Overview

• Last lecture:
 – Camera Transformations
 – Projection

• Today:
 – Rasterization of Lines and Triangles
 – Clipping

• Next lecture:
 – OpenGL
Rasterization

• Definition
 – Given a primitive (usually 2D lines, circles, polygons), specify which pixels on a raster display are covered by this primitive
 – Extension: specify what part of a pixel is covered
 → filtering & anti-aliasing

• OpenGL lecture
 – From an application programmer‘s point of view

• This lecture
 – From a graphics package implementer‘s point of view

• Usages of rasterization in practice
 – 2D-raster graphics
 • e.g. Postscript
 – 3D-raster graphics
 – 3D volume modeling and rendering
 – Volume operations (CSG operations, collision detection)
 – Space subdivision
 • Construction and traversing
Rasterization

- **Assumption**
 - Pixels are sample *points* on a 2D-integer-grid
 - OpenGL: integer-coordinate bottom left; X11, Foley: in the center
 - Simple raster operations
 - Just setting pixel values
 - Antialiasing later
 - Endpoints at pixel coordinates
 - simple generalization with fixed point
 - Limiting to lines with gradient $|m| \leq 1$
 - Separate handling of horizontal and vertical lines
 - Otherwise exchange of x & y: $|1/m| \leq 1$
 - Line size is one pixel
 - $|m| \leq 1$: 1 pixel per column (X-driving axis)
 - $|m| > 1$: 1 pixel per row (Y-driving axis)
Lines: As Functions

• Specification
 – Initial and end points: \((x_0, y_0), (x_e, y_e)\)
 – Functional form: \(y = mx + B\) with \(m = \frac{dy}{dx}\)

• Goal
 – Find pixels whose distance to the line is smallest

• Brute-Force-Algorithm
 – It is assumed that \(+X\) is the driving axis

 \[
 \text{for } x_i = x_0 \text{ to } x_e \\
 y_i = m \times x_i + B \\
 \text{setpixel}(x_i, \text{Round}(y_i)) \quad // \text{ Round}(y_i) = \text{Floor}(y_i + 0.5)
 \]

• Comments
 – Variables \(m\) and \(y_i\) must be calculated in floating-point
 – Expensive operations per pixel (e.g. in HW)
Lines: DDA

• **DDA: Digital Differential Analyzer**
 – Origin of solvers for simple incremental differential equations (the Euler method)
 • Per step in time: $x' = x + \frac{dx}{dt}$, $y' = y + \frac{dy}{dt}$

• **Incremental algorithm**
 – Per pixel
 • $x_{i+1} = x_i + 1$
 • $y_{i+1} = m(x_i + 1) + B = y_i + m$
 • `setpixel(x_{i+1}, Round(y_{i+1}))`

• **Remark**
 – Utilization of line coherence through incremental calculation
 • Avoid the costly multiplication
 – Accumulates error over the length of the line
 – Floating point calculations may be moved to fixed point
 • Must control accuracy of fixed point representation
Lines: Bresenham (’63)

- **DDA analysis**
 - Critical point: decision by rounding up or down
 - Integer-based decision through implicit functions

- **Implicit version**

\[
F(x, y) = dy \cdot x - dx \cdot y + dx \cdot B = 0
\]
\[
F(x, y) = ax + by + c = 0 \quad \text{where } a = dy, b = -dx, c = Bdx
\]
Lines: Bresenham

• Decision variable (the midpoint formulation)
 – Measures the vertical distance of midpoint from line:
 \[d_{i+1} = F(M_{i+1}) = F(x_i+1, y_i+1/2) = a(x_i+1) + b(y_i+1/2) + c \]

• Preparations for the next pixel
 – if \((d_i \leq 0)\)
 • \(d_{i+1} = d_i + a = d_i + dy\) // incremental calculation
 – else
 • \(d_{i+1} = d_i + a + b = d_i + dy - dx\)
 • \(y = y + 1\)
 • \(x = x + 1\)
Lines: Integer Bresenham

• Initialization
 – \(d_{\text{start}} = F(x_0+1, y_0+1/2) = a(x_0+1) + b(y_0+1/2) + c \)
 \(= ax_0 + by_0 + c + a + b/2 = F(x_0, y_0) + a + b/2 \)
 \(= a + b/2 \)
 – Because \(F(x_0, y_0) \) is zero by definition (line goes through end point)
 • Pixel is always set

• Elimination of fractions
 – Any positive scale factor maintains the sign of \(F(x,y) \)
 – \(F(x_0, y_0) = 2(ax_0 + by_0 + c) \rightarrow d_{\text{start}} = 2a + b \)

• Observation:
 – When the start and end points have integer coordinates then
 \(b = dx \) and \(a = -dy \) have also integer values
 – Floating point computation can be eliminated
 – No accumulated error
Lines: Arbitrary Directions

- 8 different cases
 - Driving (active) axis: ±X or ±Y
 - Increment/decrement of y or x, respectively

\[\begin{array}{c|c|c}
+Y,x-- & +Y,x++ \\
-X,y++ & +X,y++ & -X,y-- \\
-Y,x-- & -Y,x++ \\
\end{array}\]
Thick Lines

- **Pixel replication**
 - Problems with even-numbered widths,
 - Varying intensity of a line as a function of slope

- **The moving pen**
 - For some pen footprints the thickness of a line might change as a function of its slope
 - Should be as „round“ as possible

- **Filling areas between boundaries**
 Reminder: Polygons

- **Types**
 - Triangles
 - Trapezoids
 - Rectangles
 - Convex polygons
 - Concave polygons
 - Arbitrary polygons
 - Holes
 - Non-coherent

- **Two approaches**
 - Polygon tessellation into triangles
 - edge-flags for internal edges
 - Direct scan-conversion
Triangle Rasterization

Raster3_box(vertex v[3])
{
 int x, y;
 bbox b;
 bound3(v, &b);
 for (y= b.ymin; y < b.ymax; y++)
 for (x= b.xmin; x < b.xmax; x++)
 if (inside(v, x, y))
 fragment(x,y);
}

• Brute-Force algorithm
• Possible approaches for dealing with scissoring
 – Iterate over intersection of scissor box and bounding box, then test against triangle (as above)
 – Iterate over triangle, then test against scissor box
Incremental Rasterization

- **Approach**
 - Implicit edge functions to describe the triangle $F_i(x,y) = ax + by + c$
 - Point inside triangle, if every $F_i(x,y) \leq 0$
 - Incremental evaluation of the linear function F by adding a or b
Incremental Rasterization

```
Raster3_incr(vertex v[3])
{
    edge l0, l1, l2;
    value d0, d1, d2;
    bbox b;
    bound3(v, &b);
    mkedge(v[0], v[1], &l2);
    mkedge(v[1], v[2], &l0);
    mkedge(v[2], v[0], &l1);

    d0 = l0.a * b.xmin + l0.b * b.ymin + l0.c;
    d1 = l1.a * b.xmin + l1.b * b.ymin + l1.c;
    d2 = l2.a * b.xmin + l2.b * b.ymin + l2.c;

    for( y=b.ymin; y<b.ymax, y++ ) {
        for( x=b.xmin; x<b.xmax, x++ ) {
            if( d0<=0 && d1<=0 && d2<=0 ) fragment(x,y);
            d0 += l0.a; d1 += l1.a; d2 += l2.a;
        }
        d0 += l0.a * (b.xmin - b.xmax) + l0.b; ....
    }
}
```
Triangle Scan Conversion

```c
Raster3_scan(vert v[3])
{
    int y;
    edge l, r;
    value ybot, ymid, ytop;

    ybot = ceil(v[0].y);
    ymid = ceil(v[1].y);
    ytop = ceil(v[2].y);

    differencey(v[0],v[2],&l,ybot);
    differencey(v[0],v[1],&r,ybot);

    for( y=ybot; y<ymid; y++ ) {
        scanx(l,r,y);
        l.x += l.dxdy; r.x += r.dxdy;
    }
    differencey(v[1],v[2],&r,ymid);
    for( y=ymid; y<ytop; y++ ) {
        scanx(l,r,y);
        l.x += l.dxdy; r.x += r.dxdy;
    }
}

differencey(vert a, vert b, edge* e, int y) {
    e->dxdy=(b.x-a.x)/(b.y-a.y);
    e->x=a.x+(y-a.y)*e->dxdy;
}

scanx(edge l, edge r, int y) {
    lx= ceil(l.x);
    rx= ceil(r.x);
    for (x=lx; x < rx; x++)
        // ggf. Scissor-Test
        fragment(x,y);
}  ```
Gap and T-Vertices

OK

not OK
Modeling problem
Problem on Edges

- **Singularity**
  - If term \( d = ax + by + c = 0 \)
  - Multiple pixels for \( d \leq 0 \):
    - Problem with some algorithms
      - transparency, XOR, CSG, ...
    - Missing pixels for \( d < 0 \):

- **Partial solution: shadow test**
  - Pixels are not drawn on the right and bottom edges
  - Pixels are drawn on the left and upper edges

```plaintext
inside(value d, value a, value b) { // ax + by + c = 0
 return (d < 0) || (d == 0 && !shadow(a,b));
shadow(value a, value b) {
 return (a > 0) || (a == 0 && b > 0) }
```

Not solved by the shadow test!
Inside-Outside Tests

- **What is the interior of a polygon?**
  - Jordan Curve Theorem
    - Any continuous *simple* closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded.
  - Even-odd rule (odd parity rule)
    - Counting the number of edge crossings with a ray starting at the queried point \( P \)
    - Inside, if the number of crossings is odd
  - Nonzero winding number rule
    - Signed intersections with a ray
    - Inside, if the number is not equal to zero
  - Differences only in the case of non-simple curves (self-intersection)
Polygon Scan-Conversion

• **Special cases**
  – Edge along a scanline
    • shadow test:
      – draw the upper edge
      – skip the bottom edge
  – Vertex at a scanline
    • If edges sharing the vertex are located on the same side of the scanline – properly handled
    • If edges sharing the vertex are located on the opposite sides of the scanline – one edge (bottom) is shortened: the $y_{\text{min}}/y_{\text{max}}$ rule
    • Complex situations
      – In general use randomization: Offset point by $\varepsilon$
Scanline Algorithm

- **Incremental algorithm**
  - Use the odd-even parity rule to determine that a point is inside a polygon
  - Utilization of coherence
    - along the edges
    - on scanlines
    - "sweepline-algorithm"
  - **Edge-Table initialization**:
    - Bucket sort (one bucket for each scanline)
    - Edges ordered by xmin
    - Linked list of edge-entries
      - ymax
      - xmin
      - dx/dy
      - link to triangle data
Scanline Algorithm

- For each scan line
  - Update the Active-Edge-Table
    - Linked-list of entries
      - Link to edge-entries,
      - x, horizontal increment of depth, color, etc
    - Remove edges if theirs ymax is reached
    - Insert new edges (from Edge-Table)
  - Sorting
    - Incremental update of x
    - Sorting by X-coordinate of the intersection point with scanline
  - Filling the gap between pairs of entries
Clipping

**Motivation**
- Happens after transformation from 3D to 2D
- Many primitives will fall (partially) outside of display window
  - E.g. if standing inside a building
- Eliminates non-visible geometry early in the pipeline
- Must cut off parts outside the window
  - Cannot draw outside of window (e.g. plotter)
  - Outside geometry might not be representable (e.g. in fixed point)
- Must maintain information properly
  - Drawing the clipped geometry should give the correct results
  - Type of geometry might change
    - Cutting off a vertex of a triangle produces a quadrilateral
    - Might need to be split into triangle again
  - Polygons must remain closed after clipping
Line clipping

- **Definition Clipping:**
  - Cut off parts of objects, which lie outside/inside of a defined region.
  - Often: Clipping against a viewport (2D) or a canonical view-volume (3D)
**Brute-force method**

- **Brute-Force line clipping at the viewport**
  - If both points $p_a$ and $p_e$ are inside,
    - Accept the whole line
  - Otherwise, clip the line at each edge

\[
p = p_a + t_{line} (p_e - p_a) = e_a + t_{edge} (e_e - e_a)
\]

- Intersection point, if $0 \leq t_{line}, t_{edge} \leq 1$
- Pick up suitable end points from the intersection points for the line
Cohen-Sutherland (’74)

- Advantage: divide and conquer
  - Efficient trivial accept and trivial reject
  - Non-trivial case: divide and test

- Outcodes of points:
  - Bit encoding (outcode, OC)
    - Each edge defines a half space
    - Set bit, if point is outside

- Trivial cases
  - Trivial accept:
    - \((\text{OC}(p_a) \lor \text{OC}(p_e)) = 0\)
  - Trivial reject:
    - \((\text{OC}(p_a) \land \text{OC}(p_e)) \neq 0\)
  - Edges has to be clipped to all edges where bits are set:
    - \(\text{OC}(p_a) \lor \text{OC}(p_e)\)

<table>
<thead>
<tr>
<th>OC(p_a)</th>
<th>OC(p_e)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>1000</td>
<td>1010</td>
</tr>
<tr>
<td>0001</td>
<td>0000</td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
</tr>
</tbody>
</table>

Bit order: Top, Bottom, Right, Left

Viewport \((x_{\text{min}}, y_{\text{min}}, x_{\text{max}}, y_{\text{max}})\)
Cohen-Sutherland

• Clipping
  ...
  for each vertex p
  oc = OC(p)
  for each edge e
  if (oc[e]) {
    p = cut(p, e);
    oc = OC(p);
  }
  Reject, if point outside

• Intersection calculation for $x = x_{\text{min}}$

$$\frac{y - y_a}{y_e - y_a} = \frac{x - x_a}{x_e - x_a}$$

$$y = y_a + \left( x - x_a \right) \frac{y_e - y_a}{x_e - x_a}$$
Cyrus-Beck (’78) Clipping against Polygons

- **Parametric line-clipping algorithm**
  - Only convex polygons: max. 2 intersection points
  - Use edge orientation

- **Idea:**
  - Clipping line $p_a + t_i(p_e - p_a)$ with each edge
  - Intersection points sorted by parameter $t_i$
  - Select
    - $t_{in}$: entry point ($\langle p_e - p_a, N_i \rangle < 0$) with largest $t_i$ and
    - $t_{out}$: exit point ($\langle p_e - p_a, N_i \rangle > 0$) with smallest $t_i$
  - If $t_{out} < t_{in}$, line lies completely outside

- **Intersection calculation:**

  \[
  \left(p - p_{edge}\right) \cdot N_i = 0
  \]

  \[
  t_i \left(p_e - p_a\right) \cdot N_i + \left(p_a - p_{edge}\right) \cdot N_i = 0
  \]

  \[
  t_i = \frac{\left(p_{edge} - p_a\right) \cdot N_i}{\left(p_e - p_a\right) \cdot N_i}
  \]
Liang-Barsky (’84)

- **Cyrus-Beck for axis-parallel rectangles**
  - Using Window-Edge-Coordinates (with respect to an edge $T$)
    \[
    WEC_T(p) = (p - p_T) \cdot N_T
    \]
  - **Example: top ($y = y_{\text{max}}$)**
    \[
    N_T = \begin{pmatrix} 0 \\ 1 \end{pmatrix},
    p_a - p_T = \begin{pmatrix} x_a - x_{\text{max}} \\ y_a - y_{\text{max}} \end{pmatrix}
    \]
    \[
    t_T = \frac{(p_a - p_T) \cdot N_T}{(p_a - p_e) \cdot N_T} = \frac{WEC_T(p_a)}{WEC_T(p_a) - WEC_T(p_e)} = \frac{y_a - y_{\text{max}}}{y_a - y_e}
    \]
- **Window-Edge-Coordinate (WEC):** Decision function for an edge
  - Directed distance to edge
    - Only sign matters, similar to Cohen-Sutherland opcode
  - Sign of the dot product determines whether the point is in or out
  - Normalization unimportant
Line clipping - Summary

- Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D
- **Cohen-Sutherland algorithm**
  - Efficient when a majority of lines can trivially accepted or rejected
    - Very large clip rectangles: almost all lines inside
    - Very small clip rectangles: almost all lines outside
  - Repeated clipping for remaining lines
  - Testing for 2D/3D point coordinates
- **Cyrus-Beck (Liang-Barsky) algorithms**
  - Efficient when many lines must be clipped
  - Testing for 1D parameter values
  - Testing intersections always for all clipping edges (in the Liang-Barsky trivial rejection testing possible)
Polygon Clipping

- Extending line clipping
  - Polygons have to remain closed
    - Filling, hatching, shading, ...
Sutherland-Hodgeman (’74)

• Idea:
  – Iterative clipping against each clipping line
  – Local operations on $p_{i-1}$ and $p_i$

inside outside
output: $p_i$

inside outside
output: $p$

inside outside
output: -

first output: $p$ and second output: $p_i$
Other clipping algorithms

• **Weiler & Atherton (’77)**
  – Arbitrary concave polygons with holes against each other

• **Vatti (’92)**
  – Also with self-overlap

• **Greiner & Hormann (TOG ’98)**
  – Simpler and faster as Vatti
  – Also supports boolean operations
  – Idea:
    • Odd winding number rule
      – Intersection with the polygon leads to a winding number ±1
    • Walk along both polygons
    • Alternate winding number
    • Mark point of entry and point of exit
    • Combine results

Non-zero WN: In
Even WN: Out
A in B

B in A

(A in B) U (B in A)
3D Clipping against View Volume

• **Requirements**
  – Avoid unnecessary rasterization
  – Avoid overflow on transformation at fixed point!

• **Clipping against viewing frustum**
  – Enhanced Cohen-Sutherland with 6-bit outcode
  – After perspective division
    • \(-1 < y < 1\)
    • \(-1 < x < 1\)
    • \(-1 < z < 0\)
  – Clip against side planes of the viewing frustum
  – Works analogous with Liang-Barsky or Sutherland-Hodgeman
3D Clipping against View Volume

- **Clipping in homogeneous coordinates**
  - Avoid division by \( w \)
  - Inside test with a linear distance function (WEC)
    - Left: \( X/W > -1 \)  \( \Rightarrow \) \( W+X = \text{WEC}_L(p) > 0 \)
    - Top: \( Y/W < 1 \)  \( \Rightarrow \) \( W - Y = \text{WEC}_T(p) > 0 \)
    - Back: \( Z/W > -1 \)  \( \Rightarrow \) \( W+Z = \text{WEC}_B(p) > 0 \)
    - ...
  - Intersection point calculation (before homogenizing)
    - Test: \( \text{WEC}_L(p_a) > 0 \) and \( \text{WEC}_L(p_e) < 0 \)
    - Calculation:

\[
\text{WEC}(p_a + t(p_e - p_a)) = 0
\]

\[
W_a + t(W_e - W_a) + X_a + t(X_e - X_a) = 0
\]

\[
t = \frac{W_a + X_a}{(W_a + X_a) - (W_e + X_e)} = \frac{\text{WEC}_L(p_a)}{\text{WEC}_L(p_a) - \text{WEC}_L(p_e)}
\]
Problems with Homog. Coord.

- **Negative w**
  - Points with $w < 0$ or lines with $w_a < 0$ and $w_e < 0$
    - Negate and continue
  - Lines with $w_a \cdot w_e < 0$ (NURBS)
    - Line moves through infinity
      - External line
    - Clipping two times
      - Original Line
      - Negated line
    - Generates up to two segments
Practical Implementations

- **Combining clipping and scissoring**
  - Clipping is expensive and should be avoided
    - Intersection calculation
    - Variable number of new points
  - Enlargement of clipping region
    - Larger than viewport, but
    - Still avoiding overflow due to fixed-point representation
  - Result
    - Less clipping
    - Applications should avoid drawing objects which are lying outside of the viewing frustum
    - Objects which are lying partially outside will be clipped implicitly during rasterization.