
Computer Graphics WS07/08 – HW-Shading

Computer Graphics

– Cuda Programming –

Hendrik Lensch

Computer Graphics WS07/08 – HW-Shading

Overview
• So far:

– OpenGL
– Programmable Shader

• Today:
– GPGPU via Cuda (general purpose computing on the GPU)

• Next:
– Some Parallel Programming

Computer Graphics WS07/08 – HW-Shading

Resources
• Where to find Cuda and the documentation?

– http://www.nvidia.com/object/cuda_home.html
• Lecture on parallel programming on the GPU by David

Kirk (most of the following slides are copied from this
course)
– http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html

• On the Parallel Prefix Sum (Scan) algorithm
– http://developer.download.nvidia.com/compute/cuda/sdk/website/pr

ojects/scan/doc/scan.pdf

Computer Graphics WS07/08 – HW-Shading

• A quiet revolution and potential build-up
– Calculation: 367 GFLOPS vs. 32 GFLOPS
– Memory Bandwidth: 86.4 GB/s vs. 8.4 GB/s
– Until last year, programmed through graphics API

– GPU in every PC and workstation – massive volume and potential impactG
FL

O
P

S

G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX

G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra

NV30 = GeForce FX 5800

Why Massively Parallel
Processor

Computer Graphics WS07/08 – HW-Shading

16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4
GB/S Mem BW, 4GB/S BW to CPU

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

GeForce 8800

Computer Graphics WS07/08 – HW-Shading

Future Apps Reflect a Concurrent World
• Exciting applications in future mass computing market

have been traditionally considered “supercomputing
applications”
– Molecular dynamics simulation, Video and audio coding and manipulation,

3D imaging and visualization, Consumer game physics, and virtual reality
products

– These “Super-apps” represent and model physical, concurrent world
• Various granularities of parallelism exist, but…

– programming model must not hinder parallel implementation
– data delivery needs careful management

Computer Graphics WS07/08 – HW-Shading

What is GPGPU ?
• General Purpose computation using GPU

in applications other than 3D graphics
– GPU accelerates critical path of application

• Data parallel algorithms leverage GPU attributes
– Large data arrays, streaming throughput
– Fine-grain SIMD parallelism
– Low-latency floating point (FP) computation

• Applications – see //GPGPU.org
– Game effects (FX) physics, image processing
– Physical modeling, computational engineering, matrix algebra, convolution,

correlation, sorting

Computer Graphics WS07/08 – HW-Shading

Multi-Pass Rendering

Computer Graphics WS07/08 – HW-Shading

Previous GPGPU Constraints
• Dealing with graphics API

– Working with the corner cases of the
graphics API

• Addressing modes
– Limited texture size/dimension

• Shader capabilities
– Limited outputs

• Instruction sets
– Lack of Integer & bit ops

• Communication limited
– Between pixels
– no Scatter a[i] = p

Input Registers

Fragment Program

Output Registers

Constants

Texture

Temp Registers

per thread
per Shader
per Context

FB Memory

Computer Graphics WS07/08 – HW-Shading

Traditional GPGPU
• Standard Algorithm

– Set up OpenGL state
– Draw a fullscreen quad
– Shader program with textures as input to perform computation
– Write result to framebuffer as a color

• Limitations
– Requires non-graphics people to know a lot about graphics APIs
– Computation power wasted on unnecessary graphics setup
– Graphics API restricts input/output formats, integer/bit operations,

branching/looping, etc.
– Each fragment program must write to a single, predefined location: no

way to scatter data

[from Jerry Talton]

Computer Graphics WS07/08 – HW-Shading

CUDA
• “Compute Unified Device Architecture”
• General purpose programming model

– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-processor

• Targeted software stack
– Compute oriented drivers, language, and tools

• Driver for loading computation programs into GPU
– Standalone Driver - Optimized for computation
– Interface designed for compute - graphics free API
– Data sharing with OpenGL buffer objects
– Guaranteed maximum download & readback speeds
– Explicit GPU memory management

• Not another graphics API

Computer Graphics WS07/08 – HW-Shading

Cuda
• Compute Unified Device Architecture

– Unified hardware and software specification for parallel
computation

– Simple extensions to C language to allow code to run on the GPU
– Developed by and for NVIDIA (introduced with the GeForce 8800

series)
– Much easier to use than ATI’s Close To Metal hardware interface

• Benefits and Features
– Application controlled SIMD program structure
– Fully general load/store to GPU memory
– Totally untyped (not limited to texture storage)
– No limits on branching, looping, etc.
– Full integer and bit instructions
– Supports pointers
– Explicitly managed memory down to cache level
– No graphics code (although interoperability with OpenGL/D3D is

supported)

Computer Graphics WS07/08 – HW-Shading

What is the GPU Good at?
• The GPU is good at

data-parallel processing
• The same computation executed on many data elements in

parallel – low control flow overhead
with high SP floating point arithmetic intensity

• Many calculations per memory access
• Currently also need high floating point to integer ratio

• High floating-point arithmetic intensity and many
data elements mean that memory access latency can
be hidden with calculations instead of big data
caches – Still need to avoid bandwidth saturation!

Computer Graphics WS07/08 – HW-Shading

Drawbacks of (legacy) GPGPU Model:
Hardware Limitations

• Memory accesses are done as pixels
– Only gather: can read data from other pixels

– No scatter: (Can only write to one pixel)

Less programming flexibility

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7

…

…

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7

…

…

Computer Graphics WS07/08 – HW-Shading

• Applications can easily be limited by DRAM memory
bandwidth

Waste of computation power due to data
starvation

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7
…

Drawbacks of (legacy) GPGPU Model:
Hardware Limitations

Computer Graphics WS07/08 – HW-Shading

CUDA Highlights: Scatter

• CUDA provides generic DRAM memory addressing
– Gather:

– And scatter: no longer limited to write one pixel

More programming flexibility

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7

…

…

DRAM

ALU
Control

Cache
ALU ALU ...

d0 d1 d2 d3

ALU
Control

Cache
ALU ALU ...

d4 d5 d6 d7

…

…

Computer Graphics WS07/08 – HW-Shading

CUDA Highlights: On-Chip Shared Memory
• CUDA enables access to a parallel on-chip shared

memory for efficient inter-thread data sharing

Big memory bandwidth savings

DRAM

ALU

Shared
memory

Control

Cache
ALU ALU ...

d0 d1 d2 d3

d0 d1 d2 d3

ALU

Shared
memory

Control

Cache
ALU ALU ...

d4 d5 d6 d7

d4 d5 d6 d7

…

…

Computer Graphics WS07/08 – HW-Shading

Programming Model
• Programming Model

– The programmer writes a kernel
(in C) for each task he or she
wishes to perform

– The application splits the data to
be processed into grids of thread
blocks

– When a kernel is launched, each
block is allocated to a single TP

– Threads of a given block are time
sliced onto SPs contained within
that block’s TP

Many problems have natural grid
structure, but decomposing data into
threads can be difficult in general

Computer Graphics WS07/08 – HW-Shading

Thread Batching: Grids and
Blocks

• A kernel is executed as a grid of
thread blocks
– All threads share data memory

space
• A thread block is a batch of

threads that can cooperate with
each other by:
– Synchronizing their execution

• For hazard-free shared memory
accesses

– Efficiently sharing data through a
low latency shared memory

• Two threads from two different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

Computer Graphics WS07/08 – HW-Shading

Block and Thread IDs
• Threads and blocks have IDs

– So each thread can decide what
data to work on

– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Courtesy: NDVIA

Computer Graphics WS07/08 – HW-Shading

Programming Model: Memory Spaces
• Global Memory

– Read-write per-grid
– Hundreds of MBs
– Very slow (600 clocks)

• Texture Memory
– Read-only per-grid
– Hundreds of MBs
– Slow first access, but cached
– Built-in filtering, clamping

• Constant Memory
• Shared! Memory

– Read-write per-block
– 16 KB per block
– Very fast (4 clocks)

• Registers
– Unique per thread

Computer Graphics WS07/08 – HW-Shading

CUDA Device Memory Space
• Each thread can:

– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant memory
– Read only per-grid texture memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host
• The host can R/W

global, constant, and
texture memories

Computer Graphics WS07/08 – HW-Shading

Global, Constant, and Texture Memories
(Long Latency Accesses)

• Global memory
– Main means of communicating R/W

Data between host and device
– Contents visible to all threads

• Texture and Constant
Memories
– Constants initialized by host
– Contents visible to all threads

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

Courtesy: NDVIA

Computer Graphics WS07/08 – HW-Shading

Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and

cached on chip
– L1 per SM

• A constant value can be broadcast to
all threads in a Warp
– Extremely efficient way of accessing

a value that is common for all threads
in a Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

Computer Graphics WS07/08 – HW-Shading

Shared Memory
• Each SM has 16 KB of Shared

Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as
shared storage visible to all
threads in a thread block
– read and write access

• Not used explicitly for pixel
shader programs
– we dislike pixels talking to each

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

Computer Graphics WS07/08 – HW-Shading

Access Times
• Register – dedicated HW - single cycle
• Shared Memory – dedicated HW - single cycle
• Local Memory – DRAM, no cache - *slow*
• Global Memory – DRAM, no cache - *slow*
• Constant Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Texture Memory – DRAM, cached, 1…10s…100s of

cycles, depending on cache locality
• Instruction Memory (invisible) – DRAM, cached

Computer Graphics WS07/08 – HW-Shading

An Example of Physical Reality Behind CUDA

CPU
(host)

GPU w/
local DRAM

(device)

Computer Graphics WS07/08 – HW-Shading

CUDA Programming Model:
A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are executed on
the device as kernels which run in parallel on many
threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

Computer Graphics WS07/08 – HW-Shading

Execution Model
• Warps

– Each block is split into SIMD groups of threads called warps
– Warps are swapped in and out via thread scheduling
– Threads within a warp execute in lock step
– Threads are assigned to warps consecutively by their thread ID
– Issue order of warps and blocks is undefined, but there are

synchronization primitives

• Performance
– Branches are predicated
– Divergence within a warp should be avoided if possible
– Memory coherence extremely important
– Always try to read/write in a coalesced manner

Computer Graphics WS07/08 – HW-Shading

Application Programming
Interface

• The API is an
extension to the C programming language

• It consists of:
– Language extensions

• To target portions of the code for execution on the device
• Two stage compilation (e.g. nvcc + gcc)

– A runtime library split into:
• A common component providing built-in vector types and a subset of

the C runtime library in both host and device codes
• A host component to control and access one or more devices from the

host
• A device component providing device-specific functions

Computer Graphics WS07/08 – HW-Shading

• Function Quantifiers
– __device__ callable on the GPU from the GPU
– __global__ callable on the GPU from the CPU
– __host__ callable on the CPU from the CPU

• Variable Quantifiers
– __device__ global memory on the GPU
– __constant__ constant memory on the GPU
– __shared__ shared per-block memory on the GPU

• Built-in Variables
– gridDim, blockDim gives dimensions of grids and blocks in

kernel
– blockIdx, threadIdx gives index of block and thread in

kernel
• Built-in Vector Types

– float2, float3, float4, etc.

Computer Graphics WS07/08 – HW-Shading

Extended C
• Declspecs

– global, device, shared,
local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

Computer Graphics WS07/08 – HW-Shading

CUDA Function Declarations

hosthost__host__ float HostFunc()

hostdevice__global__ void KernelFunc()

devicedevice__device__ float DeviceFunc()

Only callable
from the:

Executed
on the:

• __global__ defines a kernel function
– Must return void

• __device__ and __host__ can be
used together

Computer Graphics WS07/08 – HW-Shading

CUDA Function Declarations
(cont.)

• __device__ functions cannot have their
address taken

• For functions executed on the device:
– No recursion
– No static variable declarations inside the function
– No variable number of arguments

Computer Graphics WS07/08 – HW-Shading

Calling a Kernel Function – Thread
Creation

• A kernel function must be called with an execution
configuration:

__global__ void KernelFunc(...);
dim3 DimGrid(100, 50); // 5000 thread blocks
dim3 DimBlock(4, 8, 8); // 256 threads per block
size_t SharedMemBytes = 64; // 64 bytes of shared memory
KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...);

• Any call to a kernel function is asynchronous from
CUDA 1.0 on, explicit synch needed for blocking

Computer Graphics WS07/08 – HW-Shading

A Simple Running Example: Matrix
Multiplication

• A straightforward matrix multiplication example that
illustrates the basic features of memory and thread
management in CUDA programs
– Leave shared memory usage until later
– Local, register usage
– Thread ID usage
– Memory data transfer API between host and device

Computer Graphics WS07/08 – HW-Shading

Programming Model: Square Matrix
Multiplication

• P = M * N of size WIDTH x WIDTH
• Without tiling:

– One thread handles one element of P
– M and N are loaded WIDTH times from

global memory

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Computer Graphics WS07/08 – HW-Shading

Step 1: Matrix Data Transfers
// Allocate the device memory where we will copy M to
Matrix Md;
Md.width = WIDTH;
Md.height = WIDTH;
Md.pitch = WIDTH;
int size = WIDTH * WIDTH * sizeof(float);
cudaMalloc((void**)&Md.elements, size);

// Copy M from the host to the device
cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice);

// Read M from the device to the host into P
cudaMemcpy(P.elements, Md.elements, size, cudaMemcpyDeviceToHost);
...
// Free device memory
cudaFree(Md.elements);

Computer Graphics WS07/08 – HW-Shading

Step 2: Matrix Multiplication
A Simple Host Code in C

// Matrix multiplication on the (CPU) host in double precision
// for simplicity, we will assume that all dimensions are equal

void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P)
{

for (int i = 0; i < M.height; ++i)
for (int j = 0; j < N.width; ++j) {

double sum = 0;
for (int k = 0; k < M.width; ++k) {

double a = M.elements[i * M.width + k];
double b = N.elements[k * N.width + j];
sum += a * b;

}
P.elements[i * N.width + j] = sum;

}
}

Computer Graphics WS07/08 – HW-Shading

Multiply Using One Thread Block
• One Block of threads compute

matrix P
– Each thread computes one element

of P
• Each thread

– Loads a row of matrix M
– Loads a column of matrix N
– Perform one multiply and addition for

each pair of M and N elements
– Compute to off-chip memory access

ratio close to 1:1 (not very high)
• Size of matrix limited by the number

of threads allowed in a thread block

Grid 1
Block 1

3 2 5 4

2

4

2

6

48

Thread
(2, 2)

BLOCK_SIZE

M P

N

Computer Graphics WS07/08 – HW-Shading

Step 3: Matrix Multiplication
Host-side Main Program Code

M a t r i x M = A l l o c a t e M a t r i x (B L O C K _ S I Z
 M a t r i x N = A l l o c a t e M a t r i x (B L O C K
 M a t r i x P = A l l o c a t e M a t r i x (B L O C K
 M a t r i x D P h = A l l o c a t e M a t r i x D (B L O C

int main(void) {
// Allocate and initialize the matrices

Matrix M = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix N = AllocateMatrix(WIDTH, WIDTH, 1);
Matrix P = AllocateMatrix(WIDTH, WIDTH, 0);

// M * N on the device
MatrixMulOnDevice(M, N, P);

// Free matrices
FreeMatrix(M);
FreeMatrix(N);
FreeMatrix(P);

return 0;
}

Computer Graphics WS07/08 – HW-Shading

Step 3: Matrix Multiplication
Host-side code

// Matrix multiplication on the device
void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P)
{

// Load M and N to the device
Matrix Md = AllocateDeviceMatrix(M);
CopyToDeviceMatrix(Md, M);
Matrix Nd = AllocateDeviceMatrix(N);
CopyToDeviceMatrix(Nd, N);

// Allocate P on the device
Matrix Pd = AllocateDeviceMatrix(P);
CopyToDeviceMatrix(Pd, P); // Clear memory

Computer Graphics WS07/08 – HW-Shading

Step 3: Matrix Multiplication
Host-side Code (cont.)

// Setup the execution configuration
dim3 dimBlock(WIDTH, WIDTH);
dim3 dimGrid(1, 1);

// Launch the device computation threads!
MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

// Read P from the device
CopyFromDeviceMatrix(P, Pd);

// Free device matrices
FreeDeviceMatrix(Md);
FreeDeviceMatrix(Nd);
FreeDeviceMatrix(Pd);

}

Computer Graphics WS07/08 – HW-Shading

Step 4: Matrix Multiplication
Device-side Kernel Function

// Matrix multiplication kernel – thread specification
__global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P)
{

// 2D Thread ID
int tx = threadIdx.x;
int ty = threadIdx.y;

// Pvalue is used to store the element of the matrix
// that is computed by the thread
float Pvalue = 0;

Computer Graphics WS07/08 – HW-Shading

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

Step 4: Matrix Multiplication
Device-Side Kernel Function (cont.)

for (int k = 0; k < M.width; ++k)
{

float Melement = M.elements[ty * M.pitch + k];
float Nelement = Nd.elements[k * N.pitch + tx];
Pvalue += Melement * Nelement;

}
// Write the matrix to device memory;
// each thread writes one element
P.elements[ty * P.pitch + tx] = Pvalue;

} ty

tx

Computer Graphics WS07/08 – HW-Shading

Step 5: Some Loose Ends
// Allocate a device matrix of same size as M.
Matrix AllocateDeviceMatrix(const Matrix M)
{

Matrix Mdevice = M;
int size = M.width * M.height * sizeof(float);
cudaMalloc((void**)&Mdevice.elements, size);
return Mdevice;

}

// Free a device matrix.
void FreeDeviceMatrix(Matrix M) {

cudaFree(M.elements);
}

void FreeMatrix(Matrix M) {
free(M.elements);

}

Computer Graphics WS07/08 – HW-Shading

Step 5: Some Loose Ends
(cont.)

// Copy a host matrix to a device matrix.
void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost)
{

int size = Mhost.width * Mhost.height * sizeof(float);
cudaMemcpy(Mdevice.elements, Mhost.elements, size,

cudaMemcpyHostToDevice);
}

// Copy a device matrix to a host matrix.
void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice)
{

int size = Mdevice.width * Mdevice.height * sizeof(float);
cudaMemcpy(Mhost.elements, Mdevice.elements, size,

cudaMemcpyDeviceToHost);
}

Computer Graphics WS07/08 – HW-Shading

Step 6: Handling Arbitrary Sized Square
Matrices

• Have each 2D thread block to compute a
(BLOCK_WIDTH)2 sub-matrix (tile) of the
result matrix
– Each has (BLOCK_WIDTH)2 threads

• Generate a 2D Grid of
(WIDTH/BLOCK_WIDTH)2 blocks

M

N

P

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

ty

tx

by

bx

You still need to put a
loop around the kernel
call for cases where
WIDTH is greater than
Max grid size!

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several
Blocks

• One block computes one square
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one element
of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several
Blocks

• One block computes one square
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one element
of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several Blocks - Idea
• One thread per element of P
• Load sub-blocks of M and N into

shared memory
• Each thread reads one element of

M and on of N
• Reuse each sub-block for all

threads, i.e. for all elements of P
• Outer loop on sub-blocks

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several Blocks - Idea
• One thread per element of P
• Load sub-blocks of M and N into

shared memory
• Each thread reads one element of

M and on of N
• Reuse each sub-block for all

threads, i.e. for all elements of P
• Outer loop on sub-blocks

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several Blocks - Idea
• One thread per element of P
• Load sub-blocks of M and N into

shared memory
• Each thread reads one element of

M and on of N
• Reuse each sub-block for all

threads, i.e. for all elements of P
• Outer loop on sub-blocks

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several Blocks - Idea
• One thread per element of P
• Load sub-blocks of M and N into

shared memory
• Each thread reads one element of

M and on of N
• Reuse each sub-block for all

threads, i.e. for all elements of P
• Outer loop on sub-blocks

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Multiply Using Several Blocks - Idea
• One thread per element of P
• Load sub-blocks of M and N into

shared memory
• Each thread reads one element of

M and on of N
• Reuse each sub-block for all

threads, i.e. for all elements of P
• Outer loop on sub-blocks

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

Computer Graphics WS07/08 – HW-Shading

Matrix Multiplication Kernel with Shared
Mem

__global__ void
matrixMul(float* C, float* A, float* B, int wA, int wB)
{

int bx = blockIdx.x; int by = blockIdx.y; //Block index
int tx = threadIdx.x; int ty = threadIdx.y; // Thread index

// Index of the first sub-matrix of A processed by the block
int aBegin = wA * BLOCK_SIZE * by;
// Index of the last sub-matrix of A processed by the block
int aEnd = aBegin + wA - 1;

// Step size used to iterate through the sub-matrices of A
int aStep = BLOCK_SIZE;
// Index of the first sub-matrix of B processed by the block
int bBegin = BLOCK_SIZE * bx;
// Step size used to iterate through the sub-matrices of B
int bStep = BLOCK_SIZE * wB;

// Csub is used to store the element of the block sub-matrix
// that is computed by the thread
float Csub = 0;

// Loop over all the sub-matrices of A and B
// required to compute the block sub-matrix

for (int a = aBegin, b = bBegin;
a <= aEnd;
a += aStep, b += bStep) {

// Declaration of the shared memory array As used to
// store the sub-matrix of A
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

// Declaration of the shared memory array Bs used to
// store the sub-matrix of B
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

// Load the matrices from device memory to shared
// memory; each thread loads one element of each matrix
AS(ty, tx) = A[a + wA * ty + tx];
BS(ty, tx) = B[b + wB * ty + tx];

__syncthreads(); // to make sure the matrices are loaded

// Multiply the two matrices together; each thread
// computes one element of the block sub-matrix
for (int k = 0; k < BLOCK_SIZE; ++k)

Csub += AS(ty, k) * BS(k, tx);

// Make sure that the preceding computation is done
// before loading two new sub-matrices of A and B
__syncthreads();

}
// Write the block sub-matrix to device memory;
// each thread writes one element
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;
C[c + wB * ty + tx] = Csub;

}

