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Overview
• Last Time

– Image-Based Rendering

• Today
– Parametric Curves
– Lagrange Interpolation
– Hermite Splines
– Bezier Splines
– DeCasteljau Algorithm
– Parameterization
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Curves
• Curve descriptions

– Explicit
• y(x)= ± sqrt(r2 - x2), restricted domain 

– Implicit:
• x2 + y2 = r2 unknown solution set

– Parametric:
• x(t)= r cos(t), y(t)= r sin(t),   t ∈ [0, 2π]
• Flexibility and ease of use

• Polynomials
– Avoids complicated functions (z.B. pow, exp, sin, sqrt)
– Use simple polynomials of low degree
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Parametric curves
• Separate function in each coordinate

– 3D: f(t)= (x(t), y(t), z(t))
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Monomials
• Monomial basis

– Simple basis: 1, t, t2, ... (t usually in [0 .. 1])
• Polynomial representation

– Coefficients can be determined from a sufficient number of 
constraints (e.g. interpolation of given points)

• Given (n+1) parameter values ti and points Pi
• Solution of a linear system in the Ai − possible, but inconvenient

• Matrix representation
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Derivatives
• Derivative = tangent vector

– Polynomial of degree (n-1)

• Continuity and smoothness between 
parametric curves
– C0 = G0 = same point
– Parametric continuity C1

• Tangent vectors are identical
– Geometric continuity G1

• Same direction of tangent vectors
– Similar for higher derivatives
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More on Continuity
• at one point:

• Geometric Continuity:
– G0: curves are joined
– G1: first derivatives are proportional at joint point, same direction but 

not necessarily same length
– G2: first and second derivatives are proportional

• Parametric Continuity:
– C0: curves are joined
– C1: first derivative equal
– C2: first and second derivatives are equal. If t is the time, this implies 

the acceleration is continuous. 
– Cn: all derivatives up to and including the nth are equal. 



Computer Graphics WS07/08 – Splines 8

Lagrange Interpolation
• Interpolating basis functions

– Lagrange polynomials for a set of parameters T={t0, ..., tn}

• Properties
– Good for interpolation at given parameter values

• At each ti: One basis function = 1, all others = 0
– Polynomial of degree n (n factors linear in t)

• Lagrange Curves
– Use Lagrange Polynomials with point coefficients
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Lagrange Interpolation
• Simple Linear Interpolation

– T={t0, t1}

• Simple Quadratic Interpolation
– T={t0, t1, t2}
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Problems
• Problems with a single polynomial

– Degree depends on the number of interpolation constraints
– Strong overshooting for high degree (n > 7)
– Problems with smooth joints
– Numerically unstable
– No local changes
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Splines
• Functions for interpolation & approximation

– Standard curve and surface primitives in geometric modeling
– Key frame and in-betweens in animations
– Filtering and reconstruction of images

• Historically
– Name for a tool in ship building

• Flexible metal strip that tries to stay straight
– Within computer graphics:

• Piecewise polynomial function

Segment 1 Segment 2 Segment 3 Segment 4

What Continuity ?
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Linear Interpolation
• Hat Functions and Linear Splines
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Hermite Interpolation
• Hermite Basis (cubic)

– Interpolation of position P and tangent P´ information
for t= {0, 1}

– Basis functions
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Hermite Interpolation
• Properties of Hermite Basis Functions

– H0 (H3) interpolates smoothly from 1 to 0 (1 to 0)
– H0 and H3 have zero derivative at t= 0 and t= 1

• No contribution to derivative (H1, H2)
– H1 and H2 are zero at t= 0 and t= 1

• No contribution to position (H0, H3)
– H1 (H2) has slope 1 at t= 0 (t= 1)

• Unit factor for specified derivative vector

• Hermite polynomials
– P0, P`1 are positions ∈R3

– P`0, P1 are derivatives (tangent vectors) ∈R3
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Examples: Hermite Interpolation
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Matrix Representation
• Matrix representation
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Matrix Representation
• For cubic Hermite interpolation we obtain:

• Solution: 
– Two matrices must multiply to unit matrix
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Bézier
• Bézier Basis [deCasteljau´59, Bézier´62] 

– Different curve representation
– Start and end point
– 2 point that are approximated 

by the curve (cubics)
– P´0= 3(b1-b0) and P´1= 3(b3-b2)

• Factor 3 due to derivative of t3
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Basis transformation
• Transformation

– P(t)=T MH GH = T MH (MHB GB) = T (MHMHB) GB = T MB GB

• Bézier Curves & Basis Functionss

– Basis functions: Bernstein polynomials
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Properties: Bézier
• Advantages:

– End point interpolation
– Tangents explicitly specified
– Smooth joints are simple

• P3, P4, P5 collinear G1 continuous
– Geometric meaning of control points
– Affine invariance 

∀ ∑Bi(t) = 1
– Convex hull property

• For 0<t<1: Bi(t) ≥ 0
– Symmetry: Bi(t) = Bn-i(1-t) 

• Disadvantages
– Smooth joints need to be maintained explicitly 

• Automatic in B-Splines (and NURBS)
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DeCasteljau Algorithm
• Direct evaluation of the basis functions 

– Simple but expensive
• Use recursion

– Recursive definition of the basis functions

– Inserting this once yields:

– with the new Bézier points given by the recursion
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DeCasteljau Algorithm
• DeCasteljau-Algorithm:

– Recursive degree reduction of the Bezier curve by using the 
recursion formula for the Bernstein polynomials

• Example:
– t= 0.5
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DeCasteljau Algorithm
• Subdivision using the deCasteljau-Algorithm

– Take boundaries of the deCasteljau triangle as new control points 
for left/right portion of the curve 

• Extrapolation
– Backwards subdivision

• Reconstruct triangle from one side
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Catmull-Rom-Splines
• Goal 

– Smooth (C1)-joints between (cubic) spline segments
• Algorithm

– Tangents given by neighboring points Pi-1 Pi+1
– Construct (cubic) Hermite segments

• Advantage
– Arbitrary number of control points
– Interpolation without overshooting 
– Local control
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Matrix Representation
• Catmull-Rom-Spline

– Piecewise polynomial curve 
– Four control points per segment
– For n control points we obtain (n-3) polynomial segments 

• Application
– Smooth interpolation of a given sequence of points
– Key frame animation, camera movement, etc. 
– Only G1-continuity
– Control points should be equidistant in time 
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Choice of Parameterization
• Problem

– Often only the control points are given 
– How to obtain a suitable parameterization ti ?

• Example: Chord-Length Parameterization 

– Arbitrary up to a constant factor
• Warning

– Distances are not affine invariant ! 
– Shape of curves changes under transformations !!   
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Parameterization
• Chord-Length versus uniform Parameterization

– Analog: Think P(t) as a moving object with mass that may 
overshoot

Uniform

Chord-Length
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B-Splines
• Goal

– Spline curve with local control and high continuity
• Given

– Degree: n
– Control points: P0, ..., Pm (Control polygon, m ≥ n+1)
– Knots: t0, ..., tm+n+1 (Knot vector, weakly monotonic)
– The knot vector defines the parametric locations where segments join

• B-Spline Curve

– Continuity:
• Cn-1 at simple knots
• Cn-k at knot with multiplicity k
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B-Spline Basis Functions
• Recursive Definition
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B-Spline Basis Functions
• Recursive Definition

– Degree increases in every step
– Support increases by one knot interval
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B-Spline Basis Functions
• Uniform Knot Vector

– All knots at integer locations
• UBS: Uniform B-Spline

– Example: cubic B-Splines

• Local Support = Localized Changes
– Basis functions affect only

(n+1) Spline segments
– Changes are localized
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B-Spline Basis Functions
• Convex Hull Property

– Spline segment lies in convex hull of (n+1) control points

– (n+1) control points lie on a straight line 
curve touches this line

– n control points coincide curve interpolates this point and is 
tangential to the control polygon

Degree 2
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Normalized Basis Functions
• Basis Functions on an Interval

– Knots at beginning and end with multiplicity 
• NUBS: Non-uniform B-Splines

– Interpolation of end points and tangents there
– Conversion to Bézier segments via knot insertion
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deBoor-Algorithm
• Recursive Definition of Control Points

– Evaluation at t:  tl < t < tl+1: i ∈ {l-n, ..., l}
• Due to local support only affected by (n+1) control points

• Properties
– Affine invariance
– Stable numerical evaluation

• All coefficients > 0
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