Computer Graphics

- Splines -

Hendrik Lensch

Computer Graphics WS07/08 – Splines

Overview

Last Time

- Image-Based Rendering

• Today

- Parametric Curves
- Lagrange Interpolation
- Hermite Splines
- Bezier Splines
- DeCasteljau Algorithm
- Parameterization

Curves

Curve descriptions

- Explicit
 - $y(x) = \pm \operatorname{sqrt}(r^2 x^2)$, restricted domain
- Implicit:
 - $x^{2+}y^{2} = r^{2}$ unknown solution set
- Parametric:
 - $x(t) = r \cos(t), y(t) = r \sin(t), t \in [0, 2\pi]$
 - Flexibility and ease of use

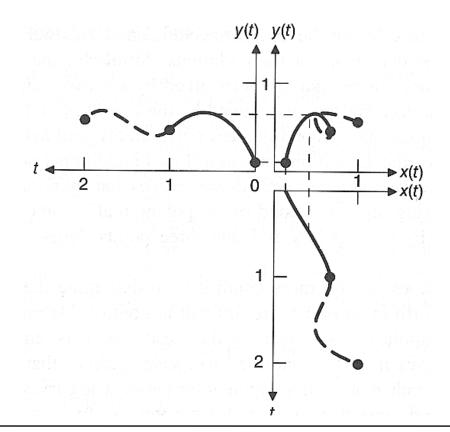
Polynomials

- Avoids complicated functions (z.B. pow, exp, sin, sqrt)
- Use simple polynomials of low degree

Parametric curves

Separate function in each coordinate

- 3D: f(t)=(x(t), y(t), z(t))



Monomials

Monomial basis

- Simple basis: 1, t, t^2 , ... (t usually in [0 .. 1])
- Polynomial representation

$$\underline{P}(t) = \begin{pmatrix} \underline{x}(t) & \underline{y}(t) & \underline{z}(t) \end{pmatrix} = \sum_{i=0}^{n} t^{i} \underline{A}_{i} \rightarrow \text{Coefficients } \in \mathbb{R}^{3}$$
Monomials

- Coefficients can be determined from a sufficient number of constraints (e.g. interpolation of given points)
 - Given (n+1) parameter values t_i and points P_i
 - Solution of a linear system in the A_i possible, but inconvenient
- Matrix representation

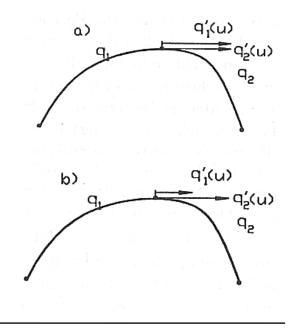
$$P(t) = (x(t) \quad y(t) \quad z(t)) = T(t) \mathbf{A} = \begin{bmatrix} t^{n} & t^{n-1} & \cdots & 1 \end{bmatrix} \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ & \vdots & & \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix}$$

Derivatives

- **Derivative = tangent vector** •
 - Polynomial of degree (n-1)

$$P'(t) = (x'(t) \quad y'(t) \quad z'(t)) = T'(t) \mathbf{A} = \begin{bmatrix} nt^{n-1} & (n-1)t^{n-1} & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} A_{x,n} & A_{y,n} & A_{z,n} \\ A_{x,n-1} & A_{y,n-1} & A_{z,n-1} \\ \vdots & & \\ A_{x,0} & A_{y,0} & A_{z,0} \end{bmatrix}$$

- **Continuity and smoothness between** • parametric curves
 - $C^0 = G^0 =$ same point
 - Parametric continuity C¹
 - Tangent vectors are identical
 - Geometric continuity G¹
 - Same direction of tangent vectors
 - Similar for higher derivatives



.

More on Continuity

• at one point:

Geometric Continuity:

- G0: curves are joined
- G1: first derivatives are proportional at joint point, same direction but not necessarily same length
- G2: first and second derivatives are proportional

Parametric Continuity:

- C0: curves are joined
- C1: first derivative equal
- C2: first and second derivatives are equal. If t is the time, this implies the acceleration is continuous.
- Cn: all derivatives up to and including the nth are equal.

Lagrange Interpolation

Interpolating basis functions

– Lagrange polynomials for a set of parameters $T=\{t_0, ..., t_n\}$

$$L_i^n(t) = \prod_{\substack{j=0\\i\neq j}}^n \frac{t-t_j}{t_i - t_j}, \quad \text{with} \quad L_i^n(t_j) = \delta_{ij} = \begin{cases} 1 & i=j\\ 0 & \text{otherwise} \end{cases}$$

Properties

- Good for interpolation at given parameter values
 - At each t_i : One basis function = 1, all others = 0
- Polynomial of degree n (n factors linear in t)

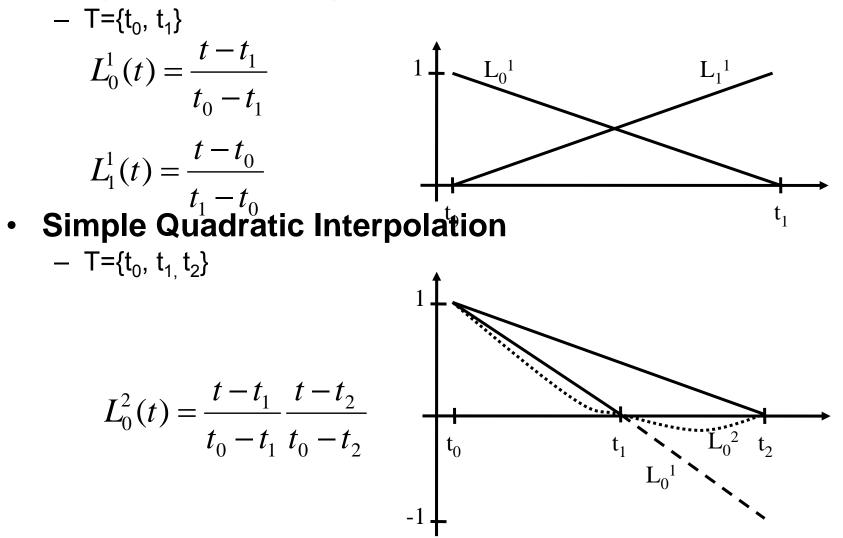
Lagrange Curves

- Use Lagrange Polynomials with point coefficients

$$\underline{P}(t) = \sum_{i=0}^{n} L_{i}^{n}(t)\underline{P}_{i}$$

Lagrange Interpolation

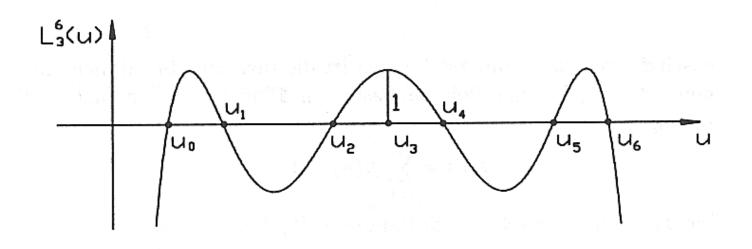
Simple Linear Interpolation



Problems

Problems with a single polynomial

- Degree depends on the number of interpolation constraints
- Strong overshooting for high degree (n > 7)
- Problems with smooth joints
- Numerically unstable
- No local changes



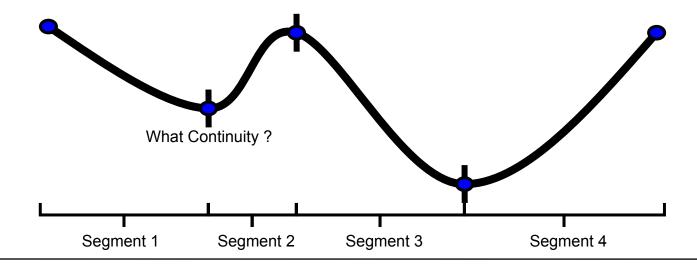
Splines

Functions for interpolation & approximation

- Standard curve and surface primitives in geometric modeling
- Key frame and in-betweens in animations
- Filtering and reconstruction of images

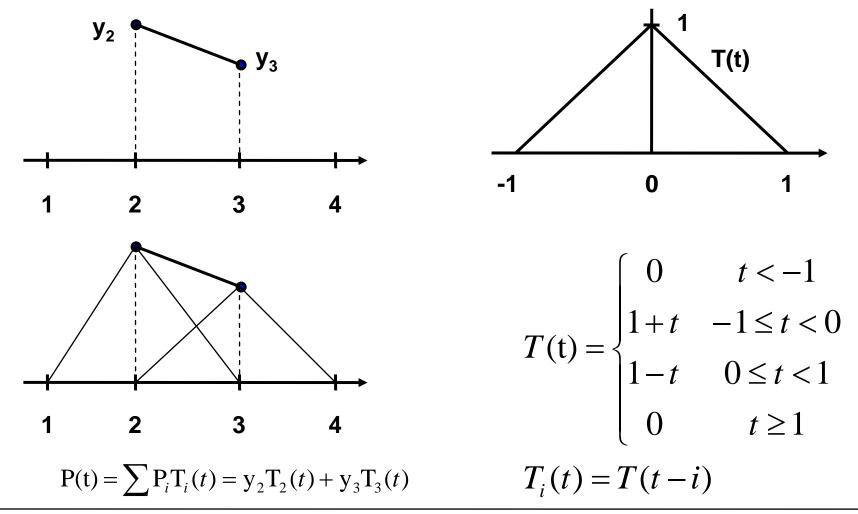
Historically

- Name for a tool in ship building
 - Flexible metal strip that tries to stay straight
- Within computer graphics:
 - Piecewise polynomial function



Linear Interpolation

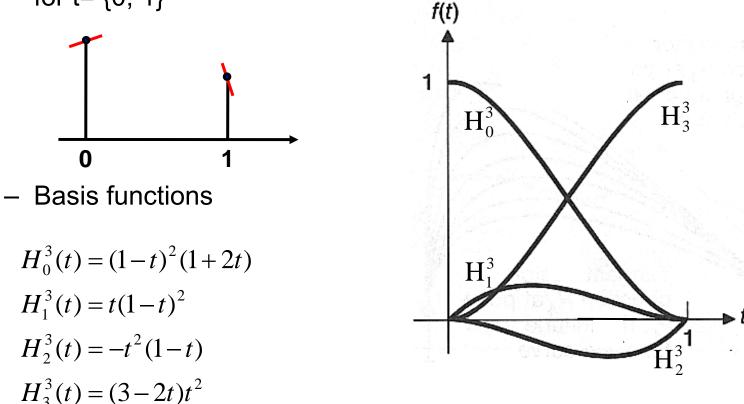
Hat Functions and Linear Splines



Hermite Interpolation

Hermite Basis (cubic)

 Interpolation of position P and tangent P' information for t= {0, 1}



Hermite Interpolation

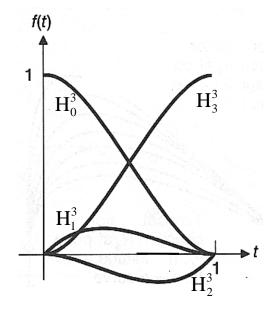
• Properties of Hermite Basis Functions

- H₀ (H₃) interpolates smoothly from 1 to 0 (1 to 0)
- H₀ and H₃ have zero derivative at t= 0 and t= 1
 - No contribution to derivative (H₁, H₂)
- H_1 and H_2 are zero at t= 0 and t= 1
 - No contribution to position (H₀, H₃)
- $H_1 (H_2)$ has slope 1 at t= 0 (t= 1)
 - Unit factor for specified derivative vector

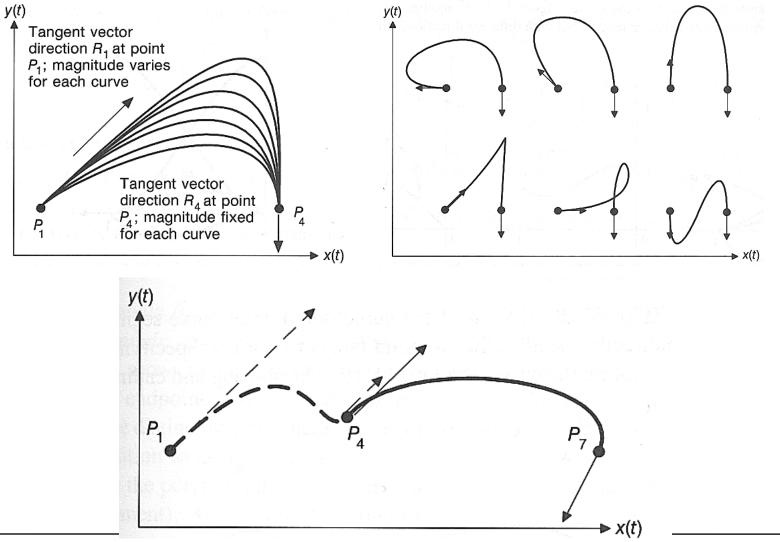
Hermite polynomials

- P_0 , P_1^{*} are positions $\in \mathbb{R}^3$
- − P_0 , P_1 are derivatives (tangent vectors) $\in R^3$

$$\underline{P}(t) = P_0 H_0^3(t) + P_0' H_1^3(t) + P_1' H_2^3(t) + P_1 H_3^3(t)$$

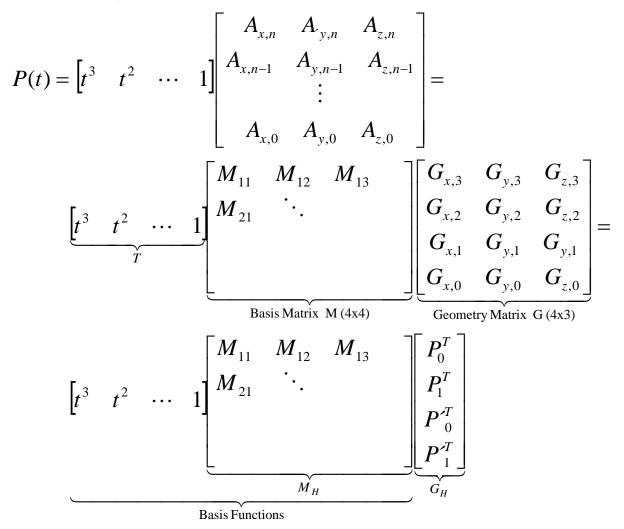


Examples: Hermite Interpolation



Matrix Representation

Matrix representation



Matrix Representation

• For cubic Hermite interpolation we obtain:

$$P_{0}^{T} = (0 \ 0 \ 0 \ 1)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (1 \ 1 \ 1 \ 1)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{0}^{T} = (0 \ 0 \ 1 \ 1)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{0}^{T} = (0 \ 0 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (3 \ 2 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (3 \ 2 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (3 \ 2 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (3 \ 2 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

$$P_{1}^{T} = (3 \ 2 \ 1 \ 0)\mathbf{M}_{H}\mathbf{G}_{H}$$

- Solution:
 - Two matrices must multiply to unit matrix

$$\mathbf{M}_{H} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

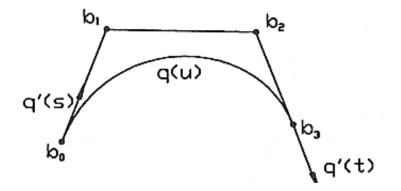
Bézier

• Bézier Basis [deCasteljau'59, Bézier'62]

- Different curve representation
- Start and end point
- 2 point that are approximated by the curve (cubics)

$$-P'_{0}=3(b_{1}-b_{0})$$
 and $P'_{1}=3(b_{3}-b_{2})$

• Factor 3 due to derivative of t³



$$G_{H} = \begin{bmatrix} P_{0}^{T} \\ P_{1}^{T} \\ P_{0}^{T} \\ P_{1}^{T} \\ P_{1}^{T} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} b_{0}^{T} \\ b_{1}^{T} \\ b_{2}^{T} \\ b_{3}^{T} \end{bmatrix} = M_{HB}G_{B}$$

Basis transformation

Transformation

$$- P(t)=T M_{H} G_{H} = T M_{H} (M_{HB} G_{B}) = T (M_{H} M_{HB}) G_{B} = T M_{B} G_{B}$$

1 7

f(t)

 B_{0}^{3}

 B_{1}^{3}

(1)

$$M_{B} = M_{H}M_{HB} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Г

Bézier Curves & Basis Function

$$P(t) = \sum_{i=0}^{3} B_{i}^{3}(t)b_{i} = (1-t)^{3}b_{0} + 3t(1-t)^{2}b_{1} + 3t^{2}(1-t)b_{2} + t^{3}b_{3}$$

$$P(t) = \sum_{i=0}^{n} B_{i}^{n}(t)b_{i}$$
with Basisfunctions $B_{i}^{n}(t) = \binom{n}{i}t^{i}(1-t)^{n-i}$

- Basis functions: Bernstein polynomials

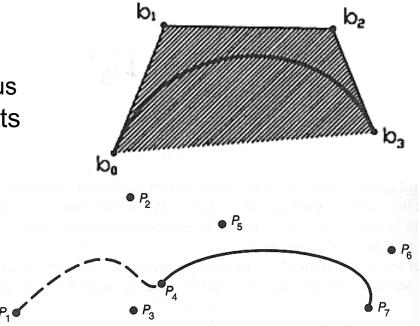
(1)

 B_{3}^{3}

 B_{2}^{3}

Properties: Bézier

- Advantages:
 - End point interpolation
 - Tangents explicitly specified
 - Smooth joints are simple
 - P_3 , P_4 , P_5 collinear \rightarrow G¹ continuous
 - Geometric meaning of control points
 - Affine invariance
 - $\forall \sum B_i(t) = 1$
 - Convex hull property
 - For 0<t<1: $B_i(t) \ge 0$
 - Symmetry: $B_i(t) = B_{n-i}(1-t)$
- Disadvantages
 - Smooth joints need to be maintained explicitly
 - Automatic in B-Splines (and NURBS)



DeCasteljau Algorithm

- Direct evaluation of the basis functions
 - Simple but expensive
- Use recursion
 - Recursive definition of the basis functions

$$B_i^n(t) = tB_{i-1}^{n-1}(t) + (1-t)B_i^{n-1}(t)$$

- Inserting this once yields:

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t)$$

- with the new Bézier points given by the recursion

$$b_i^k(t) = tb_{i+1}^{k-1}(t) + (1-t)b_i^{k-1}(t)$$
 and $b_i^0(t) = b_i$

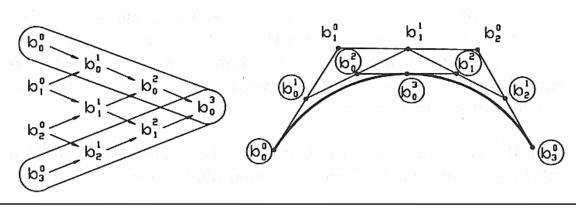
DeCasteljau Algorithm

- DeCasteljau-Algorithm:
 - Recursive degree reduction of the Bezier curve by using the recursion formula for the Bernstein polynomials

$$P(t) = \sum_{i=0}^{n} b_i^0 B_i^n(t) = \sum_{i=0}^{n-1} b_i^1(t) B_i^{n-1}(t) = \dots = b_i^n(t) \cdot 1$$

$$b_i^k(t) = t b_{i+1}^{k-1}(t) + (1-t) b_i^{k-1}(t)$$

- Example:
 - t= 0.5



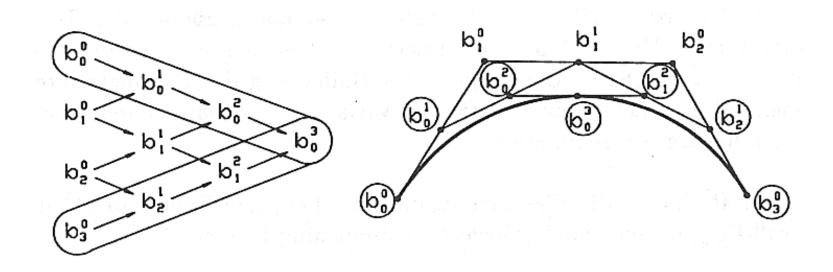
DeCasteljau Algorithm

Subdivision using the deCasteljau-Algorithm

 Take boundaries of the deCasteljau triangle as new control points for left/right portion of the curve

Extrapolation

- Backwards subdivision
 - Reconstruct triangle from one side

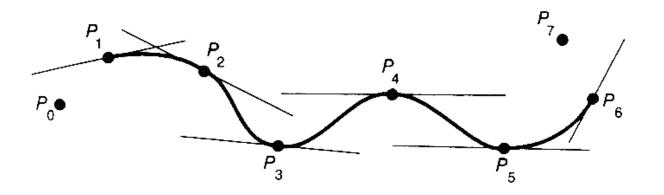


Catmull-Rom-Splines

- Goal
 - Smooth (C¹)-joints between (cubic) spline segments
- Algorithm
 - Tangents given by neighboring points $P_{i-1} P_{i+1}$
 - Construct (cubic) Hermite segments

Advantage

- Arbitrary number of control points
- Interpolation without overshooting
- Local control



Matrix Representation

Catmull-Rom-Spline

- Piecewise polynomial curve
- Four control points per segment
- For n control points we obtain (n-3) polynomial segments

$$\underline{P}^{i}(t) = T\mathbf{M}_{CR}G_{CR} = T\frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} \underline{P}_{i}^{T} \\ \underline{P}_{i+1}^{T} \\ \underline{P}_{i+2}^{T} \\ \underline{P}_{i+3}^{T} \end{bmatrix}$$
lication

- Application
 - Smooth interpolation of a given sequence of points
 - Key frame animation, camera movement, etc.
 - Only G¹-continuity
 - Control points should be equidistant in time

Choice of Parameterization

- Problem
 - Often only the control points are given
 - How to obtain a suitable parameterization t_i ?
- Example: Chord-Length Parameterization

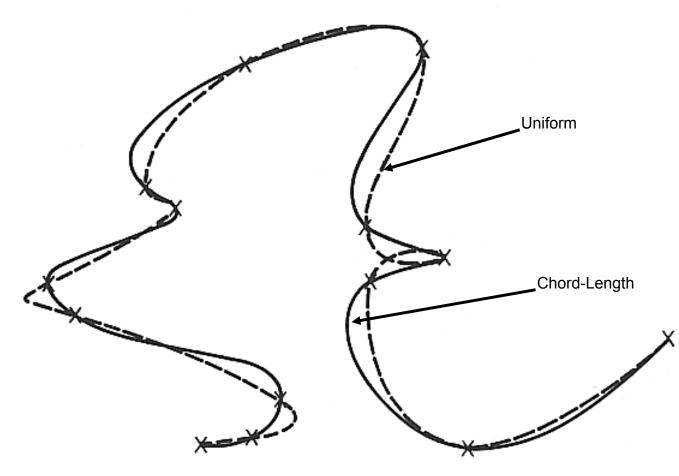
$$t_0 = 0$$

 $t_i = \sum_{j=1}^{i} dist(P_i - P_{i-1})$

- Arbitrary up to a constant factor
- Warning
 - Distances are not affine invariant !
 - Shape of curves changes under transformations !!

Parameterization

- Chord-Length versus uniform Parameterization
 - Analog: Think P(t) as a moving object with mass that may overshoot



B-Splines

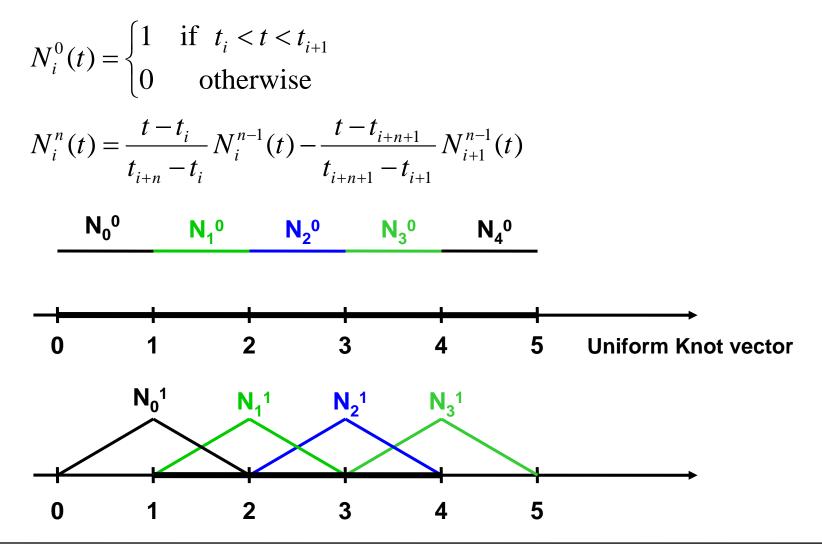
- Goal
 - Spline curve with local control and high continuity
- Given
 - Degree: n
 - Control points: $P_0, ..., P_m$ (Control polygon, $m \ge n+1$)
 - Knots: t₀, ..., t_{m+n+1}
- - (Knot vector, weakly monotonic)
 - The knot vector defines the parametric locations where segments join

B-Spline Curve ullet

$$\underline{P}(t) = \sum_{i=0}^{m} N_i^n(t) \underline{P}_i$$

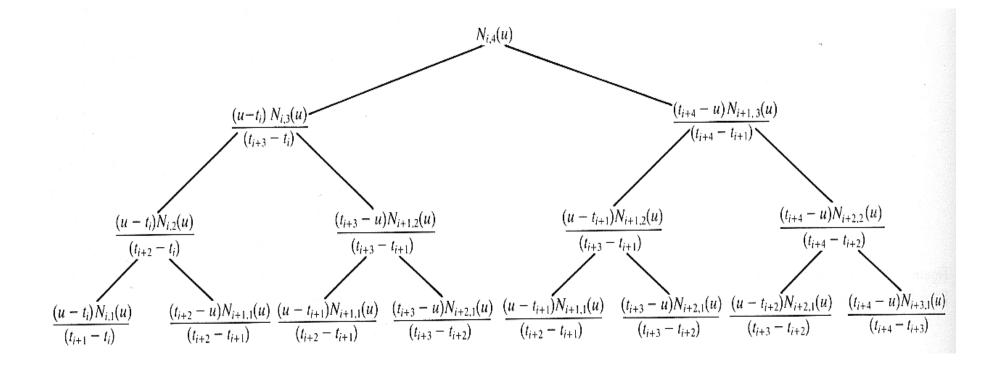
- Continuity:
 - C_{n-1} at simple knots
 - C_{n-k} at knot with multiplicity k

Recursive Definition



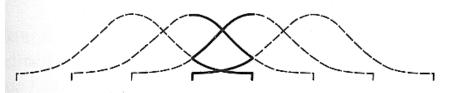
Recursive Definition

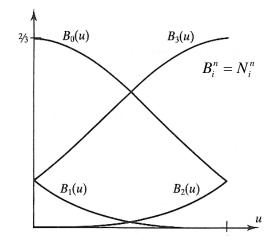
- Degree increases in every step
- Support increases by one knot interval



Uniform Knot Vector

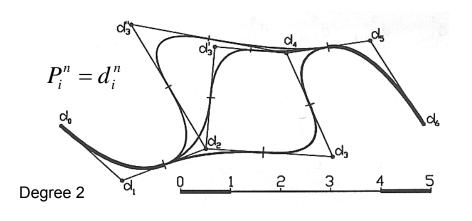
- All knots at integer locations
 - UBS: Uniform B-Spline
- Example: cubic B-Splines





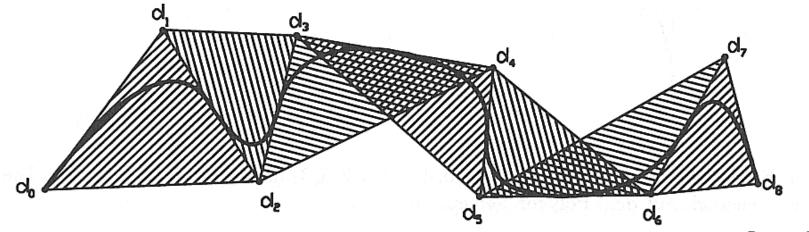
Local Support = Localized Changes

- Basis functions affect only (n+1) Spline segments
- Changes are localized



Convex Hull Property

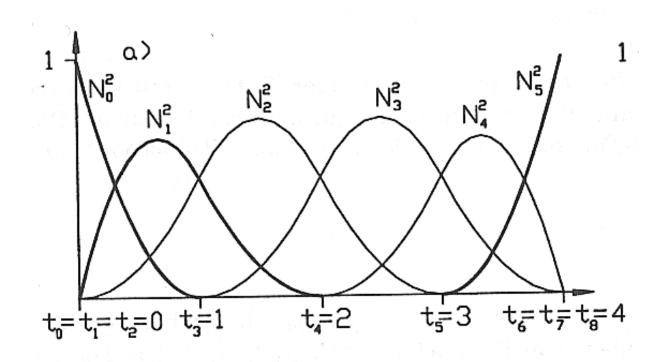
- Spline segment lies in convex hull of (n+1) control points



- (n+1) control points lie on a straight line →
 Degree 2
 curve touches this line
- n control points coincide → curve interpolates this point and is tangential to the control polygon

Normalized Basis Functions

- Basis Functions on an Interval
 - Knots at beginning and end with multiplicity
 - NUBS: Non-uniform B-Splines
 - Interpolation of end points and tangents there
 - Conversion to Bézier segments via knot insertion



deBoor-Algorithm

Recursive Definition of Control Points

- Evaluation at t: $t_{l} < t < t_{l+1}$: $i \in \{l\text{-}n, \, ..., \, l\}$
 - Due to local support only affected by (n+1) control points

$$\underline{P}_{i}^{r}(t) = (1 - \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}})\underline{P}_{i}^{r-1}(t) + \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}}\underline{P}_{i+1}^{r-1}(t)$$

$$\underline{P}_i^0(t) = \underline{P}_i$$

- Properties
 - Affine invariance
 - Stable numerical evaluation
 - All coefficients > 0

