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Overview
• So far:

– Introduction to Cuda
– GPGPU via Cuda (general purpose computing on the GPU)
– Block matrix-matrix multiplication

• Today:
– Some parallel programming principles
– Parallel Vector Reduction
– Parallel Prefix Sum Calculation

• Next:
– No lectures on Monday
– Input/Output devices
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Resources
• Where to find Cuda and the documentation?

– http://www.nvidia.com/object/cuda_home.html
• Lecture on parallel programming on the GPU by David 

Kirk and Wen-mei W. Hwu (most of the following slides 
are copied from this course)
– http://courses.ece.uiuc.edu/ece498/al1/Syllabus.html

• On the Parallel Prefix Sum (Scan) algorithm
– http://developer.download.nvidia.com/compute/cuda/sdk/website/pr

ojects/scan/doc/scan.pdf
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16 highly threaded SM’s, >128 FPU’s, 367 GFLOPS, 768 MB DRAM, 86.4 
GB/S Mem BW, 4GB/S BW to CPU
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CUDA Highlights: On-Chip Shared Memory
• CUDA enables access to a parallel on-chip shared 

memory for efficient inter-thread data sharing

Big memory bandwidth savings
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Global, Constant, and Texture Memories
(Long Latency Accesses)

• Global memory
– Main means of communicating R/W 

Data between host and device
– Contents visible to all threads

• Texture and Constant 
Memories
– Constants initialized by host 
– Contents visible to all threads
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Thread Batching: Grids and 
Blocks

• A kernel is executed as a grid of 
thread blocks
– All threads share data memory 

space
• A thread block is a batch of 

threads that can cooperate with 
each other by:
– Synchronizing their execution

• For hazard-free shared memory 
accesses

– Efficiently sharing data through a 
low latency shared memory

• Two threads from two different 
blocks cannot cooperate
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Quick Terminology Review
• Thread: concurrent code and associated state executed on the 

CUDA device (in parallel with other threads)
– The unit of parallelism in CUDA

• Warp: a group of threads executed physically in parallel in G80

• Block: a group of threads that are executed together and form 
the unit of resource assignment

• Grid: a group of thread blocks that must all complete before the 
next phase of the program can begin
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How Thread Blocks are 
Partitioned

• Thread blocks are partitioned into warps
– Thread IDs within a warp are consecutive and increasing
– Warp 0 starts with Thread ID 0

• Partitioning is always the same
– Thus you can use this knowledge in control flow 
– However, the exact size of warps may change from generation to 

generation
– (Covered next)

• However, DO NOT rely on any ordering between warps
– If there are any dependencies between threads, you must 

__syncthreads() to get correct results
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Control Flow Instructions
• Main performance concern with branching is divergence

– Threads within a single warp take different paths
– Different execution paths are serialized in G80

• The control paths taken by the threads in a warp are traversed one at a time 
until there is no more.

• A common case: avoid divergence when branch condition is a 
function of thread ID
– Example with divergence: 

• If (threadIdx.x > 2) { }
• This creates two different control paths for threads in a block
• Branch granularity < warp size; threads 0 and 1 follow different path than the 

rest of the threads in the first warp
– Example without divergence:

• If (threadIdx.x / WARP_SIZE > 2) { }
• Also creates two different control paths for threads in a block
• Branch granularity is a whole multiple of warp size; all threads in any given 

warp follow the same path
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Shared Memory Bank Conflicts
• Shared memory is as fast as registers if there are no bank 

conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no bank conflict
– If all threads of a half-warp access the identical address, there is no bank 

conflict (broadcast)
• The slow case:

– Bank Conflict: multiple threads in the same half-warp access the same 
bank

– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing
• Given:

__shared__ float shared[256];
float foo = 

shared[baseIndex + s * threadIdx.x];

• This is only bank-conflict-free if s 
shares no common factors with the 
number of banks 
– 16 on G80, so s must be odd
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Data Types and Bank Conflicts
• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];
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Structs and Bank Conflicts

• Struct assignments compile into as many memory accesses as there 
are struct members:

struct vector { float x, y, z; };
struct myType { 

float f; 
int c;

};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per thread)
struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0



Computer Graphics WS07/08 – HW-Shading

Common Array Bank Conflict Patterns 
1D

• Each thread loads 2 elements into shared 
mem:
– 2-way-interleaved loads result in 

2-way bank conflicts:

int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU 
threads, locality in cache line usage and 
reduced sharing traffice.
– Not in shared memory usage where there is 

no cache line effects but banking effects Thread 11
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A Better Array Access Pattern
• Each thread loads one element in 

every consecutive group of 
bockDim elements.

shared[tid] = global[tid];
shared[tid + blockDim.x] = 
global[tid + blockDim.x];
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Example: Parallel Reduction
• Given an array of values, “reduce” them to a single 

value in parallel
• Examples 

– sum reduction: sum of all values in the array
– Max reduction: maximum of all values in the array

• Typically parallel implementation:
– Recursively halve # threads, add two values per thread
– Takes log(n) steps for n elements, requires n/2 threads
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A Vector Reduction Example
• Assume an in-place reduction using shared memory

– The original vector is in device global memory
– The shared memory used to hold a partial sum vector
– Each iteration brings the partial sum vector closer to the final sum
– The final solution will be in element 0



Computer Graphics WS07/08 – HW-Shading

A Simple Implementation
• Assume we have already loaded array into

– __shared__ float partialSum[]

unsigned int t = threadIdx.x;

// loop log(n) times
for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 
{

// make sure the sum of the previous iteration 
// is available 
__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

}
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Vector Reduction with Bank Conflicts
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Vector Reduction with Branch 
Divergence
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0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements 

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10



Computer Graphics WS07/08 – HW-Shading

Some Observations
• In each iterations, two control flow paths will be sequentially 

traversed for each warp
– Threads that perform addition and threads that do not
– Threads that do not perform addition may cost extra cycles depending on the 

implementation of divergence

• No more than half of threads will be executing at any time
– All odd index threads are disabled right from the beginning!
– On average, less than ¼ of the threads will be activated for all warps over 

time.
– After the 5th iteration, entire warps in each block will be disabled, poor 

resource utilization but no divergence.
• This can go on for a while, up to 4 more iterations (512/32=16= 24), where each 

iteration only has one thread activated until all warps retire 
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Short comings of the implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 
{

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];

}

BAD: Divergence 
due to interleaved 
branch decisions

BAD: Bank 
conflicts due to 

stride
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A better implementation

• Assume we have already loaded array into
– __shared__ float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x; 

stride > 1;  stride >> 1) 
{

__syncthreads();
if (t < stride)

partialSum[t] += partialSum[t+stride];
}
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Thread 0

No Divergence until < 16 sub-sums 
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Observations About the New 
Implementation

• Only the last 5 iterations will have divergence
• Entire warps will be shut down as iterations progress

– For a 512-thread block, 4 iterations to shut down all but one warps in 
each block

– Better resource utilization, will likely retire warps and thus blocks 
faster

• Recall, no bank conflicts either
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Application: MipMap Construction
• Texture available in multiple resolutions

– Pre-processing step
• Rendering: select appropriate texture resolution

– Selection is usually per pixel !!
– Texel size(n) < extent of pixel footprint < texel size(n+1)
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Application: MipMapping II
• Multum In Parvo (MIP): much in little
• Hierarchical resolution pyramid

– Repeated averaging over 2x2 texels
– This is vector reduction!

• Rectangular arrangement (RGB)
• Reconstruction

– Tri-linear interpolation of 8 nearest texels 

u

v

u
v
d d
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Scan – Algorithm Effects  
on Parallelism and Memory 
Conflicts
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Parallel Prefix Sum (Scan)

• Definition:
The all-prefix-sums operation takes a binary associative operator 
⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]
and returns the ordered set

[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example: 
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set 

[0 3 4 11 11 15 16 22]
(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 
input element is not 

included in the result
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Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :  
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:
• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Histograms
• Etc.
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Scan on the CPU

• Just add each element to the sum of the elements 
before it

• Trivial, but sequential
• Exactly n adds: optimal in terms of work efficiency

void scan( float* scanned, float* input, int length) 
{
scanned[0] = 0; 
for(int i = 1; i < length; ++i) 
{
scanned[i] = input[i-1] + scanned[i-1];

}
}
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A First-Attempt Parallel Scan 
Algorithm

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 61407130

In 361407130
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A First-Attempt Parallel Scan 
Algorithm

1. (previous slide)

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

• Active threads: stride to n-1 (n-stride threads)
• Thread j adds elements j and j-stride from T0 and 
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 75478430
Stride 1

T0 61407130

In 361407130
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A First-Attempt Parallel Scan 
Algorithm

T1 75478430

T0 1112121111430

Stride 1

Stride 2

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #2
Stride = 2

T0 61407130

In 36140713
0
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A First-Attempt Parallel Scan 
Algorithm

T1 2216151111430

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #3
Stride = 4

In 36140713
0

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130
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A First-Attempt Parallel Scan 
Algorithm

Out 2216151111430

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: Threads stride 
to n: Add pairs of 
elements stride
elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

3. Write output to device 
memory. 

T1 2216151111430

In 36140713
0

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130
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Work Efficiency Considerations

• The first-attempt Scan executes log(n) parallel 
iterations
– The steps do (n/2 + n/2-1), (n/4+ n/2-1), (n/8+n/2-1),..(1+ n/2-1) 

adds each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is not very work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

• A parallel algorithm can be slow when execution 
resources are saturated due to low work efficiency



Computer Graphics WS07/08 – HW-Shading

Balanced Trees
• For improving efficiency
• A common parallel algorithm pattern:

– Build a balanced binary tree on the input data and sweep it to and from the 
root

– Tree is not an actual data structure, but a concept to determine what each 
thread does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal nodes 

in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums
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Build the Sum Tree
T 36140713

Assume array is already in shared memory
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Build the Sum Tree
T 36140713

T 96547743

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       corresponds 
to a single thread.
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Build the Sum Tree
T 36140713

T 96547743

T 1465411743

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each       corresponds 
to a single thread.
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Build the Sum Tree
T 36140713

T 96547743

T 1465411743

T 2565411743

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each       corresponds 
to a single thread.
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Zero the Last Element

T 065411743

We now have an array of partial sums.  Since this is an exclusive scan,
set the last element to zero.  It will propagate back to the first element.
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Build Scan From Partial Sums
T 065411743
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Build Scan From Partial Sums

T 116540743

T 065411743

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each       corresponds 
to a single thread.
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Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2 
2 threads

Stride 4

Stride 2

Each       corresponds 
to a single thread.
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Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

T 2216151111430

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  
Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 
n/2 threads

Stride 2

Stride 4

Stride 1

Each       corresponds 
to a single thread.
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Summary
• Parallel Programming requires careful planning 

– of the branching behavior
– of the memory access patterns
– of the work efficiency

• Vector Reduction
– branch efficient
– bank efficient

• Scan Algorithm 
– based in Balanced Tree principle:

bottom up, top down traversal


