Computer Graphics
 - Rasterization \& Clipping -

Hendrik Lensch

Overview

- Last lecture:
- Camera Transformations
- Projection
- Today:
- Rasterization of Lines and Triangles
- Clipping
- Next lecture:
- OpenGL

Rasterization

- Definition
- Given a primitive (usually 2D lines, circles, polygons), specify which pixels on a raster display are covered by this primitive
- Extension: specify what part of a pixel is covered \rightarrow filtering \& anti-aliasing
- OpenGL lecture
- From an application programmer's point of view
- This lecture
- From a graphics package implementer's point of view
- Usages of rasterization in practice
- 2D-raster graphics
- e.g. Postscript
- 3D-raster graphics
- 3D volume modeling and rendering
- Volume operations (CSG operations, collision detection)
- Space subdivision
- Construction and traversing

Rasterization

- Assumption
- Pixels are sample points on a 2D-integer-grid
- OpenGL: integer-coordinate bottom left; X11, Foley: in the center
- Simple raster operations
- Just setting pixel values
- Antialiasing later
- Endpoints at pixel coordinates
- simple generalization with fixed point
- Limiting to lines with gradient $|m| \leq 1$

- Separate handling of horizontal and vertical lines
- Otherwise exchange of $x \& y:|1 / m| \leq 1$
- Line size is one pixel
- $|m| \leq 1: 1$ pixel per column (X-driving axis)
- $|m|>1: 1$ pixel per row (Y-driving axis)

Lines: As Functions

- Specification
- Initial and end points: $\left(x_{0}, y_{0}\right)$, ($\left.x_{e}, y_{e}\right)$
- Functional form: $y=m x+B$ with $m=d y / d x$
- Goal
- Find pixels whose distance to the line is smallest
- Brute-Force-Algorithm
- It is assumed that +X is the driving axis

```
for \(\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{0}\) to \(\mathrm{x}_{\mathrm{e}}\)
    \(y_{i}=m * x_{i}+B\)
    setpixel( \(x_{i}\), Round \(\left.\left(y_{i}\right)\right) \quad / / \operatorname{Round}\left(y_{i}\right)=F l o o r\left(y_{i}+0.5\right)\)
```

- Comments
- Variables m and y_{i} must be calculated in floating-point
- Expensive operations per pixel (e.g. in HW)

Lines: DDA

- DDA: Digital Differential Analyzer
- Origin of solvers for simple incremental differential equations (the Euler method)
- Per step in time: $x^{\prime}=x+d x / d t, y^{\prime}=y+d y / d t$
- Incremental algorithm
- Per pixel
- $\mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+1$
- $y_{i+1}=m\left(x_{i}+1\right)+B=y_{i}+m$
- setpixel(x_{i+1}, Round $\left.\left(y_{i+1}\right)\right)$
- Remark
- Utilization of line coherence trough incremental calculation
- Avoid the costly multiplication
- Accumulates error over the length of the line
- Floating point calculations may be moved to fixed point
- Must control accuracy of fixed point representation

Lines: Bresenham ('63)

- DDA analysis
- Critical point: decision by rounding up or down
- Integer-based decision through implicit functions
- Implicit version

$$
\begin{aligned}
& F(x, y)=d y x-d x y+d x B=0 \\
& F(x, y)=a x+b y+c=0 \quad \text { where } a=d y, b=-d x, c=B d x
\end{aligned}
$$

Lines: Bresenham

- Decision variable (the midpoint formulation)
- Measures the vertical distance of midpoint from line:

$$
d_{i+1}=F\left(M_{i+1}\right)=F\left(x_{i}+1, y_{i}+1 / 2\right)=a\left(x_{i}+1\right)+b\left(y_{i}+1 / 2\right)+c
$$

- Preparations for the next pixel
- if $\left(d_{i} \leq 0\right)$
- $d_{i+1}=d_{i}+a=d_{i}+d y$ // incremental calculation
- else
- $d_{i+1}=d_{i}+a+b=d_{i}+d y-d x$
- $y=y+1$
$-x=x+1$

Lines: Integer Bresenham

- Initialization
$-d_{\text {start }}=F\left(x_{0}+1, y_{0}+1 / 2\right)=a\left(x_{0}+1\right)+b\left(y_{0}+1 / 2\right)+c$ $=a x_{0}+b y_{0}+c+a+b / 2=F\left(x_{0}, y_{0}\right)+a+b / 2$ $=a+b / 2$
- Because $F\left(x_{0}, y_{0}\right)$ is zero by definition (line goes through end point)
- Pixel is always set
- Elimination of fractions
- Any positive scale factor maintains the sign of $F(x, y)$
$-\mathrm{F}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=2\left(\mathrm{ax}_{0}+\mathrm{by}_{0}+\mathrm{c}\right) \rightarrow \mathrm{d}_{\text {start }}=2 \mathrm{a}+\mathrm{b}$
- Observation:
- When the start and end points have integer coordinates then $\mathbf{b}=\mathbf{d x}$ and $\mathbf{a =}$-dy have also integer values
- Floating point computation can be eliminated
- No accumulated error

Lines: Arbitrary Directions

- 8 different cases
- Driving (active) axis: $\pm X$ or $\pm Y$
- Increment/decrement of y or x, respectively

Thick Lines

- Pixel replication
-
-

000
0000000
0000000000 00000000000 0000000 0000

- Problems with even-numbered widths,
- Varying intensity of a line as a function of slope
- The moving pen
- For some pen footprints the thickness of a line might change as a function of its slope
- Should be as „round" as possible
- Filling areas between boundaries

Reminder: Polygons

- Types
- Triangles
- Trapezoids
- Rectangles
- Convex polygons
- Concave polygons

- Arbitrary polygons
- Holes
- Non-coherent
- Two approaches
- Polygon tessellation into triangles
- edge-flags for internal edges
- Direct scan-conversion

Triangle Rasterization

```
Raster3_box(vertex v[3])
{
    int x, y;
    bbox b;
    bound3(v, &b);
    for (y= b.ymin; y < b.ymax; y++)
        for (x= b.xmin; x < b.xmax; x++)
        if (inside(v, x, y))
                fragment (x,y);
```

\}

- Brute-Force algorithm
- Possible approaches for dealing with scissoring
- Iterate over intersection of scissor box and bounding box, then test against triangle (as above)
- Iterate over triangle, then test against scissor box

Incremental Rasterization

- Approach
- Implicit edge functions to describe the triangle $F_{i}(x, y)=a x+b y+c$
- Point inside triangle, if every $F_{i}(x, y)<=0$
- Incremental evaluation of the linear function F by adding a or b

Incremental Rasterization

```
Raster3_incr(vertex v[3])
{
    edge 10, l1, 12;
    value d0, d1, d2;
    bbox b;
    bound3(v, &b);
    mkedge(v[0],v[1],&l2);
    mkedge(v[1],v[2],&l0);
    mkedge(v[2],v[0],&l1);
    d0 = 10.a * b.xmin + 10.b * b.ymin + 10.c;
    d1 = l1.a * b.xmin + l1.b * b.ymin + l1.c;
    d2 = l2.a * b.xmin + l2.b * b.ymin + l2.c;
    for( y=b.ymin; y<b.ymax, y++ ) {
        for( x=b.xmin; x<b.xmax, x++ ) {
            if( d0<=0 && d1<=0 && d2<=0 ) fragment(x,y);
        d0 += 10.a; d1 += l1.a; d2 += l2.a;
    }
    d0 += 10.a * (b.xmin - b.xmax) + 10.b; . . . }
}
```


Triangle Scan Conversion

```
Raster3_scan(vert v[3])
{
    int y;
    edge 1, r;
    value ybot, ymid, ytop;
    ybot = ceil(v[0].y);
    ymid = ceil(v[1].y);
    ytop = ceil(v[2].y);
    differencey(v[0],v[2],&1, ybot);
    differencey(v[0],v[1],&r,ybot);
    for( y=ybot; y<ymid; y++ ) {
        scanx(l,r,y);
        l.x += l.dxdy; r.x += r.dxdy;
    }
    differencey(v[1],v[2],&r,ymid);
    for( y=ymid; y<ytop; y++ ) {
        scanx(l,r,y);
        l.x += l.dxdy; r.x += r.dxdy;
    }
}
```



```
differencey(vert a, vert b,
```

differencey(vert a, vert b,
edge* e, int y) {
edge* e, int y) {
e->dxdy=(b.x-a.x)/(b.y-a.y);
e->dxdy=(b.x-a.x)/(b.y-a.y);
e->x=a.x+(y-a.y)*e->dxdy;
e->x=a.x+(y-a.y)*e->dxdy;
}
}
scanx(edge l, edge r, int y){
scanx(edge l, edge r, int y){
lx= ceil(l.x);
lx= ceil(l.x);
rx= ceil(r.x);
rx= ceil(r.x);
for (x=lx; x < rx; x++)
for (x=lx; x < rx; x++)
// ggf. Scissor-Test
// ggf. Scissor-Test
fragment(x,y);
fragment(x,y);
}

```
}
```


Gap and T-Vertices

Problem on Edges

- Singularity
- If term $d=a x+b y+c=0$
- Multiple pixels for $\mathrm{d}<=0$:
- Problem with some algorithms
- transparency, XOR, CSG, ...
- Missing pixels for $\mathrm{d}<0$:
- Partial solution: shadow test
- Pixels are not drawn on the right and bottom edges
- Pixels are drawn on the left and upper edges

Not solved by the

Inside-Outside Tests

- What is the interior of a polygon?
- Jordan Curve Theorem
- Any continuous simple closed curve in the plane, separates the plane into two disjoint regions, the inside and the outside, one of which is bounded.
- Even-odd rule (odd parity rule)

Winding

- Nonzero winding number rule

Winding

Polygon Scan-Conversion

- Special cases
- Edge along a scanline
- shadow test:
- draw the upper edge
- skip the bottom edge
- Vertex at a scanline

- If edges sharing the vertex are located on the same side of the scanline - properly handled
- If edges sharing the vertex are located on the opposite sides of the scanline - one edge (bottom) is shortened: the $\mathrm{y}_{\min } / \mathrm{y}_{\max }$ rule
- Complex situations
- In general use randomization: Offset point by ε

Scanline Algorithm

- Incremental algorithm
- Use the odd-even parity rule to detemine that a point is inside a polygon
- Utilization of coherence
- along the edges
- on scanlines
- „sweepline-algorithm"
- Edge-Table initialization :
- Bucket sort (one bucket for each scanline)
- Edges ordered by xmin
- Linked list of edge-entries
- ymax
- xmin
$-\mathrm{dx} / \mathrm{dy}$

- link to triangle data

Scanline Algorithm

- For each scan line
- Update the Active-Edge-Table
- Linked-list of entries
- Link to edge-entries,
- x, horizontal increment of depth, color, etc
- Remove edges if theirs ymax is reached
- Insert new edges (from Edge-Table)
- Sorting
- Incremental update of x
- Sorting by X-coordinate of the intersection point with scanline
- Filling the gap between pairs of entries

Clipping

- Motivation

- Happens after transformation from 3D to 2D
- Many primitives will fall (partially) outside of display window
- E.g. if standing inside a building
- Eliminates non-visible geometry early in the pipeline
- Must cut off parts outside the window
- Cannot draw outside of window (e.g. plotter)
- Outside geometry might not be representable (e.g. in fixed point)
- Must maintain information properly
- Drawing the clipped geometry should give the correct results
- Type of geometry might change
- Cutting off a vertex of a triangle produces a quadrilateral
- Might need to be split into triangle again
- Polygons must remain closed after clipping

Line clipping

- Definition Clipping:
- Cut off parts of objects, which lie outside/inside of a defined region.
- Often: Clipping against a viewport (2D) or a canonical view-volume (3D)

Brute-force method

- Brute-Force line clipping at the viewport
- If both points \underline{p}_{a} and \underline{p}_{e} are inside,
- Accept the whole line
- Otherwise, clip the line at each edge

$$
\underline{p}=\underline{p}_{a}+t_{\text {line }}\left(\underline{p}_{e}-\underline{p}_{a}\right)=\underline{e}_{a}+t_{\text {edge }}\left(\underline{e}_{e}-\underline{e}_{a}\right)
$$

- Intersection point, if $0 \leq \mathrm{t}_{\text {line }}, \mathrm{t}_{\text {edge }} \leq 1$
- Pick up suitable end points from the intersection points for the line

Cohen-Sutherland ('74)

- Advantage: divide and conquer
- Efficient trivial accept and trivial reject
- Non-trivial case: divide and test
- Outcodes of points:
- Bit encoding (outcode, OC)
- Each edge defines a half space
- Set bit, if point is outside
- Trivial cases
- Trivial accept:
- $\left(\mathrm{OC}\left(\mathrm{p}_{\mathrm{a}}\right)\right.$ OR OC $\left.\left(\mathrm{p}_{\mathrm{e}}\right)\right)=0$
- Trivial reject:

1001	1000	1010
0001	0000	0010
0101	0100	0110

Bit order: Top, Bottom, Right, L्eft
Viewport ($\mathbf{x}_{\text {min }}, \mathbf{y}_{\text {min }}, \mathbf{x}_{\text {max }}, \mathbf{y}_{\text {max }}$)

- $\left(\mathrm{OC}\left(\mathrm{p}_{\mathrm{a}}\right)\right.$ AND $\left.\mathrm{OC}\left(\mathrm{p}_{\mathrm{e}}\right)\right) \neq 0$
- Edges has to be clipped to all edges where bits are set:
- OC $\left(p_{\mathrm{a}}\right)$ XOR OC($\left.\mathrm{p}_{\mathrm{e}}\right)$

Cohen-Sutherland

- Clipping
... // trivial cases
... // trivial cases
for each vertex p
for each vertex p
oc= OC(p)
oc= OC(p)
for each edge e
for each edge e
if (oc[e]) \{
if (oc[e]) \{
$p=\operatorname{cut}(p, e)$;
$p=\operatorname{cut}(p, e)$;
$O C=O C(p)$;
$O C=O C(p)$;
\}
\}
Reject, if point outside
Reject, if point outside
- Intersection calculation for $\mathbf{x}=\mathrm{x}_{\text {min }}$

$$
\begin{aligned}
& \frac{y-y_{a}}{y_{e}-y_{a}}=\frac{x-x_{a}}{x_{e}-x_{a}} \\
& y=y_{a}+\left(x-x_{a}\right) \frac{y_{e}-y_{a}}{x_{e}-x_{a}}
\end{aligned}
$$

Cyrus-Beck ('78) Clipping against Polygons

- Parametric line-clipping algorithm
- Only convex polygons: max. 2 intersection points
- Use edge orientation
- Idea:
- Clipping line $\underline{p}_{a}+t_{i}\left(\underline{p}_{e}-\underline{p}_{a}\right)$ with each edge
- Intersection points sorted by parameter t_{i}
- Select
- t_{in} : entry point $\left(\left(\mathrm{p}_{\mathrm{e}}-\underline{p}_{\mathrm{a}}\right) \cdot \mathrm{N}_{\mathrm{i}}<0\right)$ with largest t_{i} and
- $\mathrm{t}_{\text {out }}$: exit point $\left(\left(\mathrm{p}_{\mathrm{e}}-\underline{\mathrm{p}}_{\mathrm{a}}\right) \cdot \underline{N}_{\mathrm{i}}>0\right)$ with smallest t_{i}
- If $\mathrm{t}_{\text {out }}<\mathrm{t}_{\text {in }}$, line lies completely outside

- Intersection calculation:

$$
\begin{gathered}
\left(p-p_{\text {edge }}\right) \cdot N_{i}=0 \\
t_{i}\left(p_{e}-p_{a}\right) \cdot N_{i}+\left(p_{a}-p_{\text {edge }}\right) \cdot N_{i}=0 \\
t_{i}=\frac{\left(p_{\text {edge }}-p_{a}\right) \cdot N_{i}}{\left(p_{e}-p_{a}\right) \cdot N_{i}}
\end{gathered}
$$

Liang-Barsky ('84)

- Cyrus-Beck for axis-parallel rectangles
- Using Window-Edge-Coordinates (with respect to an edge T)

$$
W E C_{T}(p)=\left(p-p_{T}\right) \cdot N_{T}
$$

- Example: top $\left(y=y_{\max }\right)$

$$
\begin{gathered}
N_{T}=\binom{0}{1}, p_{a}-p_{T}=\binom{x_{a}-x_{\max }}{y_{a}-y_{\max }} \\
t_{T}=\frac{\left(p_{a}-p_{T}\right) \cdot N_{T}}{\left(p_{a}-p_{e}\right) \cdot N_{T}}=\frac{W E C_{T}\left(p_{a}\right)}{W E C_{T}\left(p_{a}\right)-W E C_{T}\left(p_{e}\right)}=\frac{y_{a}-y_{\max }}{y_{a}-y_{e}}
\end{gathered}
$$

- Window-Edge-Coordinate (WEC): Decision function for an edge
- Directed distance to edge
- Only sign matters, similar to Cohen-Sutherland opcode
- Sign of the dot product determines whether the point is in or out
- Normalization unimportant

Line clipping - Summary

- Cohen-Sutherland, Cyrus-Beck, and Liang-Barsky algorithms readily extend to 3D
- Cohen-Sutherland algorithm
+ Efficient when a majority of lines can trivially accepted or rejected
- Very large clip rectangles: almost all lines inside
- Very small clip rectangles: almost all lines outside
- Repeated clipping for remaining lines
- Testing for 2D/3D point coordinates
- Cyrus-Beck (Liang-Barsky) algorithms
+ Efficient when many lines must be clipped
+ Testing for 1D parameter values
- Testing intersections always for all clipping edges (in the LiangBarsky trivial rejection testing possible)

Polygon Clipping

- Extending line clipping
- Polygons have to remain closed
- Filling, hatching, shading, ...

Sutherland-Hodgeman ('74)

- Idea:
- Iterative clipping against each clipping line

- Local operations on p_{i-1} and p_{i}

inside outside output: p_{i}

inside outside output : p

inside outside output:-

inside outside
first output : p and second output: p_{i}

Other clipping algorithms

- Weiler \& Atherton ('77)
- Arbitrary concave polygons with holes against each other
- Vatti ('92)
- Also with self-overlap
- Greiner \& Hormann (TOG '98)
- Simpler and faster as Vatti
- Also supports boolean operations
- Idea:
- Odd winding number rule

Non-zero WN: In
Even WN: Out

- Intersection with the polygon leads to a winding number ± 1
- Walk along both polygons
- Alternate winding number
- Mark point of entry and point of exit
- Combine results

Greiner \& Hormann

3D Clipping against View Volume

- Requirements
- Avoid unnecessary rasterization
- Avoid overflow on transformation at fixed point!
- Clipping against viewing frustum
- Enhanced Cohen-Sutherland with 6-bit outcode
- After perspective division
- $-1<y<1$
- $-1<x<1$
- $-1<z<0$
- Clip against side planes of the viewing frustum
- Works analogous with Liang-Barsky or Sutherland-Hodgeman

3D Clipping against View Volume

- Clipping in homogeneous coordinates
- Avoid division by w
- Inside test with a linear distance function (WEC)
- Left: X/W >-1
- Top: Y/W < 1
- Back: Z/W >-1
$\rightarrow \mathrm{W}+\mathrm{X}=\mathrm{WEC}_{\mathrm{L}}(\mathrm{p})>0$
$\rightarrow \mathrm{W}-\mathrm{Y}=\mathrm{WEC}_{\mathrm{T}}(\mathrm{p})>0$
$\rightarrow \mathrm{W}+\mathrm{Z}=\mathrm{WEC}_{\mathrm{B}}(\underline{p})>0$
- Intersection point calculation (before homogenizing)
- Test: $\operatorname{WEC}_{\mathrm{L}}\left(\mathrm{p}_{\mathrm{a}}\right)>0$ and $\mathrm{WEC}_{\mathrm{L}}\left(\mathrm{p}_{\mathrm{e}}\right)<0$
- Calculation:

$$
\begin{aligned}
& W E C\left(\underline{p}_{a}+t\left(\underline{p}_{e}-\underline{p}_{a}\right)\right)=0 \\
& W_{a}+t\left(W_{e}-W_{a}\right)+X_{a}+t\left(X_{e}-X_{a}\right)=0 \\
& t=\frac{W_{a}+X_{a}}{\left(W_{a}+X_{a}\right)-\left(W_{e}+X_{e}\right)}=\frac{W E C_{L}\left(\underline{p}_{a}\right)}{W E C_{L}\left(\underline{p}_{a}\right)-W E C_{L}\left(\underline{p}_{e}\right)}
\end{aligned}
$$

Problems with Homog. Coord.

- Negative w
- Points with $\mathrm{w}<0$ or lines with $\mathrm{w}_{\mathrm{a}}<0$ and $\mathrm{w}_{\mathrm{e}}<0$
- Negate and continue
- Lines with $\mathrm{w}_{\mathrm{a}} \cdot \mathrm{w}_{\mathrm{e}}<0$ (NURBS)
- Line moves through infinity
- External line
- Clipping two times
- Original Line
- Negated line
- Generates up to two segments

Practical Implementations

- Combining clipping and scissoring
- Clipping is expensive and should be avoided
- Intersection calculation
- Variable number of new points
- Enlargement of clipping region
- Larger than viewport, but
- Still avoiding overflow due to fixed-point representation
- Result
- Less clipping
- Applications should avoid drawing objects which are lying outside of the viewing frustum
- Objects which are lying partially outside will be clipped implicitly during rasterization.

Clipping region

