Overview

• **Last Time**
 – Image-Based Rendering

• **Today**
 – Parametric Curves
 – Lagrange Interpolation
 – Hermite Splines
 – Bezier Splines
 – DeCasteljau Algorithm
 – Parameterization
B-Splines

• **Goal**
 – Spline curve with local control and high continuity

• **Given**
 – Degree: \(n \)
 – Control points: \(P_0, \ldots, P_m \) (Control polygon, \(m \geq n+1 \))
 – Knots: \(t_0, \ldots, t_{m+n+1} \) (Knot vector, weakly monotonic)
 – The knot vector defines the parametric locations where segments join

• **B-Spline Curve**

\[
P(t) = \sum_{i=0}^{m} N_i^n(t) P_i
\]

– Continuity:
 • \(C_{n-1} \) at simple knots
 • \(C_{n-k} \) at knot with multiplicity \(k \)
B-Spline Basis Functions

- Recursive Definition

\[
N_i^0(t) = \begin{cases}
1 & \text{if } t_i < t < t_{i+1} \\
0 & \text{otherwise}
\end{cases}
\]

\[
N_i^n(t) = \frac{t - t_i}{t_{i+n} - t_i} N_i^{n-1}(t) - \frac{t - t_{i+n+1}}{t_{i+n+1} - t_{i+1}} N_{i+1}^{n-1}(t)
\]

Uniform Knot vector
B-Spline Basis Functions

- **Recursive Definition**
 - Degree increases in every step
 - Support increases by one knot interval
B-Spline Basis Functions

- **Uniform Knot Vector**
 - All knots at integer locations
 - UBS: Uniform B-Spline
 - Example: cubic B-Splines

- **Local Support = Localized Changes**
 - Basis functions affect only (n+1) Spline segments
 - Changes are localized
B-Spline Basis Functions

- **Convex Hull Property**
 - Spline segment lies in convex Hull of \((n+1)\) control points
 - \((n+1)\) control points lie on a straight line \(\Rightarrow\) curve touches this line
 - \(n\) control points coincide \(\Rightarrow\) curve interpolates this point and is tangential to the control polygon (e.g. beginning and end)
Normalized Basis Functions

- **Basis Functions on an Interval**
 - Partition of unity: \(\sum_{i} N_i^n(t) = 1 \)
 - Knots at beginning and end with multiplicity
 - Interpolation of end points and tangents there
 - Conversion to Bézier segments via knot insertion

\[
\alpha^2
\]

![Diagram of normalized basis functions with knots at t=0, 1, 2, 3, 4]
deBoor-Algorithm

• Evaluating the B-Spline
 • Recursive Definition of Control Points
 – Evaluation at \(t: t_l < t < t_{l+1}: i \in \{l-n, \ldots, l\} \)
 • Due to local support only affected by \(n+1\) control points
 \[
 P_i^r(t) = (1 - \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}})P_i^{r-1}(t) + \frac{t - t_{i+r}}{t_{i+n+1} - t_{i+r}}P_{i+1}^{r-1}(t)
 \]
 \[
 P_i^0(t) = P_i
 \]
 • Properties
 – Affine invariance
 – Stable numerical evaluation
 • All coefficients \(> 0 \)

\[
P_i^n(t) = d_i^n
\]
Knot Insertion

• Algorithm similar to deBoor
 – Given a new knot \(t \)
 • \(t \leq t < t_{l+1} \): \(i \in \{l-n, \ldots, l\} \)
 – \(T^* = T \cup \{t\} \)
 – New representation of the same curve over \(T^* \)

\[
\overline{P}^* (t) = \sum_{i=0}^{m+1} N^n_i(t) \overline{P}^*_i
\]

\[
P^*_i = (1 - a_i) P_{i-1} + a_i P_i
\]

\[
a_i = \begin{cases}
1 & i \leq l-n \\
\frac{t - t_i}{t_{i+n} - t_i} & l-n+1 \leq i \leq l \\
0 & i \geq l+1
\end{cases}
\]

• Applications
 – Refinement of curve, display

Consecutive insertion of three knots at \(t=3 \) into a cubic B-Spline
First and last knot have multiplicity \(n \)
\(T=(0,0,0,0,1,2,4,5,6,6,6,6,6,6,6), l=5 \)
Conversion to Bézier Spline

• B-Spline to Bézier Representation
 – Remember:
 • Curve interpolates point and is tangential at knots of multiplicity n
 – In more detail: If two consecutive knots have multiplicity n
 • The corresponding spline segment is in Bézier from
 • The (n+1) corresponding control polygon form the Bézier control points
NURBS

- Non-uniform Rational B-Splines
 - Homogeneous control points: now with weight w_i
 - $P_i = (w_i x_i, w_i y_i, w_i z_i, w_i) = w_i P_i$

\[
P'(t) = \sum_{i=0}^{m} N_i^n(t) P_i'
\]

\[
P = \frac{\sum_{i=0}^{m} N_i^n(t) P_i w_i}{\sum_{i=0}^{m} N_i^n(t) w_i} = \sum_{i=0}^{m} R_i^n(t) P_i w_i, \text{ mit } R_i^n(t) = \frac{N_i^n(t) w_i}{\sum_{i=0}^{m} N_i^n(t) w_i}
\]
NURBS

• Properties
 – Piecewise rational functions
 – Weights
 • High (relative) weight attract curve towards the point
 • Low weights repel curve from a point
 • Negative weights should be avoided (may introduce singularity)
 – Invariant under projective transformations
 – Variation-Diminishing-Property (in functional setting)
 • Curve cuts a straight line no more than the control polygon does
Examples: Cubic B-Splines
Knots and Points

(a) Clamped
(b) Open
(c) Closed

multiplicity = n at beginning and end
strictly monotonous knot vector
knots or points replicated

[00012345678999]
[0123456789]
[P_0, P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_0, P_1, P_2]
Spline Surfaces
Parametric Surfaces

• Same Idea as with Curves
 – \(P: \mathbb{R}^2 \rightarrow \mathbb{R}^3 \)
 – \(P(u,v) = (x(u,v), y(u,v), z(u,v))^T \in \mathbb{R}^3 \) (also \(P(\mathbb{R}^4) \))

• Different Approaches
 – Triangular Splines
 • Single polynomial in \((u,v)\) via barycentric coordinates with respect to a reference triangle (e.g. B-Patches)
 – Tensor Product Surfaces
 • Separation into polynomials in \(u\) and in \(v\)
 – Subdivision Surfaces
 • Start with a triangular mesh in \(\mathbb{R}^3\)
 • Subdivide mesh by inserting new vertices
 – Depending on local neighborhood
 • Only piecewise parameterization (in each triangle)
Tensor Product Surfaces

• **Idea**
 – Create a “curve of curves"

• **Simplest case: Bilinear Patch**
 – Two lines in space

 \[
 \overline{P^1}(v) = (1 - v)\overline{P_{00}} + v\overline{P_{10}}
 \]

 \[
 \overline{P^2}(v) = (1 - v)\overline{P_{01}} + v\overline{P_{11}}
 \]
 – Connected by lines

 \[
 \overline{P}(u,v) = (1 - u)\overline{P^1}(v) + u\overline{P^2}(v) =
 \]

 \[
 (1 - u)((1 - v)\overline{P_{00}} + v\overline{P_{10}}) + u((1 - v)\overline{P_{01}} + v\overline{P_{11}})
 \]
 – Bézier representation (symmetric in u and v)

 \[
 \overline{P}(u,v) = \sum_{i,j=0}^{1} B_i^1(u) B_j^1(v) \overline{P_{ij}}
 \]
 – Control mesh \(\overline{P_{ij}} \)
Tensor Product Surfaces

• General Case
 – Arbitrary basis functions in u and v
 • Tensor Product of the function space in u and v
 – Commonly same basis functions and same degree in u and v

\[
P(u, v) = \sum_{i=0}^{m} \sum_{j=0}^{n} B_i^m(u) B_j^n(v) P_{ij}
\]

• Interpretation
 – Curve defined by curves

\[
P(u, v) = \sum_{i=0}^{m} B_i(u) \sum_{j=0}^{n} B_j(v) P_{ij}
\]
 – Symmetric in u and v
Matrix Representation

• Similar to Curves
 – Geometry now in a „tensor“ (m x n x 3)

 \[P(u, v) = UG_{\text{monom}} V^T = \begin{pmatrix} u^m & \cdots & u^1 \end{pmatrix} \begin{pmatrix} G_{nn} & \cdots & G_{n0} \\ \vdots & \ddots & \vdots \\ G_{0n} & \cdots & G_{00} \end{pmatrix} \begin{pmatrix} v^n \\ \vdots \\ v \\ 1 \end{pmatrix} = \]

 \[UB_u G_{UV} B_V^T V^T \]

 – Degree
 • u: \(m \)
 • v: \(n \)
 • Along the diagonal (u=v): \(m+n \)
 – Not nice → „Triangular Splines“
Tensor Product Surfaces

• Properties Derived Directly From Curves
 • Bézier Surface:
 – Surface interpolates corner vertices of mesh
 – Vertices at edges of mesh define boundary curves
 – Convex hull property holds
 – Simple computation of derivatives
 – Direct neighbors of corners vertices define tangent plane

• Similar for Other Basis Functions
Tensor Product Surfaces

• Modifying a Bézier Surface
Tensor Product Surfaces

- Representing the Utah Teapot as a set continuous Bézier patches
 - http://www.holmes3d.net/graphics/teapot/
Operations on Surfaces

- **deCausteljau/deBoor Algorithm**
 - Once for u in each column
 - Once for v in the resulting row
 - Due to symmetry also in other order

- **Similarly we can derive the related algorithms**
 - Subdivision
 - Extrapolation
 - Display
 - ...

Ray Tracing of Spline Surfaces

• **Several approaches**
 – Tessellate into many triangles (using deCasteljau or deBoor)
 - Often the fastest method
 - May need enormous amounts of memory
 – Recursive subdivision
 - Simply subdivide patch recursively
 - Delete parts that do not intersect ray (Pruning)
 - Fixed depth ensures crack-free surface
 – Bézier Clipping [Sederberg et al.]
 - Find two orthogonal planes that intersect in the ray
 - Project the surface control points into these planes
 - Intersection must have distance zero
 - Root finding
 - Can eliminate parts of the surface where convex hull does not intersect ray
 - Must deal with many special cases – rather slow
Higher Dimensions

• **Volumes**
 – Spline: $\mathbb{R}^3 \rightarrow \mathbb{R}$
 • Volume density
 • Rarely used
 – Spline: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$
 • Modifications of points in 3D
 • Displacement mapping
 • Free Form Deformations (FFD)
Subdivision Surfaces
Modeling

• **How do we ...**
 – Represent 3D objects in a computer?
 – Construct such representations quickly and/or automatically with a computer?
 – Manipulate 3D objects with a computer?

• **3D Representations provide the foundations for**
 – Computer Graphics
 – Computer-Aided Geometric Design
 – Visualization
 – Robotics, …

• **Different methods for different object representations**
3D Object Representations

- **Raw data**
 - Range image
 - Point cloud
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
Range Image

- **Range image**
 - Acquired from range scanner
 - E.g. laser range scanner, structured light, phase shift approach
 - Structured point cloud
 - Grid of depth values with calibrated camera
 - 2-1/2D: 2D plus depth
Point Cloud

- **Unstructured set of 3D point samples**
 - Often constructed from many range images
Polygon Soup

- Unstructured set of polygons
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
Mesh

- Connected set of polygons (usually triangles)
Parametric Surface

- **Tensor product spline patches**
 - Careful constraints to maintain continuity
Subdivision Surface

- **Coarse mesh & subdivision rule**
 - Define smooth surface as limit of sequence of refinements
Implicit Surface

• Points satisfying: $F(x,y,z) = 0$
3D Object Representations

- **Raw data**
 - Point cloud
 - Range image
 - Polygon soup

- **Surfaces**
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- **Solids**
 - Voxels
 - BSP tree
 - CSG
Voxels

- Uniform grid of volumetric samples
 - Acquired from CAT, MRI, etc.
BSP Tree

- Binary space partition with solid cells labeled
 - Constructed from polygonal representations
CSG — Constructive Solid Geometry

- Hierarchy of boolean set operations (union, difference, intersect) applied to simple shapes
Motivation

- **Splines**
 - Traditionally spline patches (NURBS) have been used in production for character animation.

- **Difficult to stitch together**
 - Maintaining continuity is hard

- **Difficult to model objects with complex topology**

Subdivision in Character Animation
Tony Derose, Michael Kass, Tien Troung
(SIGGRAPH ’98)

(Geri’s Game, Pixar 1998)
Motivation

- **Splines (Bézier, NURBS, ...)**
 - Easy and commonly used in CAD systems
 - Most surfaces are not made of quadrilateral patches
 - Need to trim surface: Cut of parts
 - Trimming NURBS is expensive and often has numerical errors
 - Very difficult to stitch together separate surfaces
 - Very hard to hide seams
Why Subdivision Surfaces?

- **Subdivision methods have a series of interesting properties:**
 - Applicable to meshes of arbitrary topology (non-manifold meshes).
 - No trimming needed
 - Scalability, level-of-detail.
 - Numerical stability.
 - Simple implementation.
 - Compact support.
 - Affine invariance.
 - Continuity
 - Still less tools in CAD systems (but improving quickly)
Types of Subdivision

- **Interpolating Schemes**
 - Limit Surfaces/Curve will pass through original set of data points.

- **Approximating Schemes**
 - Limit Surface will not necessarily pass through the original set of data points.
Example: Geri’s Game

- Subdivision surfaces are used for:
 - Geri’s hands and head
 - Clothes: Jacket, Pants, Shirt
 - Tie and Shoes

(Geri’s Game, Pixar 1998)
Subdivision

• Construct a surface from an arbitrary polyhedron
 – Subdivide each face of the polyhedron
• The limit will be a smooth surface
Subdivision Curves and Surfaces

- **Subdivision curves**
 - The basic concepts of subdivision.

- **Subdivision surfaces**
 - Important known methods.
 - Discussion: subdivision vs. parametric surfaces.

Based on slides Courtesy of Adi Levin, Tel-Aviv U.
Curves: Corner Cutting

A control point

The limit curve

The control polygon
The 4-Point Scheme

The control polygon

A control point

The limit curve

The control polygon
Subdivision Curves

Non interpolatory subdivision schemes
- Corner Cutting

Interpolatory subdivision schemes
- The 4-point scheme
Basic Concepts of Subdivision

• **Definition**
 – A subdivision curve is generated by repeatedly applying a subdivision operator to a given polygon (called the control polygon).

• **The central theoretical questions:**
 – Convergence:
 Given a subdivision operator and a control polygon, does the subdivision process converge?
 – Smoothness:
 Does the subdivision process converge to a smooth curve?
Surfaces Subdivision Schemes

- A control net consists of vertices, edges, and faces.
- Refinement
 - In each iteration, the subdivision operator refines the control net, increasing the number of vertices (approximately) by a factor of 4.
- Limit Surface
 - In the limit the vertices of the control net converge to a limit surface.
- Topology and Geometry
 - Every subdivision method has a method to generate the topology of the refined net, and rules to calculate the location of the new vertices.
Subdivision Schemes

- There are different subdivision schemes
 - Different methods for refining topology
- Different rules for positioning vertices
 - Interpolating versus approximating
Triangular Subdivision

- For control nets whose faces are triangular.

Every face is replaced by 4 new triangular faces.
The are two kinds of new vertices:
- Green vertices are associated with old edges
- Red vertices are associated with old vertices.
Loop Subdivision Scheme

• Works on triangular meshes
• Is an Approximating Scheme
• Guaranteed to be smooth everywhere except at extraordinary vertices.
Loop’s Scheme

- Location of New Vertices
 - Every new vertex is a weighted average of the old vertices. The list of weights is called the subdivision mask or the stencil.

A rule for new red vertices

\[
\alpha_n = \frac{1}{64} \left(40 - \left(3 + 2 \cos \left(\frac{2\pi}{n} \right) \right)^2 \right)
\]

A rule for new green vertices

\[
\alpha_n = \begin{cases}
 \frac{3}{8} & n > 3 \\
 \frac{3}{16} & n = 3
\end{cases}
\]

\(n \) - the vertex valence
Loop Subdivision Boundaries

- Subdivision Mask for Boundary Conditions

Edge Rule

Vertex Rule
Subdivision as Matrices

• Subdivision can be expressed as a matrix S_{mask} of weights w.
 - S_{mask} is very sparse
 - *Never Implement this way!*
 - Allows for analysis
 - Curvature
 - Limit Surface

$$S_{\text{mask}} P = \hat{P}$$

S_{mask} Weights Old Control Points New Points

$$\begin{bmatrix}
w_{00} & w_{01} & \cdots & 0 \\
w_{10} & w_{11} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & w_{nj}
\end{bmatrix} \begin{bmatrix}
p_0 \\
p_1 \\
\vdots \\
p_n
\end{bmatrix} = \begin{bmatrix}
\hat{p}_0 \\
\hat{p}_1 \\
\vdots \\
\hat{p}_0
\end{bmatrix}$$
The Original Control Net
After 1st Iteration
After 2nd Iteration
After 3rd Iteration
The limit surfaces of Loop’s subdivision have continuous curvature almost everywhere.
Quadrilateral Subdivision

- **Works for control nets of arbitrary topology**
 - After one iteration, all the faces are quadrilateral.

Every face is replaced by quadrilateral faces. The are three kinds of new vertices:

- **Yellow** vertices are associated with old **faces**
- **Green** vertices are associated with old **edges**
- **Red** vertices are associated with old **vertices**.
Catmull Clark’s Scheme

Step 1
First, all the yellow vertices are calculated

Step 2
Then the green vertices are calculated using the values of the yellow vertices

Step 3
Finally, the red vertices are calculated using the values of the yellow vertices

\(n \) - the vertex valence

\[w_n = n(n - 2) \]
The Original Control Net
After 1st Iteration
After 2nd Iteration
After 3rd Iteration
The limit surfaces of Catmull-Clarks's subdivision have continuous curvature almost everywhere.
Edges and Creases

- **Most surface are not smooth everywhere**
 - Edges & creases
 - Can be marked in model
 - Weighting is changed to preserve edge or crease

- **Generalization to semi-sharp creases (Pixar)**
 - Controllable sharpness
 - Sharpness \(s = 0 \), smooth
 - Sharpness \(s = \infty \), sharp
 - Achievable through hybrid subdivision step
 - Subdivision iff \(s = 0 \)
 - Otherwise parameter is decremented
Adaptive Subdivision

- Not all regions of a model need to be subdivided.
- Idea: Use some criteria and adaptively subdivide mesh where needed.
 - Curvature
 - Screen size
 - Make triangles < size of pixel
 - View dependence
 - Distance from viewer
 - Silhouettes
 - In view frustum
 - Careful!
 - Must avoid “cracks”
Edges and Creases

- Increasing sharpness of edges
Edges and Creases

- Can be changed on an edge by edge basis
Texture mapping

- **Solid color painting is easy, already defined**
- **Texturing is not so easy**
 - Using polygonal methods can result in distortion
- **Solution**
 - Assign texture coordinates to each original vertex
 - Subdivide them just like geometric coordinates
- **Introduces a smooth scalar field**
 - Used for texturing in Geri’s jacket, ears, nostrils
Advanced Topics

• **Hierarchical Modeling**
 – Store offsets to vertices at different levels
 – Offsets performed in normal direction
 – Can change shape at different resolutions while rest stays the same

• **Surface Smoothing**
 – Can perform filtering operations on meshes
 • E.g. (Weighted) averaging of neighbors

• **Level-of-Detail**
 – Can easily adjust maximum depth for rendering
Wrapup: Subdivision Surfaces

• **Advantages**
 – Simple method for describing complex surfaces
 – Relatively easy to implement
 – Arbitrary topology
 – Local support
 – Guaranteed continuity
 – Multi-resolution

• **Difficulties**
 – Intuitive specification
 – Parameterization
 – Intersections