler method)
 - Per step in time: x' = x + dx/dt, y' = y + dy/dt
- Incremental algorithm
 - Per pixel
 - $\mathbf{x}_{i+1} = \mathbf{x}_i + 1$
 - $y_{i+1} = m (x_i + 1) + B = y_i + m$
 - setpixel(x_{i+1} , Round(y_{i+1}))
- Remark
 - Utilization of line coherence trough incremental calculation
 - Avoid the costly multiplication
 - Accumulates error over the length of the line
 - Floating point calculations may be moved to fixed point
 - Must control accuracy of fixed point representation

Lines: Bresenham ('63)

- DDA analysis
 - Critical point: decision by rounding up or down
 - Integer-based decision through implicit functions
- Implicit version

$$F(x, y) = dy x - dx y + dx B = 0$$

$$F(x, y) = ax + by + c = 0 \text{ where } a = dy, b = -dx, c = Bdx$$

Lines: Bresenham

- Decision variable (the midpoint formulation)
 - Measures the vertical distance of midpoint from line:

 $d_{i+1} = F(M_{i+1}) = F(x_i+1, y_i+1/2) = a(x_i+1) + b(y_i+1/2) + c$

Preparations for the next pixel

- if
$$(d_i \le 0)$$

• $d_{i+1} = d_i + a = d_i + c_i$

 $= d_i + a = d_i + dy$ // incremental calculation

- else

•
$$d_{i+1} = d_i + a + b = d_i + dy - dx$$

-x = x + 1

Lines: Integer Bresenham

Initialization

$$- d_{start} = F(x_0+1, y_0+1/2) = a(x_0+1) + b(y_0+1/2) + c$$

= $ax_0 + by_0 + c + a + b/2 = F(x_0, y_0) + a + b/2$
= $a + b/2$

- Because $F(x_0, y_0)$ is zero by definition (line goes through end point)
 - Pixel is always set

Elimination of fractions

- Any positive scale factor maintains the sign of F(x,y)
- $F(x_0, y_0) = 2(ax_0 + by_0 + c) \rightarrow d_{start} = 2a + b$

• Observation:

- When the start and end points have integer coordinates then
 b= dx and **a= -dy** have also integer values
- Floating point computation can be eliminated
- No accumulated error

Lines: Arbitrary Directions

8 different cases

- Driving (active) axis: ±X or ±Y
- Increment/decrement of y or x, respectively

Thick Lines

- Pixel replication
 - • •
 - Problems with even-numbered widths,
 - Varying intensity of a line as a function of slope

- The moving pen

- For some pen footprints the thickness of a line might change as a function of its slope
- Should be as "round" as possible
- Filling areas between boundaries

Reminder: Polygons

- Types
 - Triangles
 - Trapezoids
 - Rectangles
 - Convex polygons
 - Concave polygons
 - Arbitrary polygons
 - Holes
 - Non-coherent
- Two approaches
 - Polygon tessellation into triangles
 - edge-flags for internal edges
 - Direct scan-conversion

Triangle Rasterization

```
Raster3_box(vertex v[3])
{
    int x, y;
    bbox b;
    bound3(v, &b);
    for (y= b.ymin; y < b.ymax; y++)
        for (x= b.xmin; x < b.xmax; x++)
            if (inside(v, x, y))
                fragment(x,y);
}</pre>
```


- Brute-Force algorithm
- Possible approaches for dealing with scissoring
 - Iterate over intersection of scissor box and bounding box, then test against triangle (as above)
 - Iterate over triangle, then test against scissor box

Incremental Rasterization

• Approach

- Implicit edge functions to describe the triangle F_i(x,y)= ax+by+c
- Point inside triangle,
 if every F_i(x,y) <= 0
- Incremental evaluation of the linear function F by adding a or b

Incremental Rasterization

```
Raster3 incr(vertex v[3])
  edge 10, 11, 12;
  value d0, d1, d2;
                                                                  12
  bbox b;
  bound3(v, &b);
  mkedge(v[0],v[1],&l2);
  mkedge(v[1],v[2],&10);
  mkedge(v[2],v[0],&l1);
  d0 = 10.a * b.xmin + 10.b * b.ymin + 10.c;
  d1 = 11.a * b.xmin + 11.b * b.ymin + 11.c;
  d2 = 12.a * b.xmin + 12.b * b.ymin + 12.c;
  for( y=b.ymin; y<b.ymax, y++ ) {</pre>
    for( x=b.xmin; x<b.xmax, x++ ) {</pre>
      if( d0<=0 && d1<=0 && d2<=0 ) fragment(x,y);
      d0 += 10.a; d1 += 11.a; d2 += 12.a;
    d0 += 10.a * (b.xmin - b.xmax) + 10.b; . . . }
}
```

Triangle Scan Conversion

```
Raster3 scan(vert v[3])
  int y;
  edge 1, r;
  value ybot, ymid, ytop;
  ybot = ceil(v[0].y);
  ymid = ceil(v[1].y);
  ytop = ceil(v[2].y);
  differencey(v[0],v[2],&l,ybot);
  differencey(v[0],v[1],&r,ybot);
  for( y=ybot; y<ymid; y++ ) {</pre>
    scanx(l,r,y);
    1.x += 1.dxdy; r.x += r.dxdy;
  differencey(v[1],v[2],&r,ymid);
  for( y=ymid; y<ytop; y++ ) {</pre>
    scanx(l,r,y);
    l.x += l.dxdy; r.x += r.dxdy;
```


Gap and T-Vertices

Problem on Edges

- Singularity
 - If term d = ax+by+c = 0
 - Multiple pixels for $d \le 0$:
 - Problem with some algorithms
 - transparency, XOR, CSG, ...
 - Missing pixels for d < 0:

Partial solution: shadow test

- Pixels are not drawn on the right and bottom edges
- Pixels are drawn on the left and upper edges


```
inside(value d, value a, value b) { // ax + by + c = 0
  return (d < 0) || (d == 0 && !shadow(a,b));
shadow(value a, value b) {
  return (a > 0) || (a == 0 && b > 0) }
```

Inside-Outside Tests

- What is the interior of a polygon?
 - Jordan Curve Theorem
 - Any continuous *simple* closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded.
 - Even-odd rule (odd parity rule)
 - Counting the number of edge crossings with a ray starting at the queried point P
 - Inside, if the number of crossings is odd
 - Nonzero winding number rule
 - · Signed intersections with a ray
 - Inside, if the number is not equal to zero
 - Differences only in the case of non-simple curves (self-intersection)

Polygon Scan-Conversion

- Special cases
 - Edge along a scanline
 - shadow test:
 - draw the upper edge
 - skip the bottom edge
 - Vertex at a scanline

- If edges sharing the vertex are located on the same side of the scanline – properly handled
- If edges sharing the vertex are located on the opposite sides of the scanline – one edge (bottom) is shortened: the y_{min}/y_{max} rule
- Complex situations
 - In general use randomization: Offset point by $\boldsymbol{\epsilon}$

Scanline Algorithm

Incremental algorithm

- Use the odd-even parity rule to detemine that a point is inside a polygon
- Utilization of coherence
 - along the edges
 - on scanlines
 - "sweepline-algorithm"
- Edge-Table initialization :
 - Bucket sort (one bucket for each scanline)
 - Edges ordered by xmin
 - Linked list of edge-entries
 - ymax
 - xmin
 - dx/dy
 - link to triangle data

Scanline Algorithm

• For each scan line

- Update the Active-Edge-Table
 - Linked-list of entries
 - Link to edge-entries,
 - x, horizontal increment of depth, color, etc
 - Remove edges if theirs ymax is reached
 - Insert new edges (from Edge-Table)
- Sorting
 - Incremental update of x
 - Sorting by X-coordinate of the intersection point with scanline
- Filling the gap between pairs of entries

Clipping

Motivation

- Happens after transformation from 3D to 2D
- Many primitives will fall (partially) outside of display window
 - E.g. if standing inside a building
- Eliminates non-visible geometry early in the pipeline
- Must cut off parts outside the window
 - Cannot draw outside of window (e.g. plotter)
 - Outside geometry might not be representable (e.g. in fixed point)
- Must maintain information properly
 - Drawing the clipped geometry should give the correct results
 - Type of geometry might change
 - Cutting off a vertex of a triangle produces a quadrilateral
 - Might need to be split into triangle again
 - Polygons must remain closed after clipping

Line clipping

• Definition Clipping:

- Cut off parts of objects, which lie outside/inside of a defined region.
- Often: Clipping against a viewport (2D) or a canonical view-volume (3D)

Brute-force method

- Brute-Force line clipping at the viewport
 - If both points \underline{p}_a and \underline{p}_e are inside,
 - Accept the whole line
 - Otherwise, clip the line at each edge

$$\underline{p} = \underline{p}_a + t_{line}(\underline{p}_e - \underline{p}_a) = \underline{e}_a + t_{edge}(\underline{e}_e - \underline{e}_a)$$

- Intersection point, if $0 \leq t_{\text{line}}, \, t_{\text{edge}} \leq 1$
- Pick up suitable end points from the intersection points for the line

Cohen-Sutherland ('74)

Advantage: divide and conquer

- Efficient trivial accept and trivial reject
- Non-trivial case: divide and test

Outcodes of points:

- Bit encoding (outcode, OC)
 - Each edge defines a half space
 - Set bit, if point is outside

Trivial cases

- Trivial accept:
 - $(OC(p_a) OR OC(p_e)) = 0$
- Trivial reject:
 - $(OC(p_a) AND OC(p_e)) \neq 0$
- Edges has to be clipped to all edges where bits are set:
 - OC(p_a) XOR OC(p_e)

1001	1000	1010
0001	0000	0010
0101	0100	0110

Bit order: Top, Bottom, <u>Right, Left</u>

Viewport (x_{min}, y_{min}, x_{max}, y_{max})

Cohen-Sutherland

• Clipping

```
... // trivial cases
for each vertex p
   oc= OC(p)
   for each edge e
        if (oc[e]) {
            p= cut(p,e);
            oc= OC(p);
        }
        Reject, if point outside
```

Intersection calculation for x=x_{min}

$$\frac{y - y_a}{y_e - y_a} = \frac{x - x_a}{x_e - x_a}$$
$$y = y_a + (x - x_a)\frac{y_e - y_a}{x_e - x_a}$$

Cyrus-Beck (78) Clipping against Polygons

Parametric line-clipping algorithm

- Only convex polygons: max. 2 intersection points
- Use edge orientation
- Idea:
 - Clipping line $\underline{p}_a + t_i(\underline{p}_e \underline{p}_a)$ with each edge
 - Intersection points sorted by parameter t_i
 - Select
 - t_{in} : entry point ((\underline{p}_e - \underline{p}_a)· \underline{N}_i < 0) with largest t_i and
 - t_{out} : exit point (($\underline{p}_e \underline{p}_a$)· $\underline{N}_i > 0$) with smallest t_i
 - If $t_{out} < t_{in}$, line lies completely outside
- Intersection calculation:

$$(p - p_{edge}) \cdot N_i = 0$$

$$t_i (p_e - p_a) \cdot N_i + (p_a - p_{edge}) \cdot N_i = 0$$

$$t_i = \frac{(p_{edge} - p_a) \cdot N_i}{(p_e - p_a) \cdot N_i}$$

Liang-Barsky ('84)

- Cyrus-Beck for axis-parallel rectangles
 - Using Window-Edge-Coordinates (with respect to an edge T)

$$WEC_T(p) = (p - p_T) \cdot N_T$$

Example: top (ullet

$$WEC_{T}(p) = (p - p_{T}) \cdot N_{T}$$

$$MEC_{T}(p) = (p - p_{T}) \cdot N_{T}$$

$$N_{T} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, p_{a} - p_{T} = \begin{pmatrix} x_{a} - x_{max} \\ y_{a} - y_{max} \end{pmatrix}$$

$$t_{T} = \frac{(p_{a} - p_{T}) \cdot N_{T}}{(p_{a} - p_{e}) \cdot N_{T}} = \frac{WEC_{T}(p_{a})}{WEC_{T}(p_{a}) - WEC_{T}(p_{e})} = \frac{y_{a} - y_{max}}{y_{a} - y_{e}}$$

p_a

N₋

Х

- Window-Edge-Coordinate (WEC): Decision function for an edge
 - Directed distance to edge
 - Only sign matters, similar to Cohen-Sutherland opcode
 - Sign of the dot product determines whether the point is in or out
 - Normalization unimportant

Line clipping - Summary

 Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D

Cohen-Sutherland algorithm

- + Efficient when a majority of lines can trivially accepted or rejected
 - Very large clip rectangles: almost all lines inside
 - Very small clip rectangles: almost all lines outside
- Repeated clipping for remaining lines
- Testing for 2D/3D point coordinates

Cyrus-Beck (Liang-Barsky) algorithms

- + Efficient when many lines must be clipped
- + Testing for 1D parameter values
- Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)

Polygon Clipping

Extending line clipping

- Polygons have to remain closed
 - Filling, hatching, shading, ...

Sutherland-Hodgeman ('74)

- Idea:
 - Iterative clipping against each clipping line

Other clipping algorithms

- Weiler & Atherton ('77)
 - Arbitrary concave polygons with holes against each other
- Vatti ('92)
 - Also with self-overlap

• Greiner & Hormann (TOG '98)

- Simpler and faster as Vatti
- Also supports boolean operations
- Idea:
 - Odd winding number rule
 - Intersection with the polygon leads to a winding number ± 1
 - Walk along both polygons
 - Alternate winding number
 - Mark point of entry and point of exit
 - Combine results

_		
L		

Non-zero WN: In Even WN: Out

Greiner & Hormann

3D Clipping against View Volume

Requirements

- Avoid unnecessary rasterization
- Avoid overflow on transformation at fixed point !

Clipping against viewing frustum

- Enhanced Cohen-Sutherland with 6-bit outcode
- After perspective division
 - -1 < y < 1
 - -1 < x < 1
 - -1 < z < 0
- Clip against side planes of the viewing frustum
- Works analogous with Liang-Barsky or Sutherland-Hodgeman

3D Clipping against View Volume

Clipping in homogeneous coordinates ullet

- Avoid division by w
- Inside test with a linear distance function (WEC)

 - Top: Y/W < 1 → W -Y= WEC_T(<u>p</u>) > 0
 - Back: Z/W > -1 \rightarrow $W+Z=WEC_B(\underline{p}) > 0$
 - Left: X/W > -1 \rightarrow $W+X = WEC_1(\underline{p}) > 0$
- Intersection point calculation (before homogenizing)
 - Test: WEC₁ (\underline{p}_{a}) > 0 and WEC₁ (\underline{p}_{e}) < 0
 - Calculation:

•

$$WEC(\underline{p}_{a} + t(\underline{p}_{e} - \underline{p}_{a})) = 0$$

$$W_{a} + t(W_{e} - W_{a}) + X_{a} + t(X_{e} - X_{a}) = 0$$

$$t = \frac{W_{a} + X_{a}}{(W_{a} + X_{a}) - (W_{e} + X_{e})} = \frac{WEC_{L}(\underline{p}_{a})}{WEC_{L}(\underline{p}_{a}) - WEC_{L}(\underline{p}_{e})}$$

Problems with Homog. Coord.

- Negative w
 - Points with w < 0 or lines with $w_a < 0$ and $w_e < 0$
 - Negate and continue
 - Lines with $w_a \cdot w_e < 0$ (NURBS)
 - Line moves through infinity
 - External line
 - Clipping two times
 - Original Line
 - Negated line
 - · Generates up to two segments

Practical Implementations

Combining clipping and scissoring

- Clipping is expensive and should be avoided
 - Intersection calculation
 - Variable number of new points
- Enlargement of clipping region
 - Larger than viewport, but
 - Still avoiding overflow due to fixed-point representation
- Result
 - Less clipping
 - Applications should avoid drawing objects which are lying outside of the viewing frustum
 - Objects which are lying partially outside will be clipped implicitly during rasterization.

