Computer Graphics

– Cuda Programming –

Hendrik Lensch

Computer Graphics WS07/08 - HW-Shading

Overview

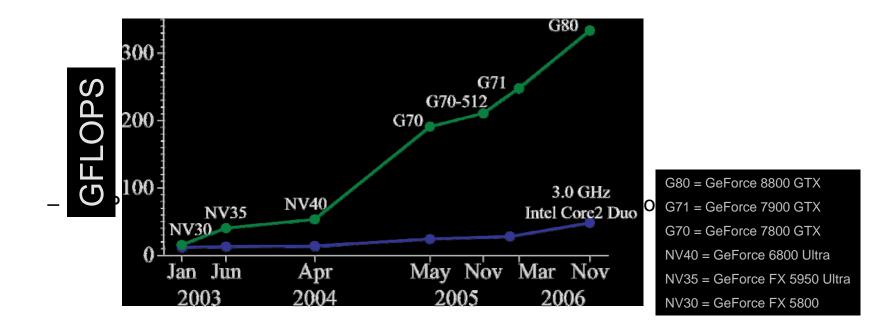
- So far:
 - OpenGL
 - Programmable Shader
- Today:
 - GPGPU via Cuda (general purpose computing on the GPU)
- Next:
 - Some Parallel Programming

Resources

- Where to find Cuda and the documentation?
 - <u>http://www.nvidia.com/object/cuda_home.html</u>
- Lecture on parallel programming on the GPU by David Kirk (most of the following slides are copied from this course)
 - http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html
- On the Parallel Prefix Sum (Scan) algorithm
 - <u>http://developer.download.nvidia.com/compute/cuda/sdk/website/pr</u> ojects/scan/doc/scan.pdf

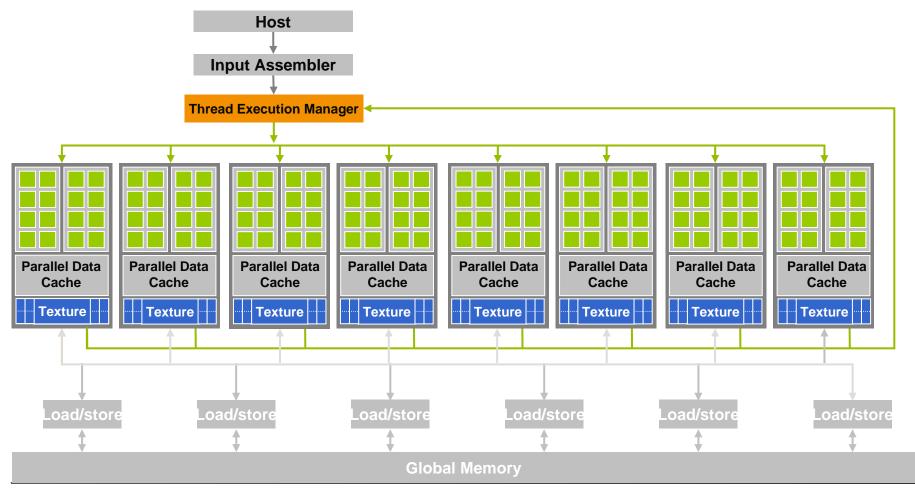
Why Massively Parallel Processor

- A quiet revolution and potential build-up
 - Calculation: 367 GFLOPS vs. 32 GFLOPS
 - Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
 - Until last year, programmed through graphics API



GeForce 8800

16 highly threaded SM's, >128 FPU's, 367 GFLOPS, 768 MB DRAM, 86.4 GB/S Mem BW, 4GB/S BW to CPU



Computer Graphics WS07/08 - HW-Shading

Future Apps Reflect a Concurrent World

- Exciting applications in future mass computing market have been traditionally considered "supercomputing applications"
 - Molecular dynamics simulation, Video and audio coding and manipulation, 3D imaging and visualization, Consumer game physics, and virtual reality products
 - These "Super-apps" represent and model physical, concurrent world

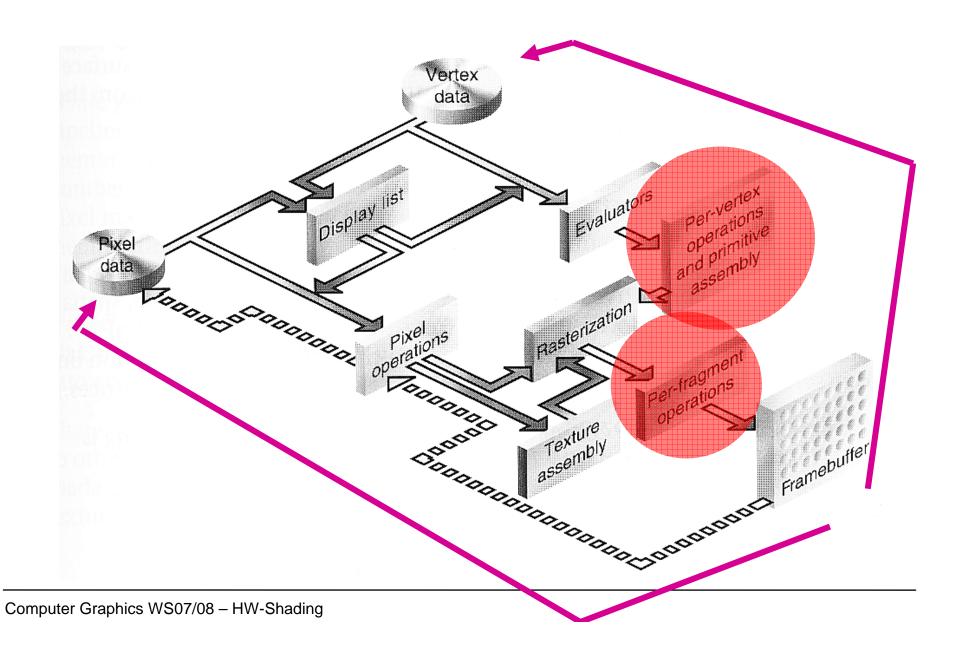
• Various granularities of parallelism exist, but...

- programming model must not hinder parallel implementation
- data delivery needs careful management

What is GPGPU ?

- General Purpose computation using GPU in applications other than 3D graphics
 - GPU accelerates critical path of application
- Data parallel algorithms leverage GPU attributes
 - Large data arrays, streaming throughput
 - Fine-grain SIMD parallelism
 - Low-latency floating point (FP) computation
- Applications see //GPGPU.org
 - Game effects (FX) physics, image processing
 - Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

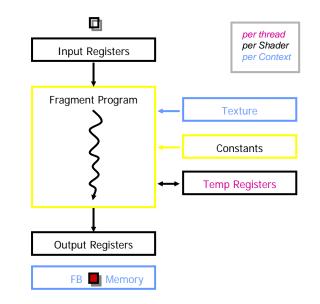
Multi-Pass Rendering



Previous GPGPU Constraints

• Dealing with graphics API

- Working with the corner cases of the graphics API
- Addressing modes
 - Limited texture size/dimension
- Shader capabilities
 - Limited outputs
- Instruction sets
 - Lack of Integer & bit ops
- Communication limited
 - Between pixels
 - no Scatter a[i] = p



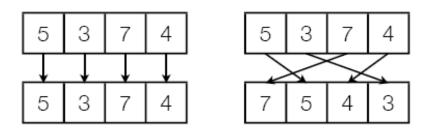
Traditional GPGPU

Standard Algorithm

- Set up OpenGL state
- Draw a fullscreen quad
- Shader program with textures as input to perform computation
- Write result to framebuffer as a color

Limitations

- Requires non-graphics people to know a lot about graphics APIs
- Computation power wasted on unnecessary graphics setup
- Graphics API restricts input/output formats, integer/bit operations, branching/looping, etc.
- Each fragment program must write to a single, predefined location: no way to scatter data



[from Jerry Talton]

CUDA

- "Compute Unified Device Architecture"
- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor

• Targeted software stack

- Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management
- Not another graphics API

Cuda

- Compute Unified Device Architecture
 - Unified hardware and software specification for parallel computation
 - Simple extensions to C language to allow code to run on the GPU
 - Developed by and for NVIDIA (introduced with the GeForce 8800 series)
 - Much easier to use than ATI's Close To Metal hardware interface
- Benefits and Features
 - Application controlled SIMD program structure
 - Fully general load/store to GPU memory
 - Totally untyped (not limited to texture storage)
 - No limits on branching, looping, etc.
 - Full integer and bit instructions
 - Supports pointers
 - Explicitly managed memory down to cache level
 - No graphics code (although interoperability with OpenGL/D3D is supported)

What is the GPU Good at?

• The GPU is good at

data-parallel processing

• The same computation executed on many data elements in parallel – low control flow overhead

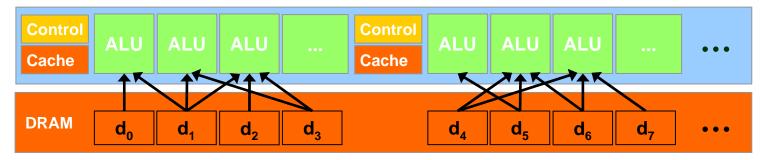
with high SP floating point arithmetic intensity

- Many calculations per memory access
- Currently also need high floating point to integer ratio
- High floating-point arithmetic intensity and many data elements mean that memory access latency can be hidden with calculations instead of big data caches – Still need to avoid bandwidth saturation!

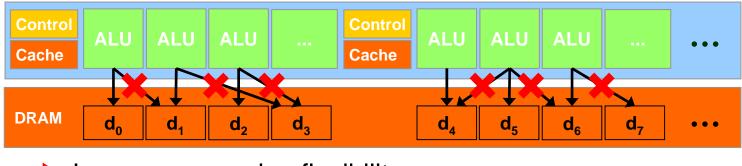
Drawbacks of (legacy) GPGPU Model: Hardware Limitations

• Memory accesses are done as pixels

Only gather: can read data from other pixels



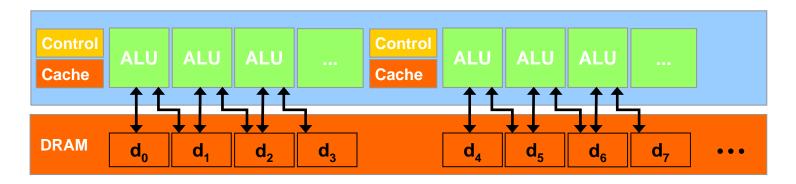
– No scatter: (Can only write to one pixel)



Less programming flexibility

Drawbacks of (legacy) GPGPU Model: Hardware Limitations

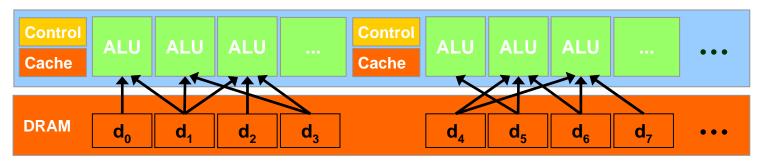
 Applications can easily be limited by DRAM memory bandwidth



Waste of computation power due to data starvation

CUDA Highlights: Scatter

- CUDA provides generic DRAM memory addressing
 - Gather:



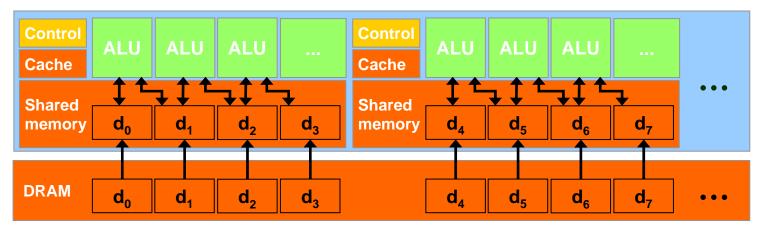
And scatter: no longer limited to write one pixel



More programming flexibility

CUDA Highlights: On-Chip Shared Memory

• CUDA enables access to a parallel on-chip shared memory for efficient inter-thread data sharing



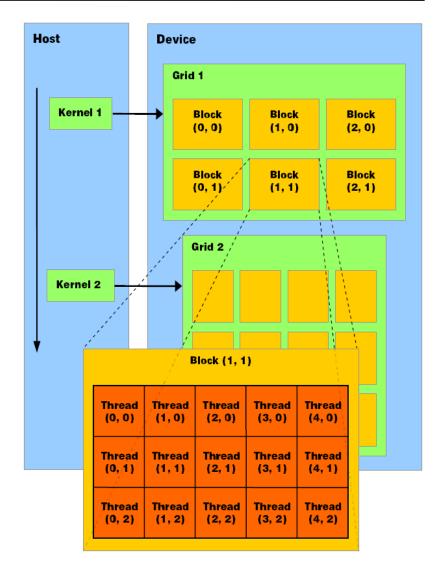
Big memory bandwidth savings

Programming Model

Programming Model

- The programmer writes a kernel (in C) for each task he or she wishes to perform
- The application splits the data to be processed into grids of thread blocks
- When a kernel is launched, each block is allocated to a single TP
- Threads of a given block are time sliced onto SPs contained within that block's TP

Many problems have natural grid structure, but decomposing data into threads can be difficult in general

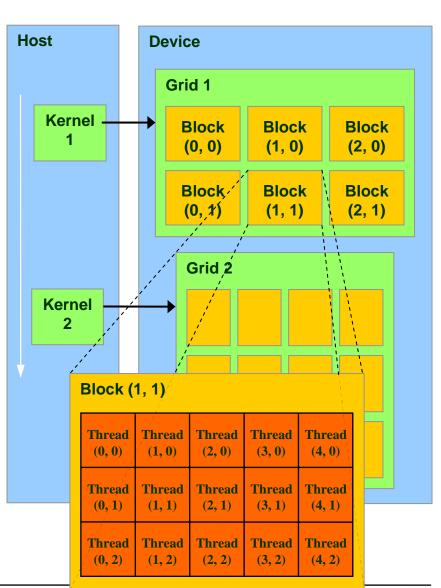


Thread Batching: Grids and

Blocks

- A kernel is executed as a grid of thread blocks
 - All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory

Two threads from two different blocks cannot cooperate

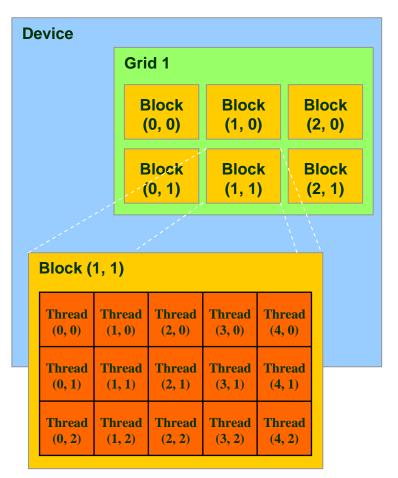


Block and Thread IDs

Threads and blocks have IDs

- So each thread can decide what data to work on
- Block ID: 1D or 2D
- Thread ID: 1D, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes

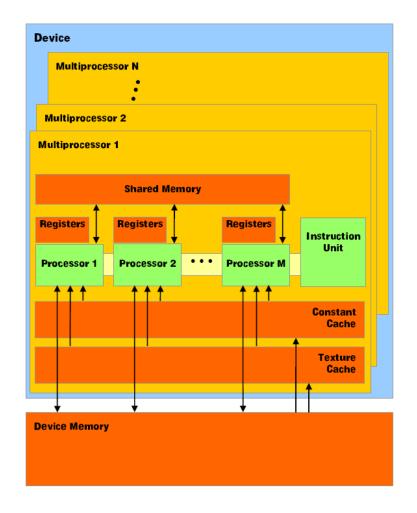
- ...



Courtesy: NDVIA

Programming Model: Memory Spaces

- Global Memory
 - Read-write per-grid
 - Hundreds of MBs
 - Very slow (600 clocks)
- Texture Memory
 - Read-only per-grid
 - Hundreds of MBs
 - Slow first access, but cached
 - Built-in filtering, clamping
- Constant Memory
- Shared! Memory
 - Read-write per-block
 - 16 KB per block
 - Very fast (4 clocks)
- Registers
 - Unique per thread

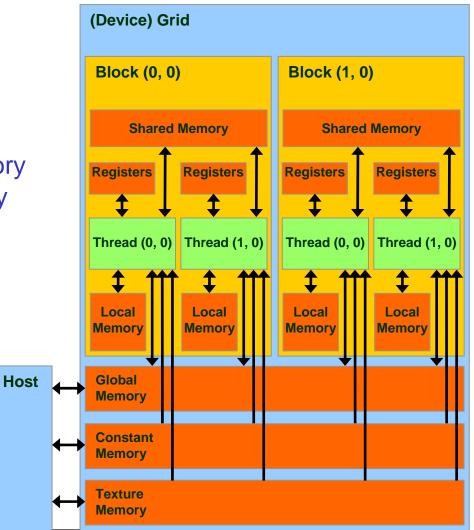


CUDA Device Memory Space

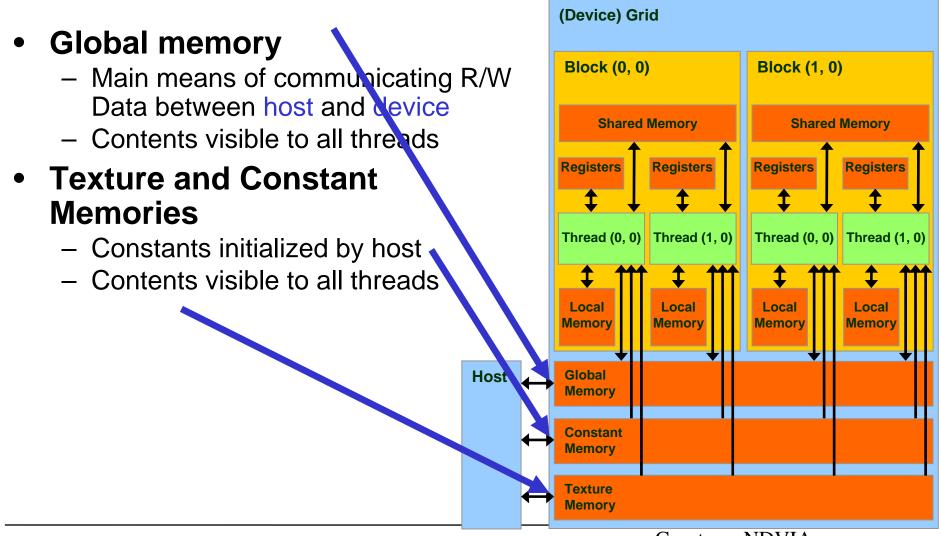
• Each thread can:

- R/W per-thread registers
- R/W per-thread local memory
- R/W per-block shared memory
- R/W per-grid global memory
- Read only per-grid constant memory
- Read only per-grid texture memory

• The host can R/W global, constant, and texture memories



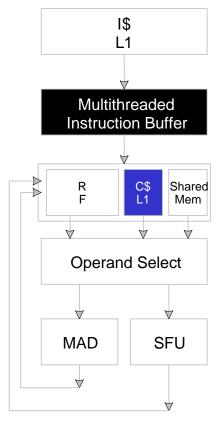
Global, Constant, and Texture Memories (Long Latency Accesses)



Courtesy: NDVIA

Constants

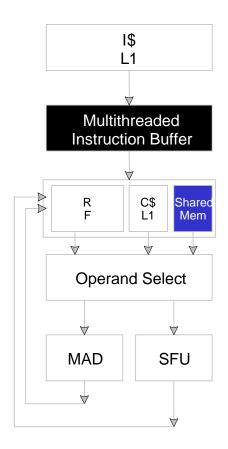
- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads



Shared Memory

- Each SM has 16 KB of Shared Memory
 - 16 banks of 32bit words
- CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 - read and write access
- Not used explicitly for pixel shader programs

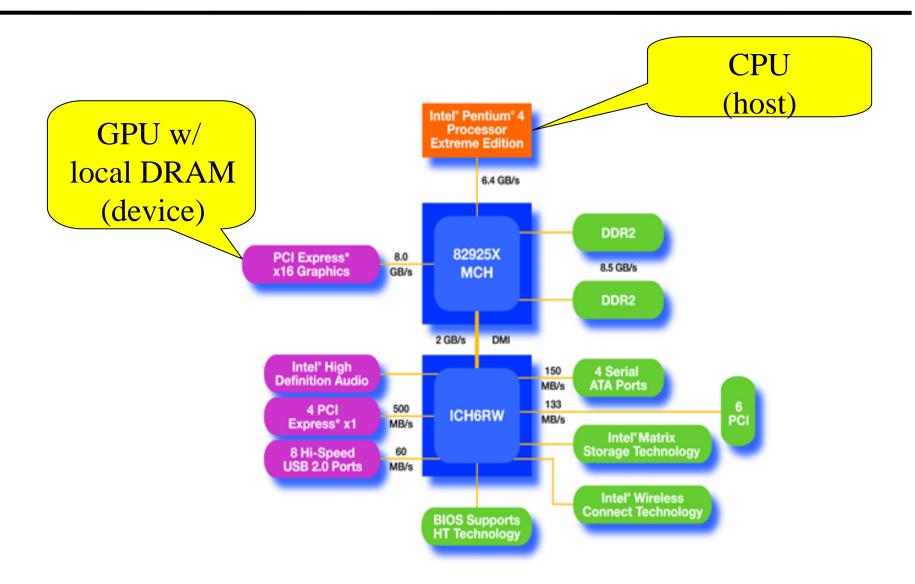
Computer Graphics WS07/08-HW-Shading



Access Times

- Register dedicated HW single cycle
- Shared Memory dedicated HW single cycle
- Local Memory DRAM, no cache *slow*
- Global Memory DRAM, no cache *slow*
- Constant Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Texture Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Instruction Memory (invisible) DRAM, cached

An Example of Physical Reality Behind CUDA



CUDA Programming Model: A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:

- Is a coprocessor to the CPU or host
- Has its own DRAM (device memory)
- Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads

• Differences between GPU and CPU threads

- GPU threads are extremely lightweight
 - Very little creation overhead
- GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

Execution Model

- Warps
 - Each block is split into SIMD groups of threads called warps
 - Warps are swapped in and out via thread scheduling
 - Threads within a warp execute in lock step
 - Threads are assigned to warps consecutively by their thread ID
 - Issue order of warps and blocks is undefined, but there are synchronization primitives

• Performance

- Branches are predicated
- Divergence within a warp should be avoided if possible
- Memory coherence extremely important
- Always try to read/write in a coalesced manner

Application Programming Interface

- The API is an extension to the C programming language
- It consists of:
 - Language extensions
 - To target portions of the code for execution on the device
 - Two stage compilation (e.g. nvcc + gcc)
 - A runtime library split into:
 - A common component providing built-in vector types and a subset of the C runtime library in both host and device codes
 - A host component to control and access one or more devices from the host
 - A device component providing device-specific functions

• Function Quantifiers

- ____device___ callable on the GPU from the GPU
- global callable on the GPU from the CPU
- _host__ callable on the CPU from the CPU
- Variable Quantifiers
 - __device__ global memory on the GPU
 - ____constant___ constant memory on the GPU
 - __shared__ shared per-block memory on the GPU
- Built-in Variables
 - gridDim, blockDim gives dimensions of grids and blocks in kernel
 - blockIdx, threadIdx gives index of block and thread in kernel

• Built-in Vector Types

- float2, float3, float4, etc.

Extended C

- Declspecs
 - global, device, shared, local, constant
- Keywords
 threadIdx, blockIdx
- Intrinsics
 - ____syncthreads
- Runtime API
 - Memory, symbol, execution management
- Function launch

```
__device__ float filter[N];
 global____void convolve (float *image) {
  __shared__ float region[M];
  . . .
  region[threadIdx] = image[i];
  syncthreads()
  . . .
  image[j] = result;
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);
```

CUDA Function Declarations

	Executed on the:	Only callable from the:
<u>device</u> float DeviceFunc()	device	device
global void KernelFunc()	device	host
<u>host</u> float HostFunc()	host	host

- - Must return void
- __device__ and __host__ can be used together

CUDA Function Declarations (cont.)

- __device__ functions cannot have their address taken
- For functions executed on the device:
 - No recursion
 - No static variable declarations inside the function
 - No variable number of arguments

Calling a Kernel Function – Thread Creation

• A kernel function must be called with an execution configuration:

\underline{global} vold kernelfunc();	global	void	KernelFunc();	
---	--------	------	-------------	----	--

- dim3 DimGrid(100, 50); // 5000 thread blocks
- dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

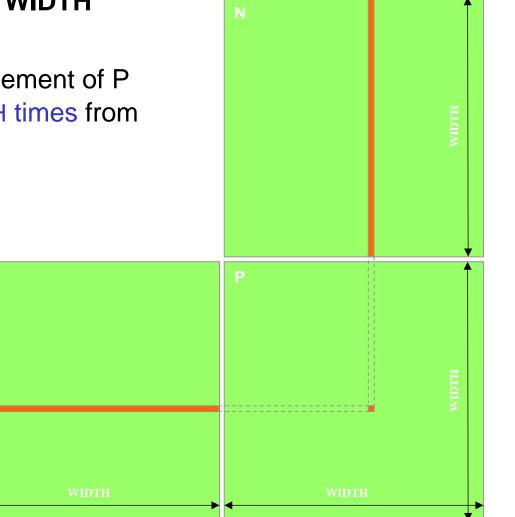
• Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking

A Simple Running Example: Matrix Multiplication

- A straightforward matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs
 - Leave shared memory usage until later
 - Local, register usage
 - Thread ID usage
 - Memory data transfer API between host and device

Programming Model: Square Matrix Multiplication

- **P** = **M** * **N** of size WIDTH x WIDTH
- Without tiling:
 - One thread handles one element of P
 - M and N are loaded WIDTH times from global memory



Step 1: Matrix Data Transfers

```
// Allocate the device memory where we will copy M to
Matrix Md;
Md.width = WIDTH;
Md.height = WIDTH;
Md.pitch = WIDTH;
int size = WIDTH * WIDTH * sizeof(float);
cudaMalloc((void**)&Md.elements, size);
```

// Copy M from the host to the device cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);

```
// Read M from the device to the host into P
cudaMemcpy(P.elements, Md.elements, size, cudaMemcpyDeviceToHost);
...
// Free device memory
cudaFree(Md.elements);
```

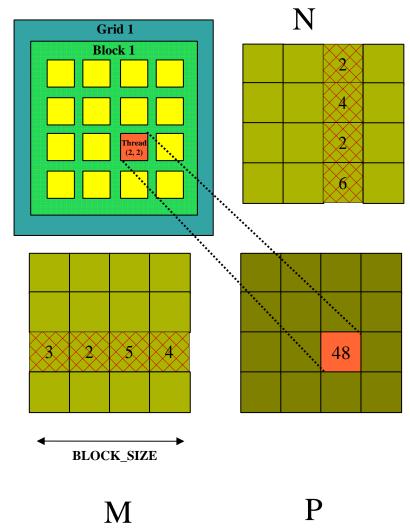
Step 2: Matrix Multiplication A Simple Host Code in C

// Matrix multiplication on the (CPU) host in double precision
// for simplicity, we will assume that all dimensions are equal

```
void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
ł
  for (int i = 0; i < M.height; ++i)
     for (int j = 0; j < N.width; ++j) {
       double sum = 0;
       for (int k = 0; k < M.width; ++k) {
          double a = M.elements[i * M.width + k];
          double b = N.elements[k * N.width + j];
          sum += a * b;
       P.elements[i * N.width + j] = sum;
```

Multiply Using One Thread Block

- One Block of threads compute matrix P
 - Each thread computes one element of P
- Each thread
 - Loads a row of matrix M
 - Loads a column of matrix N
 - Perform one multiply and addition for each pair of M and N elements
 - Compute to off-chip memory access ratio close to 1:1 (not very high)
- Size of matrix limited by the number of threads allowed in a thread block



Step 3: Matrix Multiplication Host-side Main Program Code

```
int main(void) {
// Allocate and initialize the matrices
Matrix M = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix N = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix P = AllocateMatrix(WIDTH, WIDTH, 0);
```

M = // M = N = 0 M = 0

```
// Free matrices
    FreeMatrix(M);
    FreeMatrix(N);
    FreeMatrix(P);
return 0;
}
```

Step 3: Matrix Multiplication Host-side code

```
// Matrix multiplication on the device
void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{
    // Load M and N to the device
    Matrix Md = AllocateDeviceMatrix(M);
    CopyToDeviceMatrix(Md, M);
    Matrix Nd = AllocateDeviceMatrix(N);
    CopyToDeviceMatrix(Nd, N);
```

```
// Allocate P on the device
Matrix Pd = AllocateDeviceMatrix(P);
CopyToDeviceMatrix(Pd, P); // Clear memory
```

Step 3: Matrix Multiplication Host-side Code (cont.)

// Setup the execution configuration dim3 dimBlock(WIDTH, WIDTH); dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

// Read P from the device CopyFromDeviceMatrix(P, Pd);

// Free device matrices
FreeDeviceMatrix(Md);
FreeDeviceMatrix(Nd);
FreeDeviceMatrix(Pd);

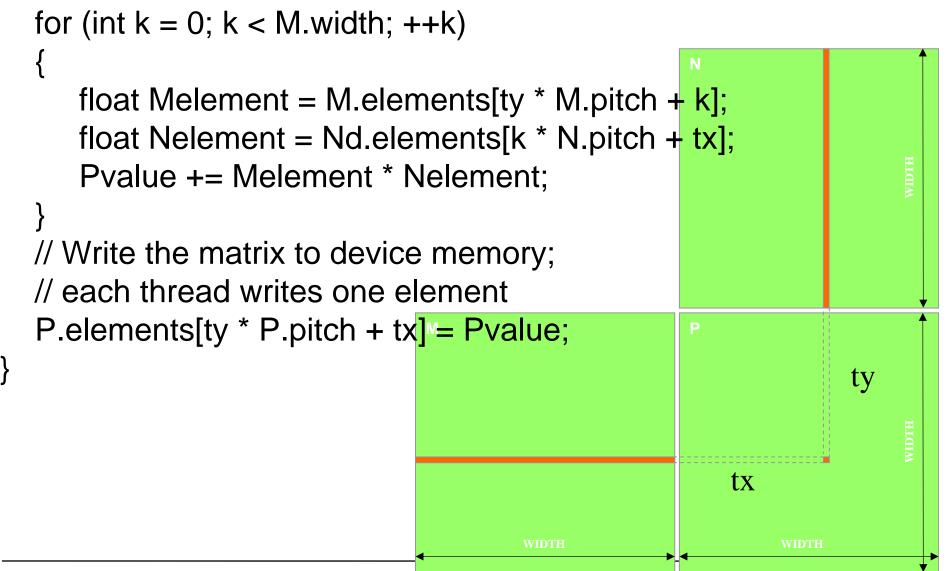
Step 4: Matrix Multiplication Device-side Kernel Function

// Matrix multiplication kernel – thread specification
___global___ void MatrixMulKernel(Matrix M, Matrix N, Matrix P)
{

// 2D Thread ID
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

Step 4: Matrix Multiplication Device-Side Kernel Function (cont.)



Step 5: Some Loose Ends

```
// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M)
  Matrix Mdevice = M:
  int size = M.width * M.height * sizeof(float);
  cudaMalloc((void**)&Mdevice.elements, size);
  return Mdevice;
// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {
  cudaFree(M.elements);
}
void FreeMatrix(Matrix M) {
  free(M.elements);
```

Step 5: Some Loose Ends (cont.)

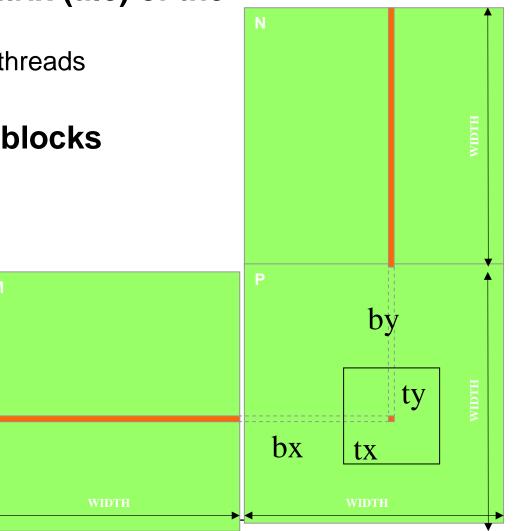
```
// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost)
{
    int size = Mhost.width * Mhost.height * sizeof(float);
    cudaMemcpy(Mdevice.elements, Mhost.elements, size,
        cudaMemcpyHostToDevice);
}
```

```
// Copy a device matrix to a host matrix.
void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice)
{
    int size = Mdevice.width * Mdevice.height * sizeof(float);
    cudaMemcpy(Mhost.elements, Mdevice.elements, size,
        cudaMemcpyDeviceToHost);
}
```

Step 6: Handling Arbitrary Sized Square Matrices

- Have each 2D thread block to compute a (BLOCK_WIDTH)² sub-matrix (tile) of the result matrix
 - Each has (BLOCK_WIDTH)² threads
- Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)² blocks

You still need to put a loop around the kernel call for cases where WIDTH is greater than Max grid size!



Multiply Using Several Blocks

bsize-1

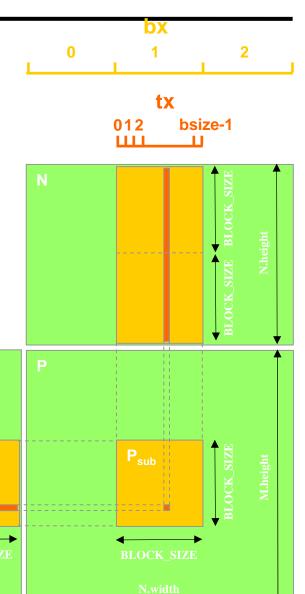
- One block computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- One thread computes one element of P_{sub}
- Assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape

0

2

ty

by



Multiply Using Several Blocks

bsize-1

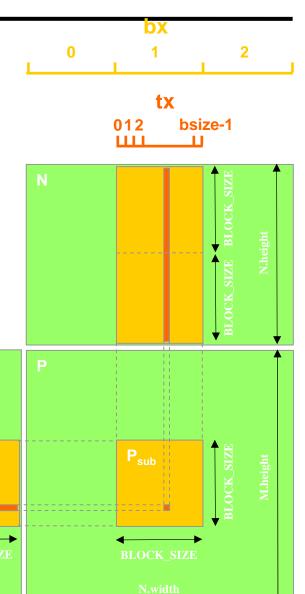
- One block computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- One thread computes one element of P_{sub}
- Assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape

0

2

ty

by



0 T 1 T 2 T

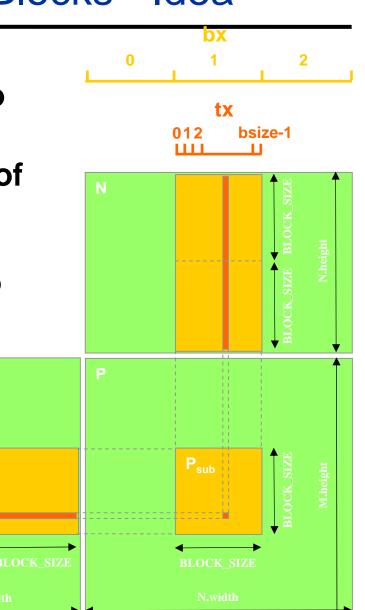
bsize-1

- One thread per element of P
- Load sub-blocks of M and N into shared memory
- Each thread reads one element of M and on of N
- Reuse each sub-block for all threads, i.e. for all elements of P

by

2

ty



0 T 1 T 2 T

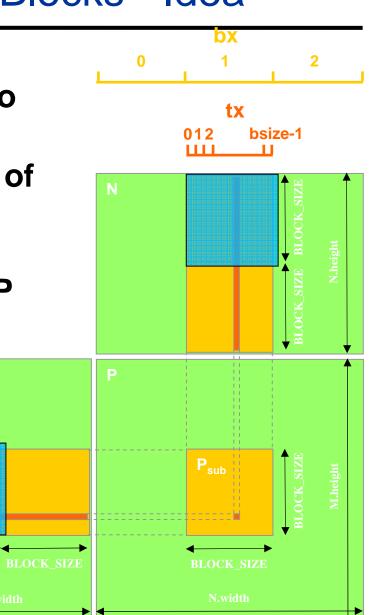
bsize-1

- One thread per element of P
- Load sub-blocks of M and N into shared memory
- Each thread reads one element of M and on of N
- Reuse each sub-block for all threads, i.e. for all elements of P

by

2

ty



0 T 1 T 2 T

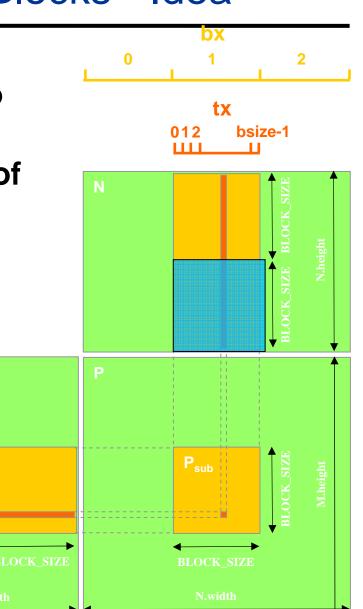
bsize-1

- One thread per element of P
- Load sub-blocks of M and N into shared memory
- Each thread reads one element of M and on of N
- Reuse each sub-block for all threads, i.e. for all elements of P

by

2

ty



0 T 1 T 2 T

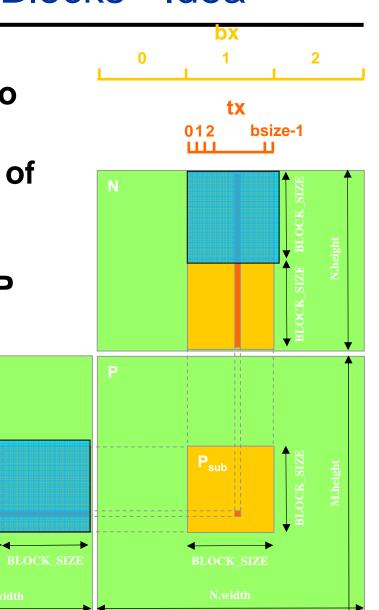
bsize-1

- One thread per element of P
- Load sub-blocks of M and N into shared memory
- Each thread reads one element of M and on of N
- Reuse each sub-block for all threads, i.e. for all elements of P

by

2

ty



0 T 1 T 2 T

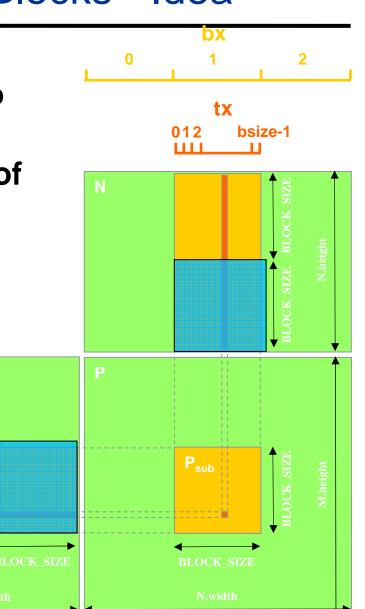
bsize-1

- One thread per element of P
- Load sub-blocks of M and N into shared memory
- Each thread reads one element of M and on of N
- Reuse each sub-block for all threads, i.e. for all elements of P

by

2

ty



Iviality initiality Nem Mem for (int a = aBegin, b = bBegin;

__global__ void matrixMul(float* C, float* A, float* B, int wA, int wB)

int bx = blockIdx.x; int by = blockIdx.y; //Block index int tx = threadIdx.x; int ty = threadIdx.y; // Thread index

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;

// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;

// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;

// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix

for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to

// store the sub-matrix of A

__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
___shared___float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory to shared // memory; each thread loads one element of each matrix AS(ty, tx) = A[a + wA * ty + tx]; BS(ty, tx) = B[b + wB * ty + tx];

____syncthreads(); // to make sure the matrices are loaded

// Multiply the two matrices together; each thread
// computes one element of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)
 Csub += AS(ty, k) * BS(k, tx);</pre>

// Make sure that the preceding computation is done
// before loading two new sub-matrices of A and B
___syncthreads();

// Write the block sub-matrix to device memory; // each thread writes one element int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; C[c + wB * ty + tx] = Csub;