Computer Graphics

- Outlook -

Hendrik Lensch

Computer Graphics WS07/08 – Outlook

Overview

Last Lectures

- Current trends
- Current work in AG4 MPI
- Current work at UdS

• Exam

- Monday, 18th

please be there at 8:00 sharp

- starts at 8:15 will end at 10:00.
- bring a ruler
- no other devices!

Highlight you should not have missed!

a non-exclusive list of relevant topics of this lecture

Topics (1)

- ray tracing vs rasterization
- recursive ray tracing
- ray surface intersections
- spatial acceleration structures (dynamics)
- shading, reflection, refraction, BRDF, ...
- radiometry
- rendering equation
- texture mapping (mip-maps, ...)
- sampling theory
- antialiasing
- HDR, contrast, tonemapping
- transformations!
- rasterization (Bresenham, polygons)

Topics (2)

- OpenGL, Cg (basics)
- plenoptic function, light fields, panoramas
- splines (evaluation)
- volume rendering

Lots of topics not touched in this lecture

(have a look at the SIGGRAPH proceedings)

Level of Detail in Shading

- Frequency Domain Normal Map Filtering [Han et al. – SIGGRAPH 2007]
- rendering of surface detail depends on viewing distance

Ground Truth

Our Method

Normalized MM

Toksvig

Level of Detail in Shading

- correct mip-mapping of bump maps
- multiple normal will integrate to some super-pixel
- consider the normal distribution function
- approximate NDF with a set of spherical functions

Level of Detail in Shading

Normal Mapping

Frequency Domain Normal Map Filtering

Charles Han Bo Sun Ravi Ramamoorthi Eitan Grinspun

Columbia University

Non-Photo Realistic Rendering

• Line Drawing Via Abstracted Shading [Markosian – SIGGRAPH 2007]

- NPR creates a more abstract image
- removal of unnecessary detail

Ridge Detection in Tone Image

- compute a tone image
- detect lines in the tone image -> abstraction

Figure 3: Ridge searching. Red dotted curves show the fitting polynomials. By refitting the polynomials after moving toward the ridge or valley, we can distinguish case (b) from case (d).

Interactive Global Illumination

• Implicit Visibility and Antiradiance for Interactive Global Illumination [Dachsbacher et al. – SIGGRAPH 2007]

Antiradiance

- do not use any shadow rays
- simply transport negative light
- solve for global illumination through iteration

Antiradiance

Implicit Visibility and Antiradiance for Interactive Global Illumination

Carsten Dachsbacher¹, Marc Stamminger² George Drettakis¹, Frédo Durand³

¹REVES/INRIA Sophia-Antipolis ²University of Erlangen ³MIT CSAIL

(this video has sound)

• "Seam Carving for Content-Aware Image Resizing" [Avidan and Shamir, SIGGRAPH 07]

• "Seam Carving for Content-Aware Image Resizing" [Avidan and Shamir, SIGGRAPH 07]

Energy Minimization

magnitude of gradient

accumulated path cost: horizontal, vertical

Algorithm

- Find minimum path from top to bottom (left to right)
- Dijkstra's Algorithm O(n log n)
- For shrinking:
 - iteratively remove individual seams
 - increases the energy in every step

• For growing:

- iteratively insert individual seams
- decreases the energy in every step
- make sure not to insert at the same place over and over again, use the seams suggested for shrinking

• Capturing and Viewing Gigapixel Images [Kopf et al. – SIGGRAPH 2007]

Physics Simulation

• Efficient Simulation of Inextensible Cloth [Goldenthal et al. – SIGGRAPH 2007]

• this motion is governed by an augmented Lagrange equation $L(\mathbf{x}, \mathbf{v}) = \frac{1}{2} \mathbf{v}^T \mathbf{M} \mathbf{v} - V(\mathbf{x}) - \mathbf{C}(\mathbf{x})^T \boldsymbol{\lambda}$

with velocity v(t), mass matrix M, bending, shear and gravity V(x), extensibility constraints C

• efficient solution by simplification

Fluid Flow

• Multiple Interacting Liquids [Losasso et al. – SIGGRAPH 2006]

• Multiple Interacting Liquids [Losasso et al. – SIGGRAPH 2006]

Crowd Simulation

- Continuum Crowds [Treuiller et al. SIGGRAPH 2006]
- simulated using continuous dynamics
- implicit collision avoidance

Crowd Simulation

Continuum Crowds

Adrien Treuille Seth Cooper Zoran Popović

Collision Detection

• BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models [James and Pai – SIGGRAPH 2004]

- collision handling necessary for correct physics simulation
- spatial acceleration structure to perform collision detection even of deformable objects

Collision Detection

Animation of Flexible Bodies

• FastLSM: Fast Lattice Shape Matching for Robust Real-Time Deformation [Rivers&James – SIGGRAPH 2007]

Current Topics at MPI Department 4 Computer Graphics

Motion Retrieval

• given a small motion sequence determine segments that perform a similar motion

Meinhard Mueller www.mpi-inf.mpg.de/~mmueller

Multi-Touch-Display

• 3D modeling application

tracking: 100Hz using Cuda

Global Image Statistics

- Image gradients (color difference between neighboring pixels)
- Heavy-tail distribution function on a global scale

Local Image Statistics

- Global statistics do not allow subtle local changes within the images
- We have developed a novel objective function which should correspond to naturally looking images
- It is defined on a small pixel neighborhood, allowing for easy pixel reconstruction.
- Applied to image demosaicing.

Proposed work

- Acquiring a large high quality full RGB image datasets (internet, our cameras).
- Further testing the objective function possible adjustments.
- Code optimization (implementing CUDA)
- Applications to image denoising, upsampling, ...

Scientific Computing with GPUs

Robert Strzodka www.mpi-inf.mpg.de/~strzodka

GPU Results: Conjugate Gradient (CG) and Multigrid (MG)

Distance Transforms and Skeletons

Feature-Preserving Simplification

Robert Strzodka www.mpi-inf.mpg.de/~strzodka

Distance Transforms and Voronoi Diagrams

Robert Strzodka www.mpi-inf.mpg.de/~strzodka

Motion Estimation – Feature Extraction

[–] Robert Strzodka www.mpi-inf.mpg.de/~strzodka

Computer Graphics WS07/08 - Outlook

Motion Estimation – Blood Visualization

3D-Reconstruction from Video

Computer Graphics WS07/08 – Outlook Thorsten Thormaehlen www.mpi-inf.mpg.de/~tormaehlen

Differential Photon Mapping

- Special version of photon mapping for augmenting photographs
 - Simulates the difference in illumination introduced by virtual objects
- Bachelor Thesis
 - Include Final Gathering in the existing photon mapper
 - Thorsten Grosch
 - (tgrosch@mpi-inf.mpg.de)

