
Computer Graphics WS07/08 – Rendering with Rasterization

Computer Graphics

- OpenGL-

Hendrik Lensch



Computer Graphics WS07/08 – Rendering with Rasterization

Overview
• Last lecture:

– Rasterization
– Clipping

• Today:
– OpenGL



Computer Graphics WS07/08 – Rendering with Rasterization

Ray Tracing vs. Rasterization
• Ray tracing

– For every pixel
• Locate first object visible in a certain direction

– Requires spatial index structure to be fast

• Rasterization
– For every object

• Locate all covered pixels
– Uses 2D image coherence but not necessarily an index structure



Computer Graphics WS07/08 – Rendering with Rasterization

History
• Graphics in the ‘80ies

– Designated memory in RAM
– Set individual pixels directly via memory access

• peek & poke, getpixel & putpixel, …
– Everything done on CPU, except for driving the display
– Dump „frame buffer“

• Today
– Separate graphics card connected via high-speed link (e.g. PCIe)

• Autonomous, high performance GPU (much more powerful than CPU
• Up to 128 SIMD processors, >>80 GB/s memory access
• Up to 1GB of local RAM plus virtual memory

– Performs all low-level tasks & a lot of high-level tasks
• Clipping, rasterization, hidden surface removal, …
• Procedural shading, texturing, animation, simulation, …
• Video rendering, de- and encoding, deinterlacing, ...
• Full programmability at several pipeline stages



Computer Graphics WS07/08 – Rendering with Rasterization

Introduction to OpenGL
• Brief history of graphics APIs

– Initially every company had its own 3D-graphics API
– Many early standardization efforts

• CORE, GKS/GKS-3D, PHIGS/PHIGS-PLUS, ...
– 1984: SGI´s proprietary Graphics Library (GL / IrisGL)

• 3D rendering, menus, input, events, text rendering, ...
• „Naturally grown“

– OpenGL (1992, Mark Segal & Kurt Akeley):
• Explicit design of a general vendor independent standard

– Close to hardware but hardware-independent
– Efficient
– Orthogonal
– Extensible

• Common interface from mobile phone to supercomputer
• Only real alternative today to Microsoft’s Direct3D



Computer Graphics WS07/08 – Rendering with Rasterization

Introduction to OpenGL
• What is OpenGL?

– Software interface for graphics hardware (API)
• AKA an “instruction set” for the GPU

– Controlled by the Architecture Review Board (ARB, now Khronos WG)
• SGI, Microsoft, IBM, Intel, Apple, Sun, and many more

– Only covers 2D/3D rendering
• Other APIs: MS Direct3D (older: IrisGL, PHIGS, Starbase, …)
• Related GUI APIs X Window, MS Windows GDI, Apple, ...

– Focused on immediate-mode operation
• Thin hardware abstraction layer – almost direct access to HW
• Triangles as base primitives – directly submitted by application
• More efficient batch processing with vertex arrays (and display lists)

– Network-transparent protocol
• GLX-Protocol – X Window extension (only in X11 environment!)
• Direct (hardware access) versus indirect (protocol) rendering



Computer Graphics WS07/08 – Rendering with Rasterization

Introduction to OpenGL
• What is OpenGL (cont´d)?

– Low-level API
• Difficult to program OpenGL efficiently

– Assembly language for graphics
• Few good high level scene graph APIs

– OpenSG, OpenScenegraph, Performer, Java3D, 
Optimizer/Cosmo3D, OpenInventor, Direct3D-RM, NVSG, ... 

– Extensions
• Explicit request for extensions (at compile and run time)
• Allows HW vendors to add new features independent of ARP

– No central control (by MS)
– Could accelerate innovation

– „No“ subsets (only one, plus many, many extensions :-)
• Capabilities are well defined (but may not all be HW accelerated)
• Exception: Imaging subset (and extensions)
• But now OpenGL ES (for embedded devices)



Computer Graphics WS07/08 – Rendering with Rasterization

Related APIs
• AGL, GLX, WGL

– glue between OpenGL and windowing systems
• GLU (OpenGL Utility Library)

– part of OpenGL
– NURBS, tessellators, quadric shapes, etc.

• GLUT (OpenGL Utility Toolkit)
– portable windowing API
– not officially part of OpenGL



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL and related APIs



Computer Graphics WS07/08 – Rendering with Rasterization

Overview



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Rendering
• Geometric primitives

– Points, lines and polygons
• Image primitives

– Images and bitmaps
• Separate pipeline for 

images and geometry
– Linked through 

texture mapping
• Rendering depends 

on state
– Colors, materials, 

light sources, etc.
• Immediate Mode Rendering



Computer Graphics WS07/08 – Rendering with Rasterization

Immediate Mode Rendering

• Immediate Mode
– Application maintains scene data
– Execute drawing commands whenever window is repainted

• Retained Mode
– Graphics system maintains scene data and handles redraw
– OpenGL provides some retained mode functionality:

• Display Lists: encapsulate and optimize immediate mode stream
• Vertex Arrays: pass large array of geometry data in one function call
• Vertex Buffer Objects: like vertex arrays with less overhead



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL-Concepts
• Rendering context
• Buffer
• Vertex operations
• Raster operations
• Rasterization
• Fragment operations

• Terminology: pixel, texel, and fragments
– Pixels are elements of the frame buffers (picture element)
– Texels are elements of textures (images applied to geometry)
– Fragments are 

• the output of rasterization and 
• the input to frame buffer operations (finally generating pixels)



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Rendering Context
• Context

– Analogy: drawing tool
– Maintains the OpenGL state that is applied to all later geometry
– Must be compatible with underlying Window/Drawable
– Always one current context (per thread)

• Direct/indirect context
– Direct: Rendering directly to hardware (no GLX protocol)

• Fallback to indirect rendering if no direct access is possible
– Indirect: Rendering via network protocol GLX 

• limited to host’s capabilities

• Sharing between contexts
– Joint storage and usage von textures and display lists

• Access to rendering context
– glXCreateContext()/glXDestroyContext
– glXMakeCurrent()



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL and Buffers



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL and Buffers
• OpenGL buffers

– Provide memory for storing data for every pixel
• Color, depth (Z), stencil, accumulation, (window-id), and others

– Format must be fixed before windows are opened
• Window-System specific: glXGetConfig

• Color buffers
– RGBA (RGB+Alpha) or index into a color table (hardly used)

• Alpha stores transparency/coverage information
• Today often 8/8/8(/8) bits
• Latest chips also support 16 bit fix and 16/24/32 bit float components

– Double buffering option (back- und front buffer)
• Animations: draw into back, display front
• Swap buffers during vertical retrace (glXSwapBuffers)

– No flashing or tearing artifacts during display
– Stereo option 

• Left and right buffers (also with DB), e.g. for two projectors
• Requires support from GUI



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL and Buffers
• Depth/Z buffer

– Stores depth/Z coordinate of visible geometry per pixel
– Used for occlusion test (Z-test)

• Stencil buffer
– Small integer variable per pixel 
– Used for masking fragment operations
– Write operations based on fragment tests

• Set/increment/decrement variable 
• Accumulation buffer

– RGBA buffer with many bits per pixel (now obsolete with floats)
– Supports special operations on entire images

• glAccum(): weighted addition, multiplication
• Other buffers

– Aux-buffers, window-ID buffers, off-screen buffers, P-buffers, DM-
buffers, T-buffers, ...



Computer Graphics WS07/08 – Rendering with Rasterization

Overview



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Geometrie
• Primitive:



Computer Graphics WS07/08 – Rendering with Rasterization

Vertex Operations
• Sequence of Vertex Operations

– Input to vertex operations are vertices
• Position, normal, colors, texture coordinates, …

– Transformation of geometry with the model-view matrix (3D 3D)
– Shading: Lighting computation can generate per vertex colors
– Perspective projection: perspective transformation to 2-1/2D
– Optional: generation of texture coordinates
– Primitive assembly: generating primitives from vertices
– Clipping: Cutting off off-screen parts of geometry
– Back face culling: dropping geometry facing the wrong way
– Output of vertex operations are primitives with vertex data

• Position (2D plus Z), color, texture coordinates
• Fed to rasterization unit



Computer Graphics WS07/08 – Rendering with Rasterization

Shading
• Lighting computation

– Definition of light sources
• Position, direction, distance falloff, directional cutoff & exponent
• Ambient, diffuse, specular, and emission color

– Extended Phong model
– Computes color for all vertices

• Without lighting: directly specified by glColor()
• With lighting: Determined by lighting computation from parameters

– Light source, vertex colors, material/Phong, light model
• Light source parameter

– glLightfv(GL_LIGHT0, GL_DIFFUSE, color4); // RGBA
– glLightfv(GL_LIGHT0, GL_POSITION, pos4); // homogen
– glEnable(GL_LIGHT0);
– glEnable(GL_LIGHTING);
– Light source parameter are part of the OpenGL state



Computer Graphics WS07/08 – Rendering with Rasterization

Shading
• Material parameter

– glColor() sets both ambient and diffuse color by default
– glMaterial{if}[v](GL_FRONT, GL_DIFFUSE, color4); …
– glShadeModel(model); 

• GL_FLAT: constant color (defined by last vertex)
• GL_SMOOTH: linear interpolation of color across primitive

– Material and light parameter are only used by lighting
• Changing material parameters

– Calling glMaterial() between two vertices (can be expensive)
– Optimization: Bind glColor() to specific material parameter

• glColorMaterial(GL_FRONT_AND_BACK, GL_SPECULAR);
– Ambient, diffuse, specular, ambient & diffuse, and emission

• Default: Ambient and diffuse
• Must be enabled by glEnable(GL_COLOR_MATERIAL);



Computer Graphics WS07/08 – Rendering with Rasterization

Overview



Computer Graphics WS07/08 – Rendering with Rasterization

Pixel Operations



Computer Graphics WS07/08 – Rendering with Rasterization

Pixel Operations
• Pixel storage operations

– Conversion from/to external formats in main memory
• Reformatting, Mapping gray tones ↔ RGBA

– glDrawPixels(), glReadPixels(), ...
• Pixel transfer operations

– Scaling, offset, table lookup, clamping, etc.
– Optional Imaging Subset

• Additional lookup tables, convolution, color matrix, histogram, minmax
– Applied during pixel transfer to rasterizer, texture memory, or main 

memory
• Copying pixels

– Operations apply only during write stage
– glCopyPixels(), glCopyTexImage(), ...



Computer Graphics WS07/08 – Rendering with Rasterization

Pixel Operations



Computer Graphics WS07/08 – Rendering with Rasterization

Pixel Operations
• Performance remarks

– All standard OpenGL operations also apply to pixel data
• E.g. rasterization & fragment operations

– Drawing pixels can be very costly
– Any unnecessary operations should be disabled
– Natives formats should be used wherever possible



Computer Graphics WS07/08 – Rendering with Rasterization

Overview



Computer Graphics WS07/08 – Rendering with Rasterization

Rasterization
• Rasterization:

– Generating fragments from geometric primitives
• For every covered pixel
• Determining fragment data

– location, colors, texture coordinates, depth, …
• Pixel data is also rasterized similarly

– Applications of textures happens in a separate step
• In modern card considered part of the fragment operations

• Strict ordering
– Primitives are rasterized as they proceed through the pipeline

• “Immediate mode rendering“
– Pipeline may actually consist of multiple parallel pipelines
– Primitives must be rasterized in order as send by application

• Requires synchronization between pipelines
• Complicates scalability questions



Computer Graphics WS07/08 – Rendering with Rasterization

Overview



Computer Graphics WS07/08 – Rendering with Rasterization

Fragment Processing
• Consists of three sub-steps

– Fragment operations
• Perform operations on fragments including texturing

– Fragment test
• Cull fragments conditionally

– Blend operations
• Merge fragments with content of the frame buffer



Computer Graphics WS07/08 – Rendering with Rasterization

Fragment Operations
• Much innovation in this part of the pipeline

– Simple texture mapping
• Lookup of texel values

– Requires memory access: Can potentially stall the pipeline
– Requires careful design of graphics architecture

– Fully programmable shading
• Can use GPU for general purpose computation (“GPGPU”)
• Predefined input an output registers
• Exposes general assembly language for fragment operations
• Various higher level shading languages (e.g. Cg, HLSL, GLSL)



Computer Graphics WS07/08 – Rendering with Rasterization

Fragment Tests
• Scissor test

– Culls fragments not in a 2D box on screen
• Alpha test

– Compares fragment alpha with a constant
– Culls fragments conditionally

• Stencil test
– Compares value of stencil buffer with reference constant
– Culls fragments conditionally
– Can apply different operation to stencil value based mode

• Stencil-fail/S-pass & Z-fail / S-pass & Z-pass
• Operations: Set, increment, decrements, …

• Depth test (visibility/occlusion test)
– Compares Z value with value from Z-buffer
– Culls fragments conditionally, otherwise updates Z-buffer



Computer Graphics WS07/08 – Rendering with Rasterization

Fragment Tests
• Fragment tests

– Require per pixel read operations (high bandwidth)
– May require per pixel write operations (stencil and Z-test)

• Read-Modify-Write operations
• Again synchronization issues with multiple pipelines

– Tests occur late in the pipeline
• Might have spend significant processing on the data already
• Should perform tests earlier without violating OpenGL semantics

• Occlusion culling
– At application level

• Replicated visibility computation in the application (mostly coarse)
• Avoids bandwidth to graphics engine completely, but uses CPU

– Early Z test after rasterization
• Can cull is fragments if known to be occludes (some addition cost)
• Used bandwidth in upper pipeline already



Computer Graphics WS07/08 – Rendering with Rasterization

Blend Operations
• Merge fragments with frame buffer content
• Order of operations

– Blending operations (aka. compositing)
• Weighted combination of fragment and pixel values

– Dithering operation
• Approximation of color by spatial averaging
• Different rounding based pixel location 

– „Half-Toning“
– Logical operations

• 16 combinations of fragment and pixel values
– NOT, AND, OR, XOR



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Guaranties
• Non Guaranties

– No exact rule for implementation of graphics operations
• Number of bits, coverage by a primitive, etc.

– Different implementations can differ on a per-pixel basis
• Invariants

– Invariants within an implementation
• Same output when given the same input 
• Fragment values are independent of 

– Content of frame buffer
– Active color buffer, ...

• Independence of parameter values (e.g. for stencil / blending)
– No invariance when switching options on and off

• E.g. stencil, texturing, lighting, ...
• On-screen versus off-screen buffers



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL as an Instruction Set
• Equivalence

– Frame buffer Accumulator
– Textures Memory
– Vertex/Fragment-Ops ALUs (pipelined)
– OpenGL-State VLIW-Instruction
– Geometry Arguments

• Example: Adding two vectors/arrays (as images)
– Render image A into frame buffer
– Copy frame buffer → texture (glCopyTexImage)
– Render image B into frame buffer
– Render rectangle with texture into frame buffer

• Use fragment operations (blending) to add fragments to pixels
– Multi-pass computation

• Mostly replaced by expressive shader support



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Programming



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Preliminaries
Header Files
• #include <GL/gl.h>
• #include <GL/glu.h>
• #include <GL/glut.h>

– Automatically includes gl.h, glu.h
Libraries
• -lopengl32 -lglu32 -lglut32
Enumerated Types
• OpenGL defines numerous types for compatibility
• GLfloat, GLint, GLenum, etc.



Computer Graphics WS07/08 – Rendering with Rasterization

GLUT Basics
Application Structure
• Configure and open window
• Initialize OpenGL state
• Register input callback functions

– render
– resize
– input: keyboard, mouse, etc.

• Enter event processing loop



Computer Graphics WS07/08 – Rendering with Rasterization

Main Template
int main(int argc, char** argv) {

int mode = GLUT_RGB | GLUT_SINGLE;
glutInit(&argc, argv);
glutInitDisplayMode(mode);
glutInitWindowSize(200, 200);
glutInitWindowPosition(200, 200);
glutCreateWindow("OpenGL Demo");

// …
glutMainLoop();
return 0;

}

1



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL – State Machine
All rendering attributes are encapsulated 

in the OpenGL State
• rendering styles
• shading
• lighting
• texture mapping



Computer Graphics WS07/08 – Rendering with Rasterization

Manipulating OpenGL State
Appearance is controlled by current state

for each ( primitive to render ) {
update OpenGL state
render primitive

}
Manipulating vertex attributes is most common way to 

manipulate state
glColor*() , glNormal*() , glTexCoord*(), …



Computer Graphics WS07/08 – Rendering with Rasterization

Controlling the Current State
Setting State

glPointSize( size );
glLineStipple( repeat, pattern );
glShadeModel( GL_ SMOOTH );

Enabling Features
glEnable( GL_ LIGHTING );
glDisable( GL_TEXTURE_2D );



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Color Models
• RGBA or Color Index

– glColor*() or glIndex*()
– glutInitDisplayMode(GLUT_RGBA or GLUT_INDEX)



Computer Graphics WS07/08 – Rendering with Rasterization

Initialization
Set up global state 

init();
– valid for entire execution time

void init(void) {
glClearColor(1.0, 1.0, 1.0, 1.0);
glMatrixMode(GL_PROJECTION);      // two matrix stacks
glLoadIdentity();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
…

}



Computer Graphics WS07/08 – Rendering with Rasterization

Geometric Primitives
• All geometric primitives are specified by vertices
• Strips and fans save on the number of vertices



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Command Formats



Computer Graphics WS07/08 – Rendering with Rasterization

Specifying Geometric Primitives
• Primitives are specified using

glBegin( primType );
glEnd();
– primType determines how vertices are combined



Computer Graphics WS07/08 – Rendering with Rasterization

OpenGL Primitive Types
• GL_POINTS 
• GL_LINE_STRIP
• GL_LINES 
• GL_LINE_LOOP
• GL_POLYGON 
• GL_TRIANGLE_STRIP
• GL_TRIANGLES 
• GL_TRIANGLE_FAN
• GL_QUADS 
• GL_QUAD_STRIP



Computer Graphics WS07/08 – Rendering with Rasterization

GLUT Callback Functions
Routine to call when something happens
• rendering
• user input
• animation
• window resize or redraw
“Register” callbacks with GLUT

glutDisplayFunc( display );
glutKeyboardFunc( keyboard );
glutIdleFunc( idle );
glutReshapeFunc( resize );



Computer Graphics WS07/08 – Rendering with Rasterization

Rendering Callback
Do all of your drawing here

glutDisplayFunc(display);

void display(void) {
glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_TRIANGLES);
glColor3f(1, 0, 1); glVertex3f(-0.5, -0.5, 0.0);
glColor3f(0, 0, 1); glVertex3f(-0.5, 0.5, 0.0);
glColor3f(1, 0, 0); glVertex3f(0.5, 0, 0.0);

glEnd();

glFlush();
}

3



Computer Graphics WS07/08 – Rendering with Rasterization

User Input Callback
React to key strokes

glutKeyboardFunc( keyboard );

void keyboard(unsigned char key, int x, int y) {
switch (key) {

case 27:
exit(0); break;

case '[':
col = col < 0. ? 0. : col-0.1; glutPostRedisplay(); break;

case ']':
col = col > 1. ? 1. : col+0.1; glutPostRedisplay(); break;

}
}
Global variable GLfloat col=0.;
In display() glColor3f(1, col, 0); glVertex3f(0.5, 0, 0.0);

4



Computer Graphics WS07/08 – Rendering with Rasterization

Idle Callbacks
Use for animation and continuous update

glutIdleFunc( idle );

void idle( void ) {
t +=dt;
glutPostRedisplay();

}

Global variables
GLfloat t = 0;
GLfloat dt= 0.001;

In display()
glColor3f( 0.5+0.5*cos(t), 0,1);

5



Computer Graphics WS07/08 – Rendering with Rasterization

Callback Functions
• glutDisplayFunc()

– called when pixels in the window need to be refreshed
• glutReshapeFunc()

– called when the window changes size
• glutKeyboardFunc()

– called when a key is struck on the keyboard
• glutMouseFunc()

– called when the user presses a mouse button on the mouse
• glutMotionFunc()

– called when the user moves the mouse while a mouse button is pressed
• glutPassiveMouseFunc()

– called when the mouse is moved regardless of mouse button state
• glutIdleFunc()

– called when nothing else is going on; very useful for animations



Computer Graphics WS07/08 – Rendering with Rasterization

Online Resources
http://www.khronos.org

– Offical home
http://www.opengl.org

– start here; up to date specification and lots of sample code
http://www.mesa3d.org/

– Brian Paul’s Mesa 3D (OpenGL in Software)
http://www.cs.utah.edu/~narobins/opengl.html

– GLUT & interactive tutorials
http://developer.nvidia.com

– Lots of examples, tutorials, tips& tricks
http://www.ati.com/developer/

– Lots of examples, tutorials, tips& tricks
http://www.sgi.com/software/opengl

– For historic purposes :-)    .... but no longer active now



Computer Graphics WS07/08 – Rendering with Rasterization

Books
• OpenGL Programming Guide, 3rd Edition
• OpenGL Reference Manual, 3rd Edition
• OpenGL Programming for the X Window System

– includes many GLUT examples
• Interactive Computer Graphics: A top-down approach 

with OpenGL, 2nd Edition


